1
|
Bao Y, Zhong J, Shen L, Dai L, Zhou S, Fan J, Yao H, Lu Z. Effect of Glut-1 and HIF-1α double knockout by CRISPR/CAS9 on radiosensitivity in laryngeal carcinoma via the PI3K/Akt/mTOR pathway. J Cell Mol Med 2022; 26:2881-2894. [PMID: 35415942 PMCID: PMC9907005 DOI: 10.1111/jcmm.17303] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Revised: 03/13/2022] [Accepted: 03/16/2022] [Indexed: 12/16/2022] Open
Abstract
Hypoxic resistance is the main obstacle to radiotherapy for laryngeal carcinoma. Our previous study indicated that hypoxia-inducible factor 1α (HIF-1α) and glucose transporter 1 (Glut-1) double knockout reduced tumour biological behaviour in laryngeal carcinoma cells. However, their radioresistance mechanism remains unclear. In this study, cell viability was determined by CCK8 assay. Glucose uptake capability was evaluated by measurement of 18 F-fluorodeoxyglucose radioactivity. A tumour xenograft model was established by subcutaneous injection of Tu212 cells. Tumour histopathology was determined by haematoxylin and eosin staining, immunohistochemical staining, and TUNEL assays. Signalling transduction was evaluated by Western blotting. We found that hypoxia induced radioresistance in Tu212 cells accompanied by increased glucose uptake capability and activation of the PI3K/Akt/mTOR pathway. Inhibition of PI3K/Akt/mTOR activity abolished hypoxia-induced radioresistance and glucose absorption. Mechanistic analysis revealed that hypoxia promoted higher expressions of HIF-1α and Glut-1. Moreover, the PI3K/Akt/mTOR pathway was a positive mediator of HIF-1α and/or Glut-1 in the presence of irradiation. HIF-1α and/or Glut-1 knockout significantly reduced cell viability, glucose uptake and PI3K/Akt/mTOR activity, all of which were induced by hypoxia in the presence of irradiation. In vivo analysis showed that knockout of HIF-1α and/or Glut-1 also inhibited tumour growth by promoting cell apoptosis, more robustly compared with the PI3K inhibitor wortmannin, particularly in tumours with knockout of both HIF-1α and Glut-1. HIF-1α and/or Glut-1 knockout also abrogated PI3K/Akt/mTOR signalling transduction in tumour tissues, in a manner similar to wortmannin. HIF-1α and/or Glut-1 knockout facilitated radiosensitivity in laryngeal carcinoma Tu212 cells by regulation of the PI3K/Akt/mTOR pathway.
Collapse
Affiliation(s)
- Yang‐Yang Bao
- Department of OtolaryngologyThe First Affiliated HospitalZhejiang University School of MedicineHangzhou CityChina
| | - Jiang‐Tao Zhong
- Department of OtolaryngologyThe First Affiliated HospitalZhejiang University School of MedicineHangzhou CityChina
| | - Li‐Fang Shen
- Department of OtolaryngologyThe First Affiliated HospitalZhejiang University School of MedicineHangzhou CityChina
| | - Li‐Bo Dai
- Department of OtolaryngologyThe First Affiliated HospitalZhejiang University School of MedicineHangzhou CityChina
| | - Shui‐Hong Zhou
- Department of OtolaryngologyThe First Affiliated HospitalZhejiang University School of MedicineHangzhou CityChina
| | - Jun Fan
- State Key Laboratory for Diagnosis and Treatment of Infectious DiseasesThe First Affiliated HospitalZhejiang University School of MedicineHangzhou CityChina
| | - Hong‐Tian Yao
- Department of PathologyThe First Affiliated HospitalZhejiang University School of MedicineHangzhou CityChina
| | - Zhong‐Jie Lu
- Department of RadiotherapyThe First Affiliated HospitalZhejiang University School of MedicineHangzhou CityChina
| |
Collapse
|
2
|
Haas RL, Floot BGJ, Scholten AN, van der Graaf WTA, van Houdt W, Schrage Y, van de Ven M, Bovée JVMG, van Coevorden F, Vens C. Cellular Radiosensitivity of Soft Tissue Sarcoma. Radiat Res 2021; 196:23-30. [PMID: 33914890 DOI: 10.1667/rade-20-00226.1] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Accepted: 03/19/2021] [Indexed: 11/03/2022]
Abstract
Currently, all soft tissue sarcomas (STS) are irradiated by the same regimen, disregarding possible subtype-specific radiosensitivities. To gain further insight, cellular radiosensitivity was investigated in a panel of sarcoma cell lines. Fourteen sarcoma cell lines, derived from synovial sarcoma, leiomyosarcoma, fibrosarcoma and liposarcoma origin, were submitted to clonogenic survival assays. Cells were irradiated with single doses from 1-8 Gy and surviving fraction (SF) was calculated from the resulting response data. Alpha/beta (α/β) ratios were inferred from radiation-response curves using the linear-quadratic (LQ)-model. Cellular radiosensitivities varied largely in this panel, indicating a considerable degree of heterogeneity. Surviving fraction after 2 Gy (SF2) ranged from 0.27 to 0.76 with evidence of a particular radiosensitive phenotype in only few cell lines. D37% on the mean data was 3.4 Gy and the median SF2 was 0.52. The median α/β was 4.9 Gy and in six cell lines the α/β was below 4 Gy. A fairly homogeneous radiation response was observed in myxoid liposarcoma cell lines with SF2 between 0.64 and 0.67. Further comparing sarcomas of different origin, synovial sarcomas, as a group, showed the lowest SF2 values (mean 0.35) and was significantly more radiosensitive than myxoid liposarcomas and leiomyosarcomas (P = 0.0084 and 0.024, respectively). This study demonstrates a broad spectrum of radiosensitivities across STS cell lines and reveals subtype-specific radiation responses. The particular cellular radiosensitivity of synovial sarcoma cells supports consideration of the different sarcoma entities in clinical studies that aim to optimize sarcoma radiotherapy.
Collapse
Affiliation(s)
- R L Haas
- Department of Radiotherapy, The Netherlands Cancer Insititute, Amsterdam, The Netherlands
| | - B G J Floot
- Department of Surgical Oncology, The Netherlands Cancer Insititute, Amsterdam, The Netherlands
| | - A N Scholten
- Department of Radiotherapy, The Netherlands Cancer Insititute, Amsterdam, The Netherlands
| | - W T A van der Graaf
- Division of Cell Biology, The Netherlands Cancer Insititute, Amsterdam, The Netherlands
| | - W van Houdt
- Department of Medical Oncology, The Netherlands Cancer Insititute, Amsterdam, The Netherlands
| | - Y Schrage
- Department of Medical Oncology, The Netherlands Cancer Insititute, Amsterdam, The Netherlands
| | - M van de Ven
- Preclinical Intervention Unit, Mouse Clinic for Cancer and Aging (MCCA), The Netherlands Cancer Insititute, Amsterdam, The Netherlands
| | - J V M G Bovée
- Department of Pathology, Leiden University Medical Centre, Leiden, the Netherlands
| | - F van Coevorden
- Department of Medical Oncology, The Netherlands Cancer Insititute, Amsterdam, The Netherlands
| | - C Vens
- Department of Radiotherapy, The Netherlands Cancer Insititute, Amsterdam, The Netherlands.,Department of Surgical Oncology, The Netherlands Cancer Insititute, Amsterdam, The Netherlands
| |
Collapse
|
3
|
Zhang Q, Han Z, Zhu Y, Chen J, Li W. Role of hypoxia inducible factor-1 in cancer stem cells (Review). Mol Med Rep 2020; 23:17. [PMID: 33179080 PMCID: PMC7673349 DOI: 10.3892/mmr.2020.11655] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Accepted: 09/25/2020] [Indexed: 02/06/2023] Open
Abstract
Cancer stem cells (CSCs) have been found to play a decisive role in cancer recurrence, metastasis, and chemo‑, radio‑ and immuno‑resistance. Understanding the mechanism of CSC self‑renewal and proliferation may help overcome the limitations of clinical treatment. The microenvironment of tumor growth consists of a lack of oxygen, and hypoxia has been confirmed to induce cancer cell invasion, metastasis and epithelial‑mesenchymal transition, and is usually associated with poor prognosis and low survival rates. Hypoxia inducible factor‑1 (HIF‑1) can be stably expressed under hypoxia and act as an important molecule to regulate the development of CSCs, but the specific mechanism remains unclear. The present review attempted to explain the role of HIF‑1 in the generation and maintenance of CSCs from the perspective of epigenetics, metabolic reprogramming, tumor immunity, CSC markers, non‑coding RNA and signaling pathways associated with HIF‑1, in order to provide novel targets with HIF‑1 as the core for clinical treatment, and extend the life of patients.
Collapse
Affiliation(s)
- Qi Zhang
- Stem Cell and Cancer Center, The First Hospital of Jilin University, Changchun, Jilin 130061, P.R. China
| | - Zhenzhen Han
- Stem Cell and Cancer Center, The First Hospital of Jilin University, Changchun, Jilin 130061, P.R. China
| | - Yanbo Zhu
- Stem Cell and Cancer Center, The First Hospital of Jilin University, Changchun, Jilin 130061, P.R. China
| | - Jingcheng Chen
- Stem Cell and Cancer Center, The First Hospital of Jilin University, Changchun, Jilin 130061, P.R. China
| | - Wei Li
- Stem Cell and Cancer Center, The First Hospital of Jilin University, Changchun, Jilin 130061, P.R. China
| |
Collapse
|
4
|
Disturbance in the regulation of miR 17-92 cluster on HIF-1-α expression contributes to clinically relevant radioresistant cells: an in vitro study. Cytotechnology 2020; 72:141-153. [PMID: 31916114 DOI: 10.1007/s10616-019-00364-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Accepted: 12/30/2019] [Indexed: 02/07/2023] Open
Abstract
Cellular radioresistance is one of the major obstacles to the effectiveness of cancer radiotherapy. In an attempt to elucidate the implication of HIF-1α and miR-17-92 expressions in refractory radioresistant cells and also in order to study the potential applications of these molecules as novel therapeutic modalities to overcome radioresistant cancers, the current study was conducted. Clinically relevant radioresistant (CRR) cells from human cancer cell lines were established by exposing to long-term fractionated radiation of X-rays. Correspondingly, microarray analysis and real time RT-PCR were performed to find miRNA involved in the CRR phenotype. HIF-1α was down-regulated and miR17-92 cluster was overexpressed in CRR cells by transfection. The expression of miR 17-3p was inhibited by specific inhibitors and miR 19a was enforced by mimics, respectively in parental cells. Overexpression of HIF-1α in parental cells or down regulation of HIF-1α in CRR cells were not involved in radioresistance. However, when HIF-1α was genetically modified to constitutively express under normoxia condition, it was rendered for protection to cells. Exogenous overexpression of miR 17-92 cluster in CRR cells resulted in abolition of HIF-1α expression and restored sensitizations to ionizing radiation. Attenuated expression of miR-17-3p in parental cells protected them from irradiation. Overall, fine-tune deregulation of miR 17-92 cluster in CRR cells might account for the accumulation of HIF-1α in the CRR cells following exposure to irradiation.
Collapse
|
5
|
Wu SY, Wu ATH, Liu SH. MicroRNA-17-5p regulated apoptosis-related protein expression and radiosensitivity in oral squamous cell carcinoma caused by betel nut chewing. Oncotarget 2018; 7:51482-51493. [PMID: 27285985 PMCID: PMC5239490 DOI: 10.18632/oncotarget.9856] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2016] [Accepted: 05/26/2016] [Indexed: 01/07/2023] Open
Abstract
Betel nut chewing is associated with oral cavity cancer. Radiotherapy is one of the therapeutic approaches. Here, we used miR-17-5p antisense oligonucleotides (AS-ODNs) and human apoptosis protein array to clarify which apoptosis-related proteins are increased or decreased by miR-17-5p in betel nut chewing- oral squamous cell carcinoma OC3 cells. Furthermore, miR-17-5p AS-ODN was used to evaluate the radio-sensitization effects both in vitro and in vivo. An OC3 xenograft tumor model in severe combined immunodeficiency mice was used to determine the effect of miR-17-5p AS ODN on tumor irradiation. We simultaneously detected the relative expressions of 35 apoptosis-related proteins in irradiated OC3 cells that were treated with miR-17-5p AS-ODN or a control ODN. Several proteins, including p21, p53, TNF RI, FADD, cIAP-1, HIF-1α, and TRAIL R1, were found to be up- or downregulated by miR-17-5p in OC3 cells; their expression patterns were also confirmed by Western blotting. We further clarified the role of p53 in irradiated OC3 cells, using a p53 overexpression strategy. The results revealed that the enhancement of p53 expression significantly enhanced radiation-induced G2/M arrest of the OC3 cells. In the in vivo study, treatment of miR-17-5p AS-ODN before irradiation significantly enhanced p53 expression and reduced tumor growth. These results suggest that miR-17-5p increases or decreases apoptosis-related proteins in irradiated OC3 cells; its effect on p53 protein expression contributes to the modulation of the radiosensitivity of the OC3 cells.
Collapse
Affiliation(s)
- Szu-Yuan Wu
- Institute of Toxicology, College of Medicine, National Taiwan University, Taipei, Taiwan.,Department of Radiation Oncology, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan.,Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan.,Department of Biotechnology, Hungkuang University, Taichung, Taiwan
| | - Alexander T H Wu
- The Ph.D. Program for Translational Medicine, Taipei Medical University, Taipei, Taiwan
| | - Shing-Hwa Liu
- Institute of Toxicology, College of Medicine, National Taiwan University, Taipei, Taiwan.,Department of Pediatrics, College of Medicine, National Taiwan University, Taipei, Taiwan.,Department of Medical Research, China Medical University Hospital, China Medical University, Taichung, Taiwan
| |
Collapse
|
6
|
Ding YQ, Qin Q, Yang Y, Sun XC, Yang X, Zhu HC, Chen XC, Zhang H, Yang YH, Gao L, Luo JD, Zhou XF. Improved sensitization effect of sunitinib in cancer cells of the esophagus under hypoxic microenviroment. Oncol Lett 2016; 12:4671-4676. [PMID: 28105174 DOI: 10.3892/ol.2016.5247] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2015] [Accepted: 09/09/2016] [Indexed: 12/17/2022] Open
Abstract
Radiotherapy is widely used in esophageal squamous cell carcinoma (ESCC) treatment. Promoting the radiation sensitivity of cancer cells is required. Recent studies have shown that sunitinib can inhibit the growth of several cancer lines. However, few studies on the radiosensitive effect of sunitinib on ESCC cells under hypoxic conditions have been conducted. In the present study, the radiosensitive effects of sunitinib on human ESCC cells were assessed, and the underlying mechanisms were explored. ESCC cells were exposed to hypoxia and treated with sunitinib at different concentrations prior to irradiation. Sunitinib potently inhibited ESCC cell proliferation in an MTT assay. In a clonogenic survival assay, sunitinib sensitized hypoxic ESCC cells to radiation, with sensitizing enhancement ratios of 1.31-1.59. In addition, sunitinib promoted the apoptosis of ESCC cells, but did not alter their cell cycle distribution. Radiosensitization was accompanied by inhibition of the radiation-induced upregulation of hypoxia-inducible factor (HIF)-1α and vascular endothelial growth factor (VEGF) expression. Thus, sunitinib confers radiosensitivity to esophageal cancer cells, which is associated with the downregulation of HIF-1α and VEGF expression. Sunitinib can be a promising radiosensitizer for esophageal cancer radiotherapy.
Collapse
Affiliation(s)
- Yu-Qiong Ding
- Department of Radiotherapy, Changzhou Cancer Hospital of Soochow University, Changzhou, Jiangsu 213001, P.R. China
| | - Qin Qin
- Department of Radiotherapy, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China
| | - Yan Yang
- Department of Radiotherapy, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China
| | - Xin-Chen Sun
- Department of Radiotherapy, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China
| | - Xi Yang
- Department of Radiotherapy, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China
| | - Hong-Cheng Zhu
- Department of Radiotherapy, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China
| | - Xiao-Chen Chen
- Department of Radiotherapy, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China
| | - Hao Zhang
- Department of Radiotherapy, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China
| | - Yue-Hua Yang
- Department of Radiotherapy, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China
| | - Lei Gao
- Department of Radiotherapy, Changzhou Cancer Hospital of Soochow University, Changzhou, Jiangsu 213001, P.R. China
| | - Ju-Dong Luo
- Department of Radiotherapy, Changzhou Cancer Hospital of Soochow University, Changzhou, Jiangsu 213001, P.R. China
| | - Xi-Fa Zhou
- Department of Radiotherapy, Changzhou Cancer Hospital of Soochow University, Changzhou, Jiangsu 213001, P.R. China
| |
Collapse
|
7
|
Zhang Q, Zhang C, He J, Guo Q, Hu D, Yang X, Wang J, Kang Y, She R, Wang Z, Li D, Huang G, Ma Z, Mao W, Zhou X, Xiao C, Sun X, Ma J. STAT3 inhibitor stattic enhances radiosensitivity in esophageal squamous cell carcinoma. Tumour Biol 2014; 36:2135-42. [PMID: 25492480 DOI: 10.1007/s13277-014-2823-y] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2014] [Accepted: 11/06/2014] [Indexed: 01/10/2023] Open
Abstract
The radioresistance of esophageal squamous cell carcinoma (ESCC) remains an obstacle for the effective radiotherapy of ESCC. This study aimed to investigate the radiosensitization of ESCC by signal transducer and activator of transcription 3 (STAT3) inhibitor stattic. ECA109, TE13, and KYSE150 cell lines were exposed to hypoxia and treated with stattic or radiation, alone or in combination. Cell proliferation, colony formation, apoptosis, and double-stranded DNA breaks (DSBs) were examined. In addition, ECA109 cells were xenografted into nude mice and treated with radiation and/or stattic. The levels of STAT3, p-STAT3, hypoxia-inducible factor 1α (HIF-1α), and vascular endothelial growth factor (VEGF) in ESCC cells and xenografts were detected by Western blot and immunohistochemical analysis. Our results showed that stattic efficiently radiosensitized ESCC cells and xenografts, especially under hypoxia. Moreover, stattic inhibited STAT3 activation and downregulated HIF-1α and VEGF expression. In conclusion, stattic confers radiosensitivity in ESCC cells in vitro and in vivo and is a potential adjuvant for the radiotherapy of ESCC in the clinical setting.
Collapse
Affiliation(s)
- Qu Zhang
- Department of Radiotherapy, Hubei Cancer Hospital, Wuhan, China
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Wouters A, Pauwels B, Burrows N, Baay M, Deschoolmeester V, Vu TN, Laukens K, Meijnders P, Van Gestel D, Williams KJ, Van den Weyngaert D, Vermorken JB, Pauwels P, Peeters M, Lardon F. The radiosensitising effect of gemcitabine and its main metabolite dFdU under low oxygen conditions is in vitro not dependent on functional HIF-1 protein. BMC Cancer 2014; 14:594. [PMID: 25128202 PMCID: PMC4152599 DOI: 10.1186/1471-2407-14-594] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2014] [Accepted: 08/05/2014] [Indexed: 12/02/2022] Open
Abstract
Background Regions within solid tumours often experience oxygen deprivation, which is associated with resistance to chemotherapy and irradiation. The aim of this study was to evaluate the radiosensitising effect of gemcitabine and its main metabolite dFdU under normoxia versus hypoxia and to determine whether hypoxia-inducible factor 1 (HIF-1) is involved in the radiosensitising mechanism. Methods Stable expression of dominant negative HIF-1α (dnHIF) in MDA-MB-231 breast cancer cells, that ablated endogenous HIF-1 transcriptional activity, was validated by western blot and functionality was assessed by HIF-1α activity assay. Cells were exposed to varying oxygen environments and treated with gemcitabine or dFdU for 24 h, followed by irradiation. Clonogenicity was then assessed. Using radiosensitising conditions, cells were collected for cell cycle analysis. Results HIF-1 activity was significantly inhibited in cells stably expressing dnHIF. A clear radiosensitising effect under normoxia and hypoxia was observed for both gemcitabine and dFdU. No significant difference in radiobiological parameters between HIF-1 proficient and HIF-1 deficient MDA-MB-231 cells was demonstrated. Conclusions For the first time, radiosensitisation by dFdU, the main metabolite of gemcitabine, was demonstrated under low oxygen conditions. No major role for functional HIF-1 protein in radiosensitisation by gemcitabine or dFdU could be shown.
Collapse
Affiliation(s)
- An Wouters
- Center for Oncological Research Antwerp, University of Antwerp, Universiteitsplein 1, 2610 Wilrijk, Belgium.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
9
|
QI RONGXIN, JIN WENWEN, WANG JUAN, YI QIYI, YU MAOHU, XU SHIGUO, JIN WENSEN. Oleanolic acid enhances the radiosensitivity of tumor cells under mimetic hypoxia through the reduction in intracellular GSH content and HIF-1α expression. Oncol Rep 2014; 31:2399-406. [DOI: 10.3892/or.2014.3064] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2013] [Accepted: 02/21/2014] [Indexed: 11/06/2022] Open
|
10
|
Ostheimer C, Bache M, Güttler A, Kotzsch M, Vordermark D. A pilot study on potential plasma hypoxia markers in the radiotherapy of non-small cell lung cancer. Osteopontin, carbonic anhydrase IX and vascular endothelial growth factor. Strahlenther Onkol 2013; 190:276-82. [PMID: 24322994 DOI: 10.1007/s00066-013-0484-1] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2013] [Accepted: 10/16/2013] [Indexed: 11/29/2022]
Abstract
BACKGROUND Hypoxic radioresistance plays a critical role in the radiotherapy of cancer and adversely impacts prognosis and treatment response. This prospective study investigated the interrelationship and the prognostic significance of several hypoxia-related proteins in non-small cell lung cancer (NSCLC) patients treated by radiotherapy ± chemotherapy. MATERIAL AND METHODS Pretreatment osteopontin (OPN), vascular endothelial growth factor (VEGF) and carbonic anhydrase IX (CA IX) plasma levels were determined by ELISA in 55 NSCLC (M0) patients receiving 66 Gy curative-intent radiotherapy or chemoradiation. Marker correlation, association with clinicopathological parameters and the prognostic value of a biomarker combination was evaluated. RESULTS All biomarkers were linearly correlated and linked to different clinical parameters including lung function, weight loss (OPN), gross tumor volume (VEGF) and T stage (CA IX). High OPN (p = 0.03), VEGF (p = 0.02) and CA IX (p = 0.04) values were significantly associated with poor survival. Double marker combination additively increased the risk of death by a factor of 2 and high plasma levels of the triple combination OPN/VEGF/CA IX yielded a 5.9-fold risk of death (p = 0.009). The combined assessment of OPN/VEGF/CA IX correlated independently with prognosis (p = 0.03) in a multivariate Cox regression model including N stage, T stage and GTV. CONCLUSION This pilot study suggests that a co-detection augments the prognostic value of single markers and that the integration of OPN, VEGF and CA IX into a hypoxic biomarker profile for the identification of patients with largely hypoxic and radioresistant tumors should be further evaluated.
Collapse
Affiliation(s)
- C Ostheimer
- Department of Radiation Oncology, Martin-Luther-University Halle-Wittenberg, Dryanderstr. 4, 06110, Halle (Saale), Germany,
| | | | | | | | | |
Collapse
|
11
|
Yang X, Yang B, Cai J, Zhang C, Zhang Q, Xu L, Qin Q, Zhu H, Ma J, Tao G, Cheng H, Sun X. Berberine enhances radiosensitivity of esophageal squamous cancer by targeting HIF-1α in vitro and in vivo. Cancer Biol Ther 2013; 14:1068-73. [PMID: 24025355 DOI: 10.4161/cbt.26426] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Radiation therapy is an important treatment approach for esophageal squamous cell carcinoma (ESCC). However, how to promote radiation sensitivity in ESCC remains a challenge. This study aimed to evaluate the effects of berberine, a common used Chinese medicine, on the radiosensitivity of ESCC. ECSS cell line ECA109 and TE13 were subjected to hypoxia and/or ionizing radiation (IR), in the presence or absence of berberine treatment. Cell growth and survival, and apoptosis were evaluated. In addition, ECA109 cells were xenografted into nude mice and subjected to IR and/or berberine treatment. The expression of HIF-1α and VEGF was detected by western blot and immunohistochemical analysis. Our results showed that berberine increased radiosensitivity of ESCC cells and xenografts, and this was associated with the inhibition of HIF-1α and VEGF expression. These data suggest that berberine may be a potential radiotherapy sensitization drugs due to its significant anti-hypoxia activity.
Collapse
Affiliation(s)
- Xi Yang
- Department of Radiotherapy; the First Affiliated Hospital of Nanjing Medical University; Nanjing, PR China
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Zwicker F, Kirsner A, Peschke P, Roeder F, Debus J, Huber PE, Weber KJ. Dichloroacetate induces tumor-specific radiosensitivity in vitro but attenuates radiation-induced tumor growth delay in vivo. Strahlenther Onkol 2013; 189:684-92. [PMID: 23793865 DOI: 10.1007/s00066-013-0354-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2012] [Accepted: 03/14/2013] [Indexed: 10/26/2022]
Abstract
BACKGROUND Inhibition of pyruvate dehydrogenase kinase (PDK) by dichloroacetate (DCA) can shift tumor cell metabolism from anaerobic glycolysis to glucose oxidation, with activation of mitochondrial activity and chemotherapy-dependent apoptosis. In radiotherapy, DCA could thus potentially enhance the frequently moderate apoptotic response of cancer cells that results from their mitochondrial dysfunction. The aim of this study was to investigate tumor-specific radiosensitization by DCA in vitro and in a human tumor xenograft mouse model in vivo. MATERIALS AND METHODS The interaction of DCA with photon beam radiation was investigated in the human tumor cell lines WIDR (colorectal) and LN18 (glioma), as well as in the human normal tissue cell lines HUVEC (endothelial), MRC5 (lung fibroblasts) and TK6 (lymphoblastoid). Apoptosis induction in vitro was assessed by DAPI staining and sub-G1 flow cytometry; cell survival was quantified by clonogenic assay. The effect of DCA in vivo was investigated in WIDR xenograft tumors growing subcutaneously on BALB/c-nu/nu mice, with and without fractionated irradiation. Histological examination included TUNEL and Ki67 staining for apoptosis and proliferation, respectively, as well as pinomidazole labeling for hypoxia. RESULTS DCA treatment led to decreased clonogenic survival and increased specific apoptosis rates in tumor cell lines (LN18, WIDR) but not in normal tissue cells (HUVEC, MRC5, TK6). However, this significant tumor-specific radiosensitization by DCA in vitro was not reflected by the situation in vivo: The growth suppression of WIDR xenograft tumors after irradiation was reduced upon additional DCA treatment (reflected by Ki67 expression levels), although early tumor cell apoptosis rates were significantly increased by DCA. This apparently paradoxical effect was accompanied by a marked DCA-dependent induction of hypoxia in tumor-tissue. CONCLUSION DCA induced tumor-specific radiosensitization in vitro but not in vivo. DCA also induced development of hypoxia in tumor tissue in vivo. Further investigations relating to the interplay between tumor cell metabolism and tumor microenvironment are necessary to explain the limited success of metabolic targeting in radiotherapy.
Collapse
Affiliation(s)
- F Zwicker
- Department of Radiation Oncology, University Hospital Center Heidelberg, Im Neuenheimer Feld 400, 69120, Heidelberg, Germany.
| | | | | | | | | | | | | |
Collapse
|
13
|
Wu SY, Lin KC, Chiou JF, Jeng SC, Cheng WH, Chang CI, Lin WC, Wu LL, Lee HL, Chen RJ. MicroRNA-17-5p post-transcriptionally regulates p21 expression in irradiated betel quid chewing-related oral squamous cell carcinoma cells. Strahlenther Onkol 2013; 189:675-83. [PMID: 23780339 DOI: 10.1007/s00066-013-0347-9] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2012] [Accepted: 03/06/2013] [Indexed: 01/07/2023]
Abstract
BACKGROUND AND PURPOSE Betel nut chewing is associated with oral cavity cancer in Taiwan. OC3 is an oral carcinoma cell line that was established from cells collected from a long-term betel nut chewer who does not smoke. After we found that microRNA-17-5p (miR-17-5p) is induced in OC3 cells, we used this cell line to examine the biological role(s) of this microRNA in response to exposure to ionizing radiation. MATERIALS AND METHODS A combined SYBR green-based real-time PCR and oligonucleotide ligation assay was used to examine the expression of the miR-17 polycistron in irradiated OC3 cells. The roles of miR-17-5p and p21 were evaluated with specific antisense oligonucleotides (ODN) that were designed and used to inhibit their expression. Expression of the p21 protein was evaluated by Western blotting. The clonogenic assay and annexin V staining were used to evaluate cell survival and apoptosis, respectively. Cells in which miR-17-5p was stably knocked down were used to create ectopic xenografts to evaluate in vivo the role of miR-17-5p. RESULTS A radiation dose of 5 Gy significantly increased miR-17-5p expression in irradiated OC3 cells. Inhibition of miR-17-5p expression enhanced the radiosensitivity of the OC3 cells. We found that miR-17-5p downregulates radiation-induced p21 expression in OC3 cells and, by using a tumor xenograft model, it was found that p21 plays a critical role in increasing the radiosensitivity of OC3 cells in vitro and in vivo. CONCLUSION miR-17-5p is induced in irradiated OC3 cells and it downregulates p21 protein expression, contributing to the radioresistance of OC3 cells.
Collapse
Affiliation(s)
- S-Y Wu
- Department of Radiation-oncology, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Langenbacher M, Abdel-Jalil RJ, Voelter W, Weinmann M, Huber SM. In vitro hypoxic cytotoxicity and hypoxic radiosensitization. Efficacy of the novel 2-nitroimidazole N,N,N-tris[2-(2-nitro-1H-imidazol-1-yl)ethyl]amine. Strahlenther Onkol 2013; 189:246-54. [PMID: 23361139 DOI: 10.1007/s00066-012-0273-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2012] [Accepted: 11/08/2012] [Indexed: 02/06/2023]
Abstract
BACKGROUND AND PURPOSE Tumor hypoxia is a major problem in radiation therapy of solid tumors because of the radiosensitizing effect of oxygen. Nitroimidazole-containing compounds are oxygen mimetics accumulating in hypoxic tumor areas. However, the broad use of 2-nitroimidazoles as a hypoxic radiosensitizer is limited by their partially low efficacy and/or high neurotoxicity. MATERIALS AND METHODS Here, we characterized the in vitro hypoxic cytotoxicity and hypoxic radiosensitizing efficacy of N,N,N-tris [2-(2-nitro-1H-imidazol-1-yl)ethyl]amine (PRC) in a hypoxia-sensitive lymphoma and a hypoxia-resistant glioblastoma cell line by colony formation assay and flow cytometry. RESULTS PRC exerted high hypoxic cytotoxic and radiosensitizing action on both cell lines at almost absent toxicity under normoxic conditions. In particular, under hypoxia, but not normoxia, PRC targeted the mitochondria resulting in oxidative stress, G(2)/M cell cycle arrest, and triggering of the intrinsic apoptosis pathway. CONCLUSION Our in vitro findings suggest that PRC might be a promising new 2-nitroimidazole for improving radiation therapy of hypoxic tumors in vivo.
Collapse
Affiliation(s)
- M Langenbacher
- Department of Radiation Oncology, Eberhard-Karls-University of Tübingen, Tübingen, Germany
| | | | | | | | | |
Collapse
|
15
|
Mimeault M, Batra SK. Hypoxia-inducing factors as master regulators of stemness properties and altered metabolism of cancer- and metastasis-initiating cells. J Cell Mol Med 2013; 17:30-54. [PMID: 23301832 PMCID: PMC3560853 DOI: 10.1111/jcmm.12004] [Citation(s) in RCA: 254] [Impact Index Per Article: 21.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2012] [Accepted: 11/20/2012] [Indexed: 12/12/2022] Open
Abstract
Accumulating lines of experimental evidence have revealed that hypoxia-inducible factors, HIF-1α and HIF-2α, are key regulators of the adaptation of cancer- and metastasis-initiating cells and their differentiated progenies to oxygen and nutrient deprivation during cancer progression under normoxic and hypoxic conditions. Particularly, the sustained stimulation of epidermal growth factor receptor (EGFR), insulin-like growth factor-1 receptor (IGF-1R), stem cell factor (SCF) receptor KIT, transforming growth factor-β receptors (TGF-βRs) and Notch and their downstream signalling elements such as phosphatidylinositol 3′-kinase (PI3K)/Akt/molecular target of rapamycin (mTOR) may lead to an enhanced activity of HIFs. Moreover, the up-regulation of HIFs in cancer cells may also occur in the hypoxic intratumoral regions formed within primary and secondary neoplasms as well as in leukaemic cells and metastatic prostate and breast cancer cells homing in the hypoxic endosteal niche of bone marrow. The activated HIFs may induce the expression of numerous gene products such as induced pluripotency-associated transcription factors (Oct-3/4, Nanog and Sox-2), glycolysis- and epithelial-mesenchymal transition (EMT) programme-associated molecules, including CXC chemokine receptor 4 (CXCR4), snail and twist, microRNAs and angiogenic factors such as vascular endothelial growth factor (VEGF). These gene products in turn can play critical roles for high self-renewal ability, survival, altered energy metabolism, invasion and metastases of cancer cells, angiogenic switch and treatment resistance. Consequently, the targeting of HIF signalling network and altered metabolic pathways represents new promising strategies to eradicate the total mass of cancer cells and improve the efficacy of current therapies against aggressive and metastatic cancers and prevent disease relapse.
Collapse
Affiliation(s)
- Murielle Mimeault
- Department of Biochemistry and Molecular Biology, College of Medicine, Eppley Cancer Institute, University of Nebraska Medical Center, Omaha, NE 68198-5870, USA.
| | | |
Collapse
|
16
|
Hypoxia-related molecules HIF-1α, CA9, and osteopontin. Strahlenther Onkol 2012; 189:147-54. [DOI: 10.1007/s00066-012-0262-5] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2012] [Accepted: 10/18/2012] [Indexed: 01/02/2023]
|
17
|
Influence of osteopontin silencing on survival and migration of lung cancer cells. Strahlenther Onkol 2012; 189:62-7. [DOI: 10.1007/s00066-012-0238-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2012] [Accepted: 09/17/2012] [Indexed: 01/23/2023]
|
18
|
Lara PC, Lloret M, Valenciano A, Clavo B, Pinar B, Rey A, Henríquez-Hernández LA. Plasminogen activator inhibitor-1 (PAI-1) expression in relation to hypoxia and oncoproteins in clinical cervical tumors. Strahlenther Onkol 2012; 188:1139-45. [PMID: 23111469 DOI: 10.1007/s00066-012-0216-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2012] [Accepted: 07/16/2012] [Indexed: 10/27/2022]
Abstract
PURPOSE Explore the role of plasminogen activator inhibitor-1 (PAI-1) in cervical cancer and its relationship to hypoxia and the expression of p53, Ku70/80, and cyclin D1. MATERIAL AND METHODS The expression of PAI-1, cyclin D1, and p53, together with tumor oxygenation, were determined in 43 consecutive patients suffering from localized cervical carcinoma. Oncoprotein expression was determined by immunohistochemistry. Tumor oxygenation was measured using a polarographic probe system, "pO2 histography." RESULTS PAI expression was considered negative in 32.6% and overexpressed in 18.6% of cases. Cyclin D1 showed a median expression of 5.0 (range 0-70). We observed a positive association between PAI expression and altered p53 (p = 0.049) and cyclin D1 (p = 0.020). An inverse association was detected between PAI and Ku70/80 expression (p = 0.042). Cyclin D1 staining increased according to tumor volume (r = 0.314, p = 0.009). We did not observe a significant association between PAI and hypoxia or other clinicopathological parameters. CONCLUSION The present results show that PAI-1 overexpression is associated with nonhomologous end-joining DNA repair down-regulation (low Ku70/80 expression) and with increased p53 and cyclin D1 expression, and they suggest that PAI-1 plays a role in the tumor behavior in cervical carcinoma.
Collapse
Affiliation(s)
- P C Lara
- Hospital Universitario de Gran Canaria Dr. Negrín, Las Palmas de Gran Canaria, Las Palmas, Spain
| | | | | | | | | | | | | |
Collapse
|
19
|
Liang D, Yang M, Guo B, Yang L, Cao J, Zhang X. HIF-1α induced by β-elemene protects human osteosarcoma cells from undergoing apoptosis. J Cancer Res Clin Oncol 2012; 138:1865-77. [PMID: 22736026 DOI: 10.1007/s00432-012-1256-5] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2012] [Accepted: 05/22/2012] [Indexed: 12/26/2022]
Abstract
BACKGROUND β-Elemene, isolated from more than 50 Chinese herbs and plants, has shown promising anticancer effects against a broad spectrum of tumors, such as lung, breast, prostate, cervical, colon and ovarian carcinomas (Wang et al. in Cell Mol Life Sci 62:881-893, 2005; Li et al. in Cell Mol Life Sci 62:894-904, 2005; J Pharm Pharmacol 62(8):1018-1027, 2010). But it has not reported in osteosarcoma cells. The aim of the present study is to investigate the antitumor effect of β-elemene on human osteosarcoma cancer cells and the molecular mechanism involved. RESULTS β-Elemene inhibited the viability of human osteosarcoma cells in a dose-time-dependent manner. The suppression of cell viability was due to the induction of apoptosis. Our study also found that β-elemene treatment upregulated HIF-1α protein, which partially inhibits apoptosis. Knockdown of HIF-1α with small interfering RNA or co-treatment with the HIF-1α inhibitor YC-1 significantly enhanced the antitumor effects of β-elemene. CONCLUSIONS Our study first found that β-elemene could increase the expression of HIF-1α through ROS and PI3K/Akt/mTor signaling pathway. And HIF-1α partially prevents human osteosarcoma cells from undergoing apoptosis. The anticancer effects of β-elemene was weakened by HIF-1α. So, we recognize that a combination of β-elemene with HIF-1α inhibitor might be a useful therapeutic option for osteosarcoma.
Collapse
Affiliation(s)
- Dan Liang
- Department of Orthopedics, The First Affiliated Hospital, China Medical University, No 155 Nanjing North Street, Shenyang, Liaoning, People's Republic of China
| | | | | | | | | | | |
Collapse
|
20
|
Helbig L, Yaromina A, Sriramareddy SN, Böke S, Koi L, Thames HD, Baumann M, Zips D. Prognostic value of HIF-1α expression during fractionated irradiation. Strahlenther Onkol 2012; 188:1031-7. [PMID: 23053140 DOI: 10.1007/s00066-012-0150-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2012] [Accepted: 04/18/2012] [Indexed: 01/12/2023]
Abstract
BACKGROUND AND PURPOSE Hypoxia and reoxygenation are important determinants of outcome after radiotherapy. HIF-1α is a key molecule involved in cellular response to hypoxia. HIF-1α expression levels have been shown to change after irradiation. The objective of the present study was to explore the prognostic value of HIF-1α expression during fractionated irradiation. MATERIALS AND METHODS Six human squamous cell carcinoma models xenografted in nude mice were analysed. Tumours were excised after 3, 5 and 10 fractions. HIF-1α expression was quantified by western blot. For comparative analysis, previously published data on local tumour control data and pimonidazole hypoxic fraction was used. RESULTS HIF-1α expression in untreated tumours exhibited intertumoural heterogeneity and did not correlate with pimonidazole hypoxic fraction. During fractionated irradiation the majority of tumour models exhibited a decrease in HIF-1α expression, whereas in UT-SCC-5 no change was observed. Neither kinetics nor expression levels during fractionated irradiation correlated with local tumour control. CONCLUSION Our data do not support the use of HIF-1α determined during treatment as a biomarker to predict outcome after fractionated irradiation.
Collapse
Affiliation(s)
- L Helbig
- Dept. of Radiation Oncology/ OncoRay National Center for Radiation Research, Medical Faculty and University Hospital Carl Gustav Carus Technische Universität Dresden, Fetscherstr. 74, 01307, Dresden, Germany
| | | | | | | | | | | | | | | |
Collapse
|
21
|
Kockar F, Yildrim H, Sagkan RI, Hagemann C, Soysal Y, Anacker J, Hamza AA, Vordermark D, Flentje M, Said HM. Hypoxia and cytokines regulate carbonic anhydrase 9 expression in hepatocellular carcinoma cells in vitro. World J Clin Oncol 2012; 3:82-91. [PMID: 22724087 PMCID: PMC3380102 DOI: 10.5306/wjco.v3.i6.82] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/30/2011] [Revised: 05/30/2012] [Accepted: 06/05/2012] [Indexed: 02/06/2023] Open
Abstract
AIM: To study the expression of carbonic anhydrase (CA) 9 in human hepatocellular carcinoma (HCC) cells.
METHODS: We studied CA9 protein, CA9 mRNA and hypoxia-inducible factor-1 alpha (HIF-1α) protein levels in Hep3B cells exposed in different parallel approaches. In one of these approaches, HCC cells were exposed to extreme in vitro hypoxia (24 h 0.1% O2) without or with interleukin (IL)-1, IL-6, tumor necrosis factor-alpha (TNF-α) and transforming growth factor-beta (TGF-β) stimulation for the same hypoxic exposure time or exposed to normoxic oxygenation conditions without or with cytokine stimulation.
RESULTS: The tumour cell line analysed showed a strong hypoxic CA9 mRNA expression pattern in response to prolonged severe hypoxia with cell-line specific patterns and a marked induction of CA9 protein in response to severe hypoxia. These results were paralleled by the results for HIF-1α protein under identical oxygenation conditions with a similar expression tendency to that displayed during the CA9 protein expression experimental series. Continuous stimulation with the cytokines, IL-1, IL-6, TNF-α and TGF-β, under normoxic conditions significantly increased the carbonic anhydrase 9 expression level at both the protein and mRNA level, almost doubling the CA9 mRNA and CA9 and HIF-1α protein expression levels found under hypoxia. The findings from these experiments indicated that hypoxia is a positive regulator of CA9 expression in HCC, and the four signal transduction pathways, IL-1, IL-6, TNF-α and TGF-β, positively influence CA9 expression under both normoxic and hypoxic conditions.
CONCLUSION: These findings may potentially be considered in the design of anti- cancer therapeutic approaches involving hypoxia-induced or cytokine stimulatory effects on expression. In addition, they provide evidence of the stimulatory role of the examined cytokine families resulting in an increase in CA9 expression under different oxygenation conditions in human cancer, especially HCC, and on the role of the CA9 gene as a positive disease regulator in human cancer.
Collapse
Affiliation(s)
- Feray Kockar
- Feray Kockar, Hatice Yildrim, Department of Biology, Faculty of Art and Science, Balikesir University, 10145 Balikesir, Turkey
| | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Nurwidya F, Takahashi F, Minakata K, Murakami A, Takahashi K. From tumor hypoxia to cancer progression: the implications of hypoxia-inducible factor-1 expression in cancers. Anat Cell Biol 2012; 45:73-8. [PMID: 22822460 PMCID: PMC3398177 DOI: 10.5115/acb.2012.45.2.73] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2012] [Accepted: 05/14/2012] [Indexed: 02/07/2023] Open
Abstract
Hypoxia, defined as a decrease of tissue oxygen levels, represents a fundamental pathophysiological condition in the microenvironment of solid tumors. Tumor hypoxia is known to be associated with radio/chemo-resistance and metastasis that eventually lead to cancer progression contributing to poor prognosis in cancer patients. Among transcription factors that accumulated under hypoxic conditions, hypoxia-inducible factor-1 (HIF-1) is a master transcription factor that has received the most intense attention in this field of research due to its capacity to modulate several hundred genes. With a clearer understanding of the HIF-1 pathway, efforts are directed at manipulation of this complex genetic process in order to ultimately decrease cellular HIF-1 levels. Some novel agents have been shown to have HIF-1 inhibition activity through a variety of molecular mechanisms and have provided promising results in the preclinical setting.
Collapse
Affiliation(s)
- Fariz Nurwidya
- Department of Respiratory Medicine, Juntendo University School of Medicine, Tokyo, Japan
| | - Fumiyuki Takahashi
- Department of Respiratory Medicine, Juntendo University School of Medicine, Tokyo, Japan
| | - Kunihiko Minakata
- Department of Respiratory Medicine, Juntendo University School of Medicine, Tokyo, Japan
| | - Akiko Murakami
- Department of Respiratory Medicine, Juntendo University School of Medicine, Tokyo, Japan
| | - Kazuhisa Takahashi
- Department of Respiratory Medicine, Juntendo University School of Medicine, Tokyo, Japan
| |
Collapse
|
23
|
Stingl L, Niewidok N, Müller N, Selle M, Djuzenova CS, Flentje M. Radiosensitizing effect of the novel Hsp90 inhibitor NVP-AUY922 in human tumour cell lines silenced for Hsp90α. Strahlenther Onkol 2012; 188:507-15. [PMID: 22441439 DOI: 10.1007/s00066-012-0080-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2011] [Accepted: 01/11/2012] [Indexed: 12/13/2022]
Abstract
BACKGROUND Hsp90 inhibitors can enhance the tumour sensitivity to ionising radiation (IR). However, Hsp90 inhibition leads to the up-regulation of anti-apoptotic Hsp90 and Hsp70, which might diminish the radiosensitizing effects of the inhibitors. Therefore, inhibition of the up-regulation of Hsp90 by siRNA might be a promising strategy to enhance drug-mediated radiosensitization. MATERIALS AND METHODS The expression of Hsp90α was silenced in A549 and GaMG tumour cell lines by siRNA treatment. Pre-silenced for Hsp90α cells were treated with NVP-AUY922, a novel Hsp90 inhibitor, for 24 h and then irradiated. Radiation response was determined by colony-forming ability. The expression of several marker proteins was analysed by Western blot. DNA damage and repair were assessed by histone γH2AX measurements. RESULTS We found that transfection with siRNA against Hsp90α reduced Hsp90α at mRNA and protein levels. Pre-silencing of Hsp90α reduced NVP-AUY922-mediated up-regulation of Hsp90α but it did not increase drug-mediated radiosensitization in both tumour cell lines. As revealed by Western blot, pre-silencing of Hsp90α followed by NVP-AUY922 did not change the expression of Hsp90 client proteins (Akt, Raf-1, Cdk1 and Cdk4) compared with drug treatment alone, suggesting unchanged chaperone function in transfected cells. CONCLUSION Pre-silencing of Hsp90α followed by Hsp90 inhibition did not enhance the radiosensitizing effect of NVP-AUY922 in both tested tumour cell lines. Future work will be done on stable transfection with shRNA against Hsp90α or simultaneous silencing of both Hsp90 isoforms, Hsp90α and Hsp90β, in order to optimize tumour cell killing.
Collapse
Affiliation(s)
- L Stingl
- Department of Radiation Oncology, University of Würzburg, Würzburg, Germany
| | | | | | | | | | | |
Collapse
|
24
|
Yaromina A, Meyer S, Fabian C, Zaleska K, Sattler UGA, Kunz-Schughart LA, Mueller-Klieser W, Zips D, Baumann M. Effects of three modifiers of glycolysis on ATP, lactate, hypoxia, and growth in human tumor cell lines in vivo. Strahlenther Onkol 2012; 188:431-7. [PMID: 22349632 DOI: 10.1007/s00066-011-0054-3] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2011] [Accepted: 12/08/2011] [Indexed: 01/27/2023]
Abstract
BACKGROUND High pretreatment tumor lactate content is associated with poor outcome after fractionated irradiation in human squamous cell carcinoma (hSCC) xenografts. Therefore, decreasing lactate content might be a promising approach for increasing tumor radiosensitivity. As the basis for such experiments, the effects of the biochemical inhibitors pyruvate dehydrogenase kinase dichloroacetate (DCA), lactate dehydrogenase oxamate, and monocarboxylic acid transporter-1 α-cyano-4-hydroxycinnamate (CHC) on tumor micromilieu and growth were investigated. MATERIALS AND METHODS Oxygen consumption (OCR) and extracellular acidification rates (ECAR) were measured in FaDu and UT-SCC-5 hSCC in response to DCA in vitro. Mice bearing FaDu, UT-SCC-5, and WiDr colorectal adenocarcinoma received either DCA in drinking water or DCA injected twice a day, or CHC injected daily. WiDr was also treated daily with oxamate. FaDu and UT-SCC-5 were either excised 8 days after treatment for histology or tumor growth was monitored. WiDr tumors were excised at 8 mm. Effect of inhibitors on ATP, lactate, hypoxia, and Ki67 labeling index (LI) was evaluated. RESULTS DCA increased OCR and decreased ECAR in vitro. None of the treatments with inhibitors significantly changed lactate content, hypoxia levels, and Ki67 LI in the three tumor lines in vivo. ATP concentration significantly decreased after only daily twice injections of DCA in FaDu accompanied by a significant increase in necrotic fraction. Tumor growth was not affected by any of the treatments. CONCLUSION Overall, tumor micromilieu and tumor growth could not be changed by glycolysis modifiers in the three tumor cell lines in vivo. Further studies are necessary to explore the impact of metabolic targets on radiation response.
Collapse
Affiliation(s)
- A Yaromina
- OncoRay - National Center for Radiation Research in Oncology, Dept. of Radiation Oncology, Experimental Radiotherapy, Technische Universität Dresden, Fetscherstr. 74, 01307, Dresden, Germany.
| | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Basal HIF-1α expression levels are not predictive for radiosensitivity of human cancer cell lines. Strahlenther Onkol 2012; 188:353-8. [PMID: 22318330 DOI: 10.1007/s00066-011-0051-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2011] [Accepted: 07/28/2011] [Indexed: 12/28/2022]
Abstract
BACKGROUND AND PURPOSE High levels of hypoxia inducible factor (HIF)-1α in tumors are reported to be associated with tumor progression and resistance to therapy. To examine the impact of HIF-1α on radioresistance under normoxia, the sensitivity towards irradiation was measured in human tumor cell lines that differ significantly in their basal HIF-1α levels. MATERIAL AND METHODS HIF-1α levels were quantified in lysates of H1339, EPLC-272H, A549, SAS, XF354, FaDu, BHY, and CX- tumor cell lines by ELISA. Protein levels of HIF-1α, HIF-2α, carbonic anhydrase IX (CA IX), and GAPDH were assessed by Western blot analysis. Knock-down experiments were performed using HIF-1α siRNA. Clonogenic survival after irradiation was determined by the colony forming assay. RESULTS According to their basal HIF-1α status, the tumor cell lines were divided into low (SAS, XF354, FaDu, A549, CX-), intermediate (EPLC-272H, BHY), and high (H1339) HIF-1α expressors. The functionality of the high basal HIF-1α expression in H1339 cells was proven by reduced CA IX expression after knocking-down HIF-1α. Linear regression analysis revealed no correlation between basal HIF-1α levels and the survival fraction at either 2 or 4 Gy in all tumor cell lines investigated. CONCLUSION Our data suggest that basal HIF-1α levels in human tumor cell lines do not predict their radiosensitivity under normoxia.
Collapse
|
26
|
Ströfer M, Jelkmann W, Metzen E, Brockmeier U, Dunst J, Depping R. Stabilisation and knockdown of HIF--two distinct ways comparably important in radiotherapy. Cell Physiol Biochem 2011; 28:805-12. [PMID: 22178933 DOI: 10.1159/000335794] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/27/2011] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Radiotherapy is one of the most widely used treatments for cancer. The benefit of radiation is known to be negatively affected by tumor hypoxia and the expression of hypoxia-inducible factors (HIF), respectively. HIF-1α/ β and HIF-2α/ β are transcriptional activators of oxygen-regulated genes. The aim of the study was to examine cell type-specific effects of HIF-1α and -2α knockdown or oxygen-independent HIF-stabilisation on radiosensitivity. METHODS Herein, we treated four different wildtype and HIF-1α- or HIF-2α-deficient human cancer cell lines, cultured under normoxic or hypoxic conditions, with ionising radiation in doses from 2 to 6 Gy and examined clonogenic survival. Furthermore, the cells were partly preincubated with a HIF-stabiliser (di-tert-butyroyl-oxymethyl-2,4-pyridine-dicarboxylate, (t)Bu-2,4-PDC). RESULTS The results show that both hypoxia exposure and treatment with (t)Bu-2,4-PDC increased the radioresistance of human cancer cells. The HIF-mediated decrease of radioresponsiveness induced by the chemical stabiliser emerged to be as strong as the one caused by hypoxia. Clonogenic survival assays furthermore revealed that HIF-1 expression enhanced resistance to radiation, whereas knocking-down HIF-1 increased the sensitivity to radiation under normoxic as well as under hypoxic conditions. CONCLUSION These data extend previous observations of HIF-1α and broaden the view by showing HIF-2α inverse correlation between HIF expression and prognosis for the outcome of radiotherapy.
Collapse
Affiliation(s)
- Mareike Ströfer
- Department of Physiology, Center for Structural and Cell Biology in Medicine, University of Lübeck, Lübeck, Germany
| | | | | | | | | | | |
Collapse
|
27
|
Bache M, Zschornak MP, Passin S, Kessler J, Wichmann H, Kappler M, Paschke R, Kaluđerović GN, Kommera H, Taubert H, Vordermark D. Increased betulinic acid induced cytotoxicity and radiosensitivity in glioma cells under hypoxic conditions. Radiat Oncol 2011; 6:111. [PMID: 21906280 PMCID: PMC3182903 DOI: 10.1186/1748-717x-6-111] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2011] [Accepted: 09/09/2011] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND Betulinic acid (BA) is a novel antineoplastic agent under evaluation for tumor therapy. Because of the selective cytotoxic effects of BA in tumor cells (including gliomas), the combination of this agent with conservative therapies (such as radiotherapy and chemotherapy) may be useful. Previously, the combination of BA with irradiation under hypoxic conditions had never been studied. METHODS In this study, the effects of 3 to 30 μM BA on cytotoxicity, migration, the protein expression of PARP, survivin and HIF-1α, as well as radiosensitivity under normoxic and hypoxic conditions were analyzed in the human malignant glioma cell lines U251MG and U343MG. Cytotoxicity and radiosensitivity were analyzed with clonogenic survival assays, migration was analyzed with Boyden chamber assays (or scratch assays) and protein expression was examined with Western blot analyses. RESULTS Under normoxic conditions, a half maximal inhibitory concentration (IC50) of 23 μM was observed in U251MG cells and 24 μM was observed in U343MG cells. Under hypoxic conditions, 10 μM or 15 μM of BA showed a significantly increased cytotoxicity in U251MG cells (p = 0.004 and p = 0.01, respectively) and U343MG cells (p < 0.05 and p = 0.01, respectively). The combination of BA with radiotherapy resulted in an additive effect in the U343MG cell line under normoxic and hypoxic conditions. Weak radiation enhancement was observed in U251MG cell line after treatment with BA under normoxic conditions. Furthermore, under hypoxic conditions, the incubation with BA resulted in increased radiation enhancement. The enhancement factor, at an irradiation dose of 15 Gy after treatment with 10 or 15 μM BA, was 2.20 (p = 0.02) and 4.50 (p = 0.03), respectively. Incubation with BA led to decreased cell migration, cleavage of PARP and decreased expression levels of survivin in both cell lines. Additionally, BA treatment resulted in a reduction of HIF-1α protein under hypoxic conditions. CONCLUSION Our results suggest that BA is capable of improving the effects of tumor therapy in human malignant glioma cells, particularly under hypoxic conditions. Further investigations are necessary to characterize its potential as a radiosensitizer.
Collapse
Affiliation(s)
- Matthias Bache
- Department of Radiotherapy, Martin-Luther-University Halle-Wittenberg, Dryanderstr, 4, 06110 Halle, Germany.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|