1
|
Habibi MA, Mirjnani MS, Ghazizadeh Y, Norouzi A, Minaee P, Eazi S, Atarod MH, Aliasgary A, Noroozi MZ, Hajikarimloo B, Sheehan JP. Frameless stereotactic radiosurgery for brain metastasis: a systematic review and meta-analysis. Neurosurg Rev 2024; 47:423. [PMID: 39136823 DOI: 10.1007/s10143-024-02666-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2024] [Revised: 08/05/2024] [Accepted: 08/08/2024] [Indexed: 01/04/2025]
Abstract
Stereotactic Radiosurgery (SRS) delivers a high dose of radiation to a specific brain area while limiting radiation to nearby healthy tissue. While most SRS has traditionally been performed with a stereotactic frame-based approach, this study aims to investigate the safety and efficacy of frameless radiosurgery in patients with brain metastases. Our study followed the recommended guidelines summarized in the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) checklist. The electronic databases of PubMed/Medline, Scopus, Embase, and Web of Science (WOS) were searched from inception to 10 October 2023. The pooled rate of outcomes was calculated using random effect model and Restricted maximum-likelihood (REML) method. All statistical analysis was performed by STATA V.17. A total of 499 studies were recruited from the electronic databases. After removing duplicates (n = 117), 382 studies were used for title/abstract, and 329 were removed from the study selection process. A total of 53 articles were used for full-text assessment, and 35 studies were included for data extraction. Our analysis revealed a significant increase across all pooled survival rates and local control rates by initiating the radiosurgery for patients, estimating the pooled 6-month OSR of 75% (95% CI: 68-81%), 1-year overall survival rate (OSR) of 60% (95% CI: 51-69%), 18-month OSR of 48% (95% CI: 10-85%), 2-year OSR of 39% (95% CI: 19-58%), 1-year progression-free survival rate (PFSR) of 68% (95% CI: 39-98%), 2-year PFSR of 75% (95% CI: 58-91%), 6-month local control rate (LCR) of 93% (95% CI: 90-96%), and 12-month LCR of 86% (95% CI: 82-90%). Our meta-analysis findings confirm the efficacy of frameless radiosurgery in treating brain metastases. Using data from several trials, we were able to demonstrate stereotactic radiosurgery's effectiveness as a therapy option for brain metastasis patients, demonstrating local control and reasonable overall survival.
Collapse
Affiliation(s)
- Mohammad Amin Habibi
- Department of Neurosurgery, Shariati Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | | | - Yalda Ghazizadeh
- Student Research Committee, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Alireza Norouzi
- Student Research Committee, Qom University of Medical Sciences, Qom, Iran
| | - Poriya Minaee
- Student Research Committee, Qom University of Medical Sciences, Qom, Iran
| | - SeyedMohammad Eazi
- Student Research Committee, Qom University of Medical Sciences, Qom, Iran
| | | | - Aliakbar Aliasgary
- Student Research Committee, Qom University of Medical Sciences, Qom, Iran
| | - Mohammad Zaman Noroozi
- Student Research Committee of Shahid Beheshti, University of Medical Sciences, Tehran, Iran
| | - Bardia Hajikarimloo
- Department of Neurosurgery, Shohada Tajrish Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Jason P Sheehan
- Department of Neurological Surgery, University of Virginia, Charlottesville, USA.
| |
Collapse
|
2
|
Dharnipragada R, Dusenbery K, Ferreira C, Sharma M, Chen CC. Preoperative Versus Postoperative Radiosurgery of Brain Metastases: A Meta-Analysis. World Neurosurg 2024; 182:35-41. [PMID: 37918565 DOI: 10.1016/j.wneu.2023.10.131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Accepted: 10/26/2023] [Indexed: 11/04/2023]
Abstract
OBJECTIVE While postoperative resection cavity radiosurgery (post-SRS) is an accepted treatment paradigm for brain metastasis (BM) patients who undergo surgical resection, there is emerging interest in preoperative radiosurgery (pre-SRS) followed by surgical resection as an alternative treatment paradigm. Here, we performed a meta-analysis of the available literature on this matter. METHODS Following Preferred Reporting Items for Systematic Reviews and Meta-Analyses guidelines, a search of all studies evaluating pre-SRS and post-SRS was completed. Local recurrence (LR), overall survival (OS), radiation necrosis (RN), and leptomeningeal disease (LMD) were evaluated from the available data. Moderator analysis and pooled effect sizes were performed using a proportional meta-analysis with R using the metafor package. Statistics are presented as mean [95% confidence interval]. RESULTS We identified 6 pre-SRS and 33 post-SRS studies with comparable tumor volume (4.5-17.6 cm3). There were significant differences in the pooled estimates of LR and LMD, favoring pre-SRS over post-SRS. Pooled aggregate for LR was 11.0% [4.9-13.7] and 17.5% [15.1-19.9] for pre- and post-SRS studies (P = 0.014). Similarly, pooled estimates of LMD favored pre-SRS, 4.4% [2.6-6.2], relative to post-SRS, 12.3% [8.9-15.7] (P = 0.019). In contrast, no significant differences were found in terms of RN and OS. Pooled estimates for RN were 6.4% [3.1-9.6] and 8.9% [6.3-11.6] for pre- and post-SRS studies (P = 0.393), respectively. Pooled estimates for OS were 60.2% [55.8-64.6] and 60.5% [56.9-64.0] for pre- and post-SRS studies (P = 0.974). CONCLUSIONS This meta-analysis supports further exploration of pre-SRS as a strategy for the treatment of BM.
Collapse
Affiliation(s)
- Rajiv Dharnipragada
- University of Minnesota Medical School, University of Minnesota Twin-Cities, Minneapolis, Minnesota, USA.
| | - Kathryn Dusenbery
- Department of Radiation Oncology, University of Minnesota Twin Cities, Minneapolis, Minnesota, USA
| | - Clara Ferreira
- Department of Radiation Oncology, University of Minnesota Twin Cities, Minneapolis, Minnesota, USA
| | - Mayur Sharma
- Department of Neurosurgery, University of Minnesota Twin-Cities, Minneapolis, Minnesota, USA
| | - Clark C Chen
- Department of Neurosurgery, University of Minnesota Twin-Cities, Minneapolis, Minnesota, USA
| |
Collapse
|
3
|
Milano MT, Grimm J, Niemierko A, Soltys SG, Moiseenko V, Redmond KJ, Yorke E, Sahgal A, Xue J, Mahadevan A, Muacevic A, Marks LB, Kleinberg LR. Single- and Multifraction Stereotactic Radiosurgery Dose/Volume Tolerances of the Brain. Int J Radiat Oncol Biol Phys 2020; 110:68-86. [PMID: 32921513 DOI: 10.1016/j.ijrobp.2020.08.013] [Citation(s) in RCA: 196] [Impact Index Per Article: 39.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Accepted: 08/03/2020] [Indexed: 12/14/2022]
Abstract
PURPOSE As part of the American Association of Physicists in Medicine Working Group on Stereotactic Body Radiotherapy investigating normal tissue complication probability (NTCP) after hypofractionated radiation therapy, data from published reports (PubMed indexed 1995-2018) were pooled to identify dosimetric and clinical predictors of radiation-induced brain toxicity after single-fraction stereotactic radiosurgery (SRS) or fractionated stereotactic radiosurgery (fSRS). METHODS AND MATERIALS Eligible studies provided NTCPs for the endpoints of radionecrosis, edema, or symptoms after cranial SRS/fSRS and quantitative dose-volume metrics. Studies of patients with only glioma, meningioma, vestibular schwannoma, or brainstem targets were excluded. The data summary and analyses focused on arteriovenous malformations (AVM) and brain metastases. RESULTS Data from 51 reports are summarized. There was wide variability in reported rates of radionecrosis. Available data for SRS/fSRS for brain metastases were more amenable to NTCP modeling than AVM data. In the setting of brain metastases, SRS/fSRS-associated radionecrosis can be difficult to differentiate from tumor progression. For single-fraction SRS to brain metastases, tissue volumes (including target volumes) receiving 12 Gy (V12) of 5 cm3, 10 cm3, or >15 cm3 were associated with risks of symptomatic radionecrosis of approximately 10%, 15%, and 20%, respectively. SRS for AVM was associated with modestly lower rates of symptomatic radionecrosis for equivalent V12. For brain metastases, brain plus target volume V20 (3-fractions) or V24 (5-fractions) <20 cm3 was associated with <10% risk of any necrosis or edema, and <4% risk of radionecrosis requiring resection. CONCLUSIONS The risk of radionecrosis after SRS and fSRS can be modeled as a function of dose and volume treated. The use of fSRS appears to reduce risks of radionecrosis for larger treatment volumes relative to SRS. More standardized dosimetric and toxicity reporting is needed to facilitate future pooled analyses that can refine predictive models of brain toxicity risks.
Collapse
Affiliation(s)
- Michael T Milano
- Department of Radiation Oncology, University of Rochester, Rochester, New York.
| | - Jimm Grimm
- Department of Radiation Oncology, Geisinger Cancer Institute, Danville, Pennsylvania
| | - Andrzej Niemierko
- Department of Radiation Oncology, Massachusetts General Hospital, Boston, Massachusetts
| | - Scott G Soltys
- Department of Radiation Oncology, Stanford University Medical Center, Stanford, California
| | - Vitali Moiseenko
- Department of Radiation Medicine and Applied Sciences, University of California San Diego, La Jolla, California
| | - Kristin J Redmond
- Department of Radiation Oncology and Molecular Radiation Sciences, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Ellen Yorke
- Department of Medical Physics, Memorial Sloan-Kettering Cancer Center, New York City, New York
| | - Arjun Sahgal
- Department of Radiation Oncology, Odette Cancer Centre, Sunnybrook Health Sciences Centre, University of Toronto, Toronto, ON, Canada
| | - Jinyu Xue
- Department of Radiation Oncology, NYU Langone Medical Center, New York City, NY
| | - Anand Mahadevan
- Department of Radiation Oncology, Geisinger Cancer Institute, Danville, Pennsylvania
| | | | - Lawrence B Marks
- Department of Radiation Oncology and Lineberger Cancer Center, University of North Carolina, Chapel Hill, North Carolina
| | - Lawrence R Kleinberg
- Department of Radiation Oncology and Molecular Radiation Sciences, Johns Hopkins University School of Medicine, Baltimore, Maryland
| |
Collapse
|
4
|
El Shafie RA, Dresel T, Weber D, Schmitt D, Lang K, König L, Höne S, Forster T, von Nettelbladt B, Eichkorn T, Adeberg S, Debus J, Rieken S, Bernhardt D. Stereotactic Cavity Irradiation or Whole-Brain Radiotherapy Following Brain Metastases Resection-Outcome, Prognostic Factors, and Recurrence Patterns. Front Oncol 2020; 10:693. [PMID: 32477942 PMCID: PMC7232539 DOI: 10.3389/fonc.2020.00693] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2020] [Accepted: 04/14/2020] [Indexed: 12/27/2022] Open
Abstract
Introduction: Following the resection of brain metastases (BM), whole-brain radiotherapy (WBRT) is a long-established standard of care. Its position was recently challenged by the less toxic single-session radiosurgery (SRS) or fractionated stereotactic radiotherapy (FSRT) of the resection cavity, reducing dose exposure of the healthy brain. Patients and Methods: We analyzed 101 patients treated with either SRS/FSRT (n = 50) or WBRT (n = 51) following BM resection over a 5-year period. Propensity score adjustment was done for age, total number of BM, timepoint of BM diagnosis, controlled primary and extracranial metastases. A Cox Proportional Hazards model with univariate and multivariate analysis was fitted for overall survival (OS), local control (LC) and distant brain control (DBC). Results: Median patient age was 61 (interquartile range, IQR: 56-67) years and the most common histology was non-small cell lung cancer, followed by breast cancer. 38% of the patients had additional unresected BM. Twenty-four patients received SRS, 26 patients received FSRT and 51 patients received WBRT. Median OS in the SRS/FSRT subgroup was not reached (IQR NA-16.7 months) vs. 12.6 months (IQR 21.3-4.4) in the WBRT subgroup (hazard ratio, HR 3.3, 95%-CI: [1.5; 7.2] p < 0.002). Twelve-months LC-probability was 94.9% (95%-CI: [88.3; 100.0]) in the SRS subgroup vs. 81.7% (95%-CI: [66.6; 100.0]) in the WBRT subgroup (HR 0.2, 95%-CI: [0.01; 0.9] p = 0.037). Twelve-months DBC-probabilities were 65.0% (95%-CI: [50.8; 83.0]) and 58.8% (95%-CI: [42.9; 80.7]), respectively (HR 1.4, 95%-CI: [0.7; 2.7] p = 0.401). In propensity score-adjusted multivariate analysis, incomplete resection negatively impacted OS (HR 3.9, 95%-CI: [2.0;7.4], p < 0.001) and LC (HR 5.4, 95%-CI: [1.3; 21.9], p = 0.018). Excellent clinical performance (HR 0.4, 95%-CI: [0.2; 0.9], p = 0.030) and better graded prognostic assessment (GPA) score (HR 0.4, 95%-CI: [0.2; 1.0], p = 0.040) were prognostic of superior OS. A higher number of BM was associated with a greater risk of developing new distant BM (HR 5.6, 95%-CI: [1.0; 30.4], p = 0.048). In subgroup analysis, larger cavity volume (HR 1.1, 95%-CI: [1.0; 1.3], p = 0.033) and incomplete resection (HR 12.0, 95%-CI: [1.2; 118.3], p = 0.033) were associated with inferior LC following SRS/FSRT. Conclusion: This is the first propensity score-adjusted direct comparison of SRS/FSRT and WBRT following the resection of BM. Patients receiving SRS/FSRT showed longer OS and LC compared to WBRT. Future analyses will address the optimal choice of safety margin, dose and fractionation for postoperative stereotactic RT of the resection cavity.
Collapse
Affiliation(s)
- Rami A El Shafie
- Department of Radiation Oncology, Heidelberg University Hospital, Heidelberg, Germany.,National Center for Radiation Oncology (NCRO), Heidelberg Institute for Radiation Oncology (HIRO), Heidelberg, Germany.,National Center for Tumor Diseases (NCT), Heidelberg, Germany
| | - Thorsten Dresel
- Department of Radiation Oncology, Heidelberg University Hospital, Heidelberg, Germany.,National Center for Radiation Oncology (NCRO), Heidelberg Institute for Radiation Oncology (HIRO), Heidelberg, Germany
| | - Dorothea Weber
- Institute of Medical Biometry and Informatics (IMBI), Heidelberg University Hospital, Heidelberg, Germany
| | - Daniela Schmitt
- Department of Radiation Oncology, Heidelberg University Hospital, Heidelberg, Germany.,National Center for Radiation Oncology (NCRO), Heidelberg Institute for Radiation Oncology (HIRO), Heidelberg, Germany
| | - Kristin Lang
- Department of Radiation Oncology, Heidelberg University Hospital, Heidelberg, Germany.,National Center for Radiation Oncology (NCRO), Heidelberg Institute for Radiation Oncology (HIRO), Heidelberg, Germany.,National Center for Tumor Diseases (NCT), Heidelberg, Germany
| | - Laila König
- Department of Radiation Oncology, Heidelberg University Hospital, Heidelberg, Germany.,National Center for Radiation Oncology (NCRO), Heidelberg Institute for Radiation Oncology (HIRO), Heidelberg, Germany.,National Center for Tumor Diseases (NCT), Heidelberg, Germany
| | - Simon Höne
- Department of Radiation Oncology, Heidelberg University Hospital, Heidelberg, Germany.,National Center for Radiation Oncology (NCRO), Heidelberg Institute for Radiation Oncology (HIRO), Heidelberg, Germany.,National Center for Tumor Diseases (NCT), Heidelberg, Germany
| | - Tobias Forster
- Department of Radiation Oncology, Heidelberg University Hospital, Heidelberg, Germany.,National Center for Radiation Oncology (NCRO), Heidelberg Institute for Radiation Oncology (HIRO), Heidelberg, Germany.,National Center for Tumor Diseases (NCT), Heidelberg, Germany
| | - Bastian von Nettelbladt
- Department of Radiation Oncology, Heidelberg University Hospital, Heidelberg, Germany.,National Center for Radiation Oncology (NCRO), Heidelberg Institute for Radiation Oncology (HIRO), Heidelberg, Germany.,National Center for Tumor Diseases (NCT), Heidelberg, Germany
| | - Tanja Eichkorn
- Department of Radiation Oncology, Heidelberg University Hospital, Heidelberg, Germany.,National Center for Radiation Oncology (NCRO), Heidelberg Institute for Radiation Oncology (HIRO), Heidelberg, Germany.,National Center for Tumor Diseases (NCT), Heidelberg, Germany
| | - Sebastian Adeberg
- Department of Radiation Oncology, Heidelberg University Hospital, Heidelberg, Germany.,National Center for Radiation Oncology (NCRO), Heidelberg Institute for Radiation Oncology (HIRO), Heidelberg, Germany.,National Center for Tumor Diseases (NCT), Heidelberg, Germany
| | - Jürgen Debus
- Department of Radiation Oncology, Heidelberg University Hospital, Heidelberg, Germany.,National Center for Radiation Oncology (NCRO), Heidelberg Institute for Radiation Oncology (HIRO), Heidelberg, Germany.,National Center for Tumor Diseases (NCT), Heidelberg, Germany.,Clinical Cooperation Unit Radiation Oncology (E050), German Cancer Research Center (dkfz), Heidelberg, Germany.,Deutsches Konsortium Für Translationale Krebsforschung (DKTK), Partner Site Heidelberg, German Cancer Research Center (dkfz), Heidelberg, Germany.,Heidelberger Ionenstrahltherapie-Zentrum (HIT), Heidelberg, Germany
| | - Stefan Rieken
- Department of Radiation Oncology, Heidelberg University Hospital, Heidelberg, Germany.,National Center for Radiation Oncology (NCRO), Heidelberg Institute for Radiation Oncology (HIRO), Heidelberg, Germany.,National Center for Tumor Diseases (NCT), Heidelberg, Germany.,Department of Radiation Oncology, University Medical Center Göttingen, Göttingen, Germany
| | - Denise Bernhardt
- Department of Radiation Oncology, Heidelberg University Hospital, Heidelberg, Germany.,National Center for Radiation Oncology (NCRO), Heidelberg Institute for Radiation Oncology (HIRO), Heidelberg, Germany.,National Center for Tumor Diseases (NCT), Heidelberg, Germany
| |
Collapse
|
5
|
Post-operative stereotactic radiosurgery following excision of brain metastases: A systematic review and meta-analysis. Radiother Oncol 2020; 142:27-35. [DOI: 10.1016/j.radonc.2019.08.024] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Revised: 07/21/2019] [Accepted: 08/27/2019] [Indexed: 11/23/2022]
|
6
|
Pre-Operative Versus Post-Operative Radiosurgery of Brain Metastases-Volumetric and Dosimetric Impact of Treatment Sequence and Margin Concept. Cancers (Basel) 2019; 11:cancers11030294. [PMID: 30832257 PMCID: PMC6468393 DOI: 10.3390/cancers11030294] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Revised: 02/18/2019] [Accepted: 02/25/2019] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND Pre-operative radiosurgery (SRS) preceding the resection of brain metastases promises to circumvent limitations of post-operative cavity SRS. It minimizes uncertainties regarding delineation and safety margins and could reduce dose exposure of the healthy brain (HB). METHODS We performed a systematic treatment plan comparison on 24 patients who received post-operative radiosurgery of the resection cavity at our institution. Comparative treatment plans were calculated for hypofractionated stereotactic radiotherapy (7 × 5 Gray (Gy)) in a hypothetical pre-operative (pre-op) and two post-operative scenarios, either with (extended field, post-op-E) or without the surgical tract (involved field, post-op-I). Detailed volumetric comparison of the resulting target volumes was performed, as well as dosimetric comparison focusing on targets and the HB. RESULTS The resection cavity was significantly smaller and different in morphology from the pre-operative lesion, yielding a low Dice Similarity Coefficient (DSC) of 53% (p = 0.019). Post-op-I and post-op-E targets showed high similarity (DSC = 93%), and including the surgical tract moderately enlarged resulting median target size (18.58 ccm vs. 22.89 ccm, p < 0.001). Dosimetric analysis favored the pre-operative treatment setting since it significantly decreased relevant dose exposure of the HB (Median volume receiving 28 Gy: 6.79 vs. 10.79 for pre-op vs. post-op-E, p < 0.001). Dosimetrically, pre-operative SRS is a promising alternative to post-operative cavity irradiation that could furthermore offer practical benefits regarding delineation and treatment planning. Comparative trials are required to evaluate potential clinical advantages of this approach.
Collapse
|
7
|
Cavity volume changes after surgery of a brain metastasis-consequences for stereotactic radiation therapy. Strahlenther Onkol 2018; 195:207-217. [PMID: 30386864 DOI: 10.1007/s00066-018-1387-y] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Accepted: 10/17/2018] [Indexed: 10/28/2022]
Abstract
PURPOSE For a large or symptomatic brain metastasis, resection and adjuvant radiotherapy are recommended. Hypofractionated stereotactic radiotherapy (HFSRT) is increasingly applied in patients with a limited number of lesions. Exact target volume definition is critical given the small safety margins. Whilst technical advances have minimized inaccuracy due to patient positioning and radiation targeting, little is known about changes in target volume. This study sought to evaluate potential changes in the resection cavity of a brain metastasis. METHODS In all, 57 patients treated with HFSRT after surgical resection of one brain metastasis between 2008 and 2015 in our institution were included in this study. Gross tumor volume (GTV) of the initial metastasis and the volume of the resection cavity in the post-operative, planning, and follow-up MRIs were measured and compared. RESULTS The mean cavity size decreased after surgery with the greatest change of -23.4% (±41.5%) occurring between post-operative MRI and planning MRI (p < 0.01). During this time period, the cavity volume decreased, remained stable, and increased in 79.1, 3.5, and 17.4%, respectively. A further decrease of -20.7% (±58.1%) was perceived between planning MRI and first follow-up (p < 0.01). No significant difference in pattern of change could be observed depending on the volume of initial GTV, size of the post-operative resection cavity, initial or post-resection FLAIR (fluid-attenuated inversion recovery) hyper-intensity, postsurgical ischemia, or primary tumor. The resection cavities of patients with post-operative ischemia were significantly larger than resection cavities of patients without ischemia. CONCLUSION The resection cavity seems to be very dynamic after surgery. Hence, it remains necessary to use very recent scans for treatment planning.
Collapse
|
8
|
Bilger A, Bretzinger E, Fennell J, Nieder C, Lorenz H, Oehlke O, Grosu A, Specht HM, Combs SE. Local control and possibility of tailored salvage after hypofractionated stereotactic radiotherapy of the cavity after brain metastases resection. Cancer Med 2018; 7:2350-2359. [PMID: 29745035 PMCID: PMC6010898 DOI: 10.1002/cam4.1486] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2018] [Revised: 03/07/2018] [Accepted: 03/09/2018] [Indexed: 02/03/2023] Open
Abstract
In patients undergoing surgical resection of brain metastases, the risk of local recurrence remains high. Adjuvant whole brain radiation therapy (WBRT) can reduce the risk of local relapse but fails to improve overall survival. At two tertiary care centers in Germany, a retrospective study was performed to evaluate the role of hypofractionated stereotactic radiotherapy (HFSRT) in patients with brain metastases after surgical resection. In particular, need for salvage treatment, for example, WBRT, surgery, or stereotactic radiosurgery (SRS), was evaluated. Both intracranial local (LF) and locoregional (LRF) failures were analyzed. A total of 181 patients were treated with HFSRT of the surgical cavity. In addition to the assessment of local control and distant intracranial control, we analyzed treatment modalities for tumor recurrence including surgical strategies and reirradiation. Imaging follow-up for the evaluation of LF and LRF was available in 159 of 181 (88%) patients. A total of 100 of 159 (63%) patients showed intracranial progression after HFSRT. A total of 81 of 100 (81%) patients received salvage therapy. Fourteen of 81 patients underwent repeat surgery, and 78 of 81 patients received radiotherapy as a salvage treatment (53% WBRT). Patients with single or few metastases distant from the initial site or with WBRT in the past were retreated by HFSRT (14%) or SRS, 33%. Some patients developed up to four metachronous recurrences, which could be salvaged successfully. Eight (4%) patients experienced radionecrosis. No other severe side effects (CTCAE≥3) were observed. Postoperative HFSRT to the resection cavity resulted in a crude rate for local control of 80.5%. Salvage therapy for intracranial progression was commonly needed, typically at distant sites. Salvage therapy was performed with WBRT, SRS, and surgery or repeated HFSRT of the resection cavity depending on the tumor spread and underlying histology. Prospective studies are warranted to clarify whether or not the sequence of these therapies is important in terms of quality of life, risk of radiation necrosis, and likelihood of neurological cause of death.
Collapse
Affiliation(s)
- Angelika Bilger
- Department of Radiation OncologyMedical Center, Medical FacultyUniversity of FreiburgFreiburg im BreisgauGermany
| | - Eva Bretzinger
- Department of Radiation OncologyMedical Center, Medical FacultyUniversity of FreiburgFreiburg im BreisgauGermany
| | - Jamina Fennell
- Department of Radiation OncologyMedical Center, Medical FacultyUniversity of FreiburgFreiburg im BreisgauGermany
| | - Carsten Nieder
- Department of Oncology and Palliative MedicineNordland HospitalBodøNorway
- Institute of Clinical Medicine, Faculty of Health SciencesUniversity of TromsøTromsøNorway
| | - Hannah Lorenz
- Department of Radiation OncologyMedical Center, Medical FacultyUniversity of FreiburgFreiburg im BreisgauGermany
| | - Oliver Oehlke
- Department of Radiation OncologyMedical Center, Medical FacultyUniversity of FreiburgFreiburg im BreisgauGermany
| | - Anca‐Ligia Grosu
- Department of Radiation OncologyMedical Center, Medical FacultyUniversity of FreiburgFreiburg im BreisgauGermany
- Deutsches Konsortium für Translationale Krebsforschung (DKTK), Partner Site FreiburgFreiburg im BreisgauGermany
| | - Hanno M. Specht
- Department of Radiation Oncology, Klinikumrechts der IsarTechnical University of MunichMunichGermany
| | - Stephanie E. Combs
- Department of Radiation Oncology, Klinikumrechts der IsarTechnical University of MunichMunichGermany
- Institute of Innovative Radiotherapy (iRT)Helmholtz Zentrum MunichOberschleißheimGermany
- Deutsches Konsortium für Translationale Krebsforschung (DKTK), Partner Site MunichMunichGermany
| |
Collapse
|
9
|
Keller A, Doré M, Antoni D, Menoux I, Thillays F, Clavier JB, Delpon G, Jarnet D, Bourrier C, Lefebvre F, Chibbaro S, Darié I, Proust F, Noël G. [Risk of radionecrosis after hypofractionated stereotactic radiotherapy targeting the postoperative resection cavity of brain metastases]. Cancer Radiother 2017; 21:377-388. [PMID: 28551018 DOI: 10.1016/j.canrad.2017.01.017] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2016] [Revised: 01/02/2017] [Accepted: 01/31/2017] [Indexed: 10/19/2022]
Abstract
PURPOSE To investigate the factors that potentially lead to brain radionecrosis after hypofractionated stereotactic radiotherapy targeting the postoperative resection cavity of brain metastases. METHODS AND MATERIALS A retrospective analysis conducted in two French centres, was performed in patients treated with trifractionated stereotactic radiotherapy (3×7.7Gy prescribed to the 70% isodose line) for resected brain metastases. Patients with previous whole-brain irradiation were excluded of the analysis. Radionecrosis was diagnosed according to a combination of criteria including clinical, serial imaging or, in some cases, histology. Univariate and multivariate analyses were performed to determine the predictive factors of radionecrosis including clinical and dosimetric variables such as volume of brain receiving a specific dose (V8Gy-V22Gy). RESULTS One hundred eighty-one patients, with a total of 189 cavities were treated between March 2008 and February 2015. Thirty-five patients (18.5%) developed radionecrosis after a median follow-up of 15 months (range: 3-38 months) after hypofractionated stereotactic radiotherapy. One third of patients with radionecrosis were symptomatic. Multivariate analysis showed that infra-tentorial location was predictive of radionecrosis (hazard ratio [HR]: 2.97; 95% confidence interval [95% CI]: 1.47-6.01; P=0.0025). None V8Gy-V22Gy was associated with appearance of radionecrosis, even if V14Gy trended toward significance (P=0.059). CONCLUSION Analysis of patients and treatment variables revealed that infratentorial location of brain metastases was predictive for radionecrosis after hypofractionated stereotactic radiotherapy for postoperative resection cavities.
Collapse
Affiliation(s)
- A Keller
- Département universitaire de radiothérapie, centre Paul-Strauss, Unicancer, 3, rue de la Porte-de-l'Hôpital, 67065 Strasbourg cedex, France
| | - M Doré
- Département de radiothérapie, institut de cancérologie de l'Ouest, boulevard Jacques-Monod, 44805 Saint-Herblain, France
| | - D Antoni
- Département universitaire de radiothérapie, centre Paul-Strauss, Unicancer, 3, rue de la Porte-de-l'Hôpital, 67065 Strasbourg cedex, France; Laboratoire EA 3430, fédération de médecine translationnelle de Strasbourg, université de Strasbourg, 67000 Strasbourg, France
| | - I Menoux
- Département universitaire de radiothérapie, centre Paul-Strauss, Unicancer, 3, rue de la Porte-de-l'Hôpital, 67065 Strasbourg cedex, France
| | - F Thillays
- Département de radiothérapie, institut de cancérologie de l'Ouest, boulevard Jacques-Monod, 44805 Saint-Herblain, France
| | - J B Clavier
- Département universitaire de radiothérapie, centre Paul-Strauss, Unicancer, 3, rue de la Porte-de-l'Hôpital, 67065 Strasbourg cedex, France
| | - G Delpon
- Département de radiothérapie, institut de cancérologie de l'Ouest, boulevard Jacques-Monod, 44805 Saint-Herblain, France
| | - D Jarnet
- Département universitaire de radiothérapie, centre Paul-Strauss, Unicancer, 3, rue de la Porte-de-l'Hôpital, 67065 Strasbourg cedex, France
| | - C Bourrier
- Département universitaire de radiothérapie, centre Paul-Strauss, Unicancer, 3, rue de la Porte-de-l'Hôpital, 67065 Strasbourg cedex, France
| | - F Lefebvre
- Laboratoire de biostatistiques, faculté de médecine, 4, rue Kirschleger, 67085 Strasbourg cedex, France
| | - S Chibbaro
- Département de neurochirurgie, hôpital de Hautepierre, avenue Molière, 67200 Strasbourg, France
| | - I Darié
- Service de neurochirurgie, centre hospitalier régional d'Orléans, 1, rue Porte-Madeleine, 45000 Orléans, France
| | - F Proust
- Département de neurochirurgie, hôpital de Hautepierre, avenue Molière, 67200 Strasbourg, France
| | - G Noël
- Département universitaire de radiothérapie, centre Paul-Strauss, Unicancer, 3, rue de la Porte-de-l'Hôpital, 67065 Strasbourg cedex, France; Laboratoire EA 3430, fédération de médecine translationnelle de Strasbourg, université de Strasbourg, 67000 Strasbourg, France.
| |
Collapse
|
10
|
Doré M, Martin S, Delpon G, Clément K, Campion L, Thillays F. Stereotactic radiotherapy following surgery for brain metastasis: Predictive factors for local control and radionecrosis. Cancer Radiother 2016; 21:4-9. [PMID: 27955888 DOI: 10.1016/j.canrad.2016.06.010] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2016] [Revised: 06/27/2016] [Accepted: 06/30/2016] [Indexed: 11/24/2022]
Abstract
PURPOSE To evaluate local control and adverse effects after postoperative hypofractionated stereotactic radiosurgery in patients with brain metastasis. METHODS We reviewed patients who had hypofractionated stereotactic radiosurgery (7.7Gy×3 prescribed to the 70% isodose line, with 2mm planning target volume margin) following resection from March 2008 to January 2014. The primary endpoint was local failure defined as recurrence within the surgical cavity. Secondary endpoints were distant failure rates and the occurrence of radionecrosis. RESULTS Out of 95 patients, 39.2% had metastatic lesions from a non-small cell lung cancer primary tumour. The median Graded Prognostic Assessment score was 3 (48% of patients). One-year local control rates were 84%. Factors associated with improved local control were no cavity enhancement on pre-radiation MRI (P<0.00001), planning target volume less than 12cm3 (P=0.005), Graded Prognostic Assessment score 2 or above (P=0.009). One-year distant cerebral control rates were 56%. Thirty-three percent of patients received whole brain radiation therapy. Histologically proven radionecrosis of brain tissue occurred in 7.2% of cases. The size of the preoperative lesion and the volume of healthy brain tissue receiving 21Gy (V21) were both predictive of the incidence of radionecrosis (P=0.010 and 0.036, respectively). CONCLUSION Adjuvant hypofractionated stereotactic radiosurgery to the postoperative cavity in patients with brain metastases results in excellent local control in selected patients, helps delay the use of whole brain radiation, and is associated with a relatively low risk of radionecrosis.
Collapse
Affiliation(s)
- M Doré
- Service de radiothérapie, institut de cancérologie de l'Ouest René-Gauducheau, 2, boulevard Jacques-Monod, 44805 Saint-Herblain, France.
| | - S Martin
- Service de neurochirurgie, centre hospitalier universitaire Laënnec, boulevard Jacques-Monod, 44805 Saint-Herblain, France
| | - G Delpon
- Service de physique médical, institut de cancérologie de l'Ouest René-Gauducheau, 2, boulevard Jacques-Monod, 44805 Saint-Herblain, France
| | - K Clément
- Service de radiothérapie, institut de cancérologie de l'Ouest René-Gauducheau, 2, boulevard Jacques-Monod, 44805 Saint-Herblain, France
| | - L Campion
- Département de biostatistique, institut de cancérologie de l'Ouest René-Gauducheau, 2, boulevard Jacques-Monod, 44805 Saint-Herblain, France
| | - F Thillays
- Service de radiothérapie, institut de cancérologie de l'Ouest René-Gauducheau, 2, boulevard Jacques-Monod, 44805 Saint-Herblain, France
| |
Collapse
|
11
|
Scheitler-Ring K, Ge B, Petroski G, Biedermann G, Litofsky NS. Radiosurgery to the Postoperative Tumor Bed for Metastatic Carcinoma Versus Whole Brain Radiation After Surgery. Cureus 2016; 8:e885. [PMID: 28003949 PMCID: PMC5167673 DOI: 10.7759/cureus.885] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Background The treatment paradigm from postoperative whole brain radiation therapy (WBRT) to post-operative stereotactic radiosurgery (SRS) to the tumor bed has shifted with little data to evaluate whether each treatment modality confers equivalent tumor control and survival outcomes. Methods Patients with surgical resection of single brain metastases from January 2010 to December 2014 were treated postoperatively with either WBRT or SRS. Retrospective patient data was compared for local control, distant brain recurrence, overall survival, and radiation complications. Results Forty-six received WBRT, and 37 received tumor bed SRS. Twelve of 35 (34%) SRS patients experienced local recurrence compared to 17 of 31 (55%) WBRT patients (p = 0.09). The median survival was 440 days (14.7 months) for SRS and 202 days (6.7 months) for WBRT (p = 0.062, log-rank). SRS demonstrated improved survival benefit in the first six months (p = 0.0034; Wilcoxon). Radiation-related adverse changes after SRS (22%) were not statistically different from WBRT (8.7%) (p = 0.152). Age (p = 0.08), systemic cancer status (p = 0.30), Graded Prognostic Assessment (p = 0.28), number of brain metastases at diagnosis (p = 0.65), tumor volume at diagnosis (p = 0.13), new brain lesions (p = 0.74) and neurologic versus systemic cause of death (p = 0.11) did not differ between the groups. Conclusions Following surgical resection, tumor bed SRS can be used effectively in lieu of WBRT to treat brain metastases with comparable local control and distant control and without significantly more adverse events.
Collapse
Affiliation(s)
| | - Bin Ge
- Office of Medical Research, University of Missouri School of Medicine
| | - Greg Petroski
- Office of Medical Research, University of Missouri School of Medicine
| | - Gregory Biedermann
- Division of Radiation Oncology, University of Missouri School of Medicine
| | - N Scott Litofsky
- Division of Neurological Surgery, University of Missouri School of Medicine
| |
Collapse
|
12
|
Hypofractionated Stereotactic Radiosurgery and Radiotherapy to Large Resection Cavity of Metastatic Brain Tumors. World Neurosurg 2016; 97:571-579. [PMID: 27777153 DOI: 10.1016/j.wneu.2016.10.076] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2016] [Revised: 10/13/2016] [Accepted: 10/14/2016] [Indexed: 11/22/2022]
Abstract
OBJECTIVE To evaluate the efficacy of postoperative fractionated stereotactic radiosurgery (FSRS) and hypofractionated stereotactic radiotherapy (SRT) to large surgical cavities after gross total resection of brain metastases. METHODS A retrospective analysis of 41 patients who had received tumor-bed FSRS (5 fractions) or SRT (10 fractions) after resection of brain metastasis between 2005 and 2015 was performed. All resection cavities were treated with a frameless linear accelerator-based system. Patients who underwent subtotal resection, single-dose SRS to the resection cavity, or were treated with a fractionation schedule other than 5 or 10 fractions, were excluded. RESULTS Twenty-six patients were treated with 5 fractions and 15 patients with 10 fractions. The median planning target volume was 19.78 cm3 (12.3-28 cm3) to the 5-fraction group and 29.79 cm3 (26.3-47.6 cm3) to the 10-fraction group (P = 0.020). The 1-year and 2-year local control rates for all patients were 89.4% and 77.1%, respectively, and 89.6% and 78.6% were free from distant intracranial progression, respectively. No difference was observed in local control or freedom from distant intracranial progression between the 5-fraction or 10-fraction groups. The median overall survival was 28.27 months (95% confidence interval, 19.42-37.12) for all patients. No patient developed necrosis at the resection cavity. CONCLUSIONS Fractionation offers the potential to exploit the different biological responses between neoplastic and normal tissues to ionizing radiation. The use of 5 daily doses of 5-6 Gy or 10 daily doses of 3 Gy is a good strategy to have a reasonable local control and avoid neurotoxicity.
Collapse
|
13
|
Stereotactic fractionated radiotherapy of the resection cavity in patients with one to three brain metastases. Clin Neurol Neurosurg 2016; 142:81-86. [PMID: 26816106 DOI: 10.1016/j.clineuro.2016.01.008] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2015] [Revised: 11/05/2015] [Accepted: 01/05/2016] [Indexed: 11/23/2022]
Abstract
OBJECTIVES The goal of this study is to evaluate the role of stereotactic fractionated radiotherapy (SFRT) in patients with one to three brain metastases after surgical resection. METHODS AND MATERIALS We performed a retrospective single-institutional study in patients undergoing SFRT of surgical cavity after resection of ≤3 brain metastases. 60 patients with newly diagnosed brain metastases treated with SFRT following resection were included. The total irradiation dose was 30 Gy (5 Gy/d, BED 45 Gy) after complete macroscopical resection and 35 Gy (5 Gy/d, BED 52.5 Gy) in patients with macroscopic residual tumour after surgery. Macroscopic residual tumour was defined as contrast enhancement next to the resection cavity on the postoperative T1-MRI. The gross tumour volume (GTV) encompassing the residual tumour was delineated on the T1-MRI, the clinical target volume (CTV) encompassed the surgical cavity plus 1mm and the planning target volume (PTV) the CTV plus 2mm. RESULTS Eight of 60 patients had no imaging follow-up due to morbidity/mortality. Two of 52 (3.8%) patients experienced local failures only, 25 of 52 (48.1%) patients experienced distant intracranial failures only and 4 (7.7%) patients experienced both local and distant intracranial failures. In summary, there were 6 (11.5%) local failures and 29 (55.8%) distant failures. Age was significant for local control in the Cox regression test (p=0.046). Thirty-seven of 60 (61.7%) patients died during follow-up. Median follow-up was 8 months. Median overall survival was 15 months. Cox regression for survival was significant for KPS score ≤70% and size of PTV. No severe side effects were seen. Patients undergoing whole brain radiation therapy (WBRT) as salvage therapy in case of progression had no severe side effects either. CONCLUSION In the light of encouraging local control rates, SFRT could be an alternative to WBRT after surgical resection of ≤3 brain metastases. Due to the high rate of distant intracranial failure regular follow-up with MRI is mandatory.
Collapse
|
14
|
Frameless LINAC-based stereotactic radiation therapy to brain metastasis resection cavity without whole-brain radiation therapy: A systematic review. Pract Radiat Oncol 2016; 6:324-330. [PMID: 26922701 DOI: 10.1016/j.prro.2016.01.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2015] [Revised: 12/24/2015] [Accepted: 01/03/2016] [Indexed: 11/23/2022]
Abstract
PURPOSE The aim of this systematic review was to summarize the findings from the published data of frameless stereotactic radiation therapy (RT) to the resection cavity delivered with nonrobotic linear accelerator in patients with brain metastases. METHODS The studies cited in this systematic review were identified through a search of the PubMed database, using the search terms: "stereotactic [Title/Abstract]" and "Brain [Title/Abstract]," and "Metas* [Title/Abstract]." The search was unlimited to language and publication year. RESULTS A total of 9 studies were included in our review. Stereotactic RT to the resection cavity appears to provide excellent local control rates that are comparable to framed stereotactic RT. There are various factors that influence local control. Distant intracranial control rates are poor with the use of postoperative stereotactic RT compared with local treatment (surgery or stereotactic RT) plus whole-brain RT. CONCLUSIONS Stereotactic RT to the resection cavity appears to provide good local control rates and poor distant intracranial control. Postoperative treatment should be discussed by a multidisciplinary team and tailored to each case individually.
Collapse
|
15
|
Vogel J, Ojerholm E, Hollander A, Briola C, Mooij R, Bieda M, Kolker J, Nagda S, Geiger G, Dorsey J, Lustig R, O'Rourke DM, Brem S, Lee J, Alonso-Basanta M. Intracranial control after Cyberknife radiosurgery to the resection bed for large brain metastases. Radiat Oncol 2015; 10:221. [PMID: 26520568 PMCID: PMC4628349 DOI: 10.1186/s13014-015-0523-4] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2015] [Accepted: 10/15/2015] [Indexed: 12/04/2022] Open
Abstract
Background Stereotactic radiosurgery (SRS) is an alternative to post-operative whole brain radiation therapy (WBRT) following resection of brain metastases. At our institution, CyberKnife (CK) is considered for local treatment of large cavities ≥2 cm. In this study, we aimed to evaluate patterns of failure and characterize patients best suited to treatment with this approach. Methods We retrospectively reviewed 30 patients treated with CK to 33 resection cavities ≥2 cm between 2011 and 2014. Patterns of intracranial failure were analyzed in 26 patients with post-treatment imaging. Survival was estimated by the Kaplan-Meier method and prognostic factors examined with log-rank test and Cox proportional hazards model. Results The most frequent histologies were lung (43 %) and breast (20 %). Median treatment volume was 25.1 cm3 (range 4.7–90.9 cm3) and median maximal postoperative cavity diameter was 3.8 cm (range 2.8–6.7). The most common treatment was 30 Gy in 5 fractions prescribed to the 75 % isodose line. Median follow up for the entire cohort was 9.5 months (range 1.0–34.3). Local failure developed in 7 treated cavities (24 %). Neither cavity volume nor CK treatment volume was associated with local failure. Distant brain failure occurred in 20 cases (62 %) at a median of 4.2 months. There were increased rates of distant failure in patients who initially presented with synchronous metastases (p = 0.02). Leptomeningeal carcinomatosis (LMC) developed in 9 cases, (34 %). Salvage WBRT was performed in 5 cases (17 %) at a median of 5.2 months from CK. Median overall survival was 10.1 months from treatment. Conclusions This study suggests that adjuvant CK is a reasonable strategy to achieve local control in large resection cavities. Patients with synchronous metastases at the time of CK may be at higher risk for distant brain failure. The majority of cases were spared or delayed WBRT with the use of local CK therapy.
Collapse
Affiliation(s)
- Jennifer Vogel
- Department of Radiation Oncology, University of Pennsylvania, TRC-2 West, 3400 Civic Center Boulevard, Philadelphia, PA, 19104, USA.
| | - Eric Ojerholm
- Department of Radiation Oncology, University of Pennsylvania, TRC-2 West, 3400 Civic Center Boulevard, Philadelphia, PA, 19104, USA.
| | - Andrew Hollander
- Department of Radiation Oncology, University of Pennsylvania, TRC-2 West, 3400 Civic Center Boulevard, Philadelphia, PA, 19104, USA.
| | - Cynthia Briola
- Department of Radiation Oncology, Pennsylvania Hospital, Widener Ground Level, 800 Spruce Street, Philadelphia, PA, 19107, USA.
| | - Rob Mooij
- Department of Radiation Oncology, Pennsylvania Hospital, Widener Ground Level, 800 Spruce Street, Philadelphia, PA, 19107, USA.
| | - Michael Bieda
- Department of Radiation Oncology, Pennsylvania Hospital, Widener Ground Level, 800 Spruce Street, Philadelphia, PA, 19107, USA.
| | - James Kolker
- Department of Radiation Oncology, Pennsylvania Hospital, Widener Ground Level, 800 Spruce Street, Philadelphia, PA, 19107, USA.
| | - Suneel Nagda
- Department of Radiation Oncology, Pennsylvania Hospital, Widener Ground Level, 800 Spruce Street, Philadelphia, PA, 19107, USA.
| | - Geoffrey Geiger
- Department of Radiation Oncology, Pennsylvania Hospital, Widener Ground Level, 800 Spruce Street, Philadelphia, PA, 19107, USA.
| | - Jay Dorsey
- Department of Radiation Oncology, University of Pennsylvania, TRC-2 West, 3400 Civic Center Boulevard, Philadelphia, PA, 19104, USA.
| | - Robert Lustig
- Department of Radiation Oncology, University of Pennsylvania, TRC-2 West, 3400 Civic Center Boulevard, Philadelphia, PA, 19104, USA.
| | - Donald M O'Rourke
- Department of Neurosurgery, University of Pennsylvania, 3 Silverstein, 3400 Spruce Street, Philadelphia, PA, 19104, USA.
| | - Steven Brem
- Department of Neurosurgery, University of Pennsylvania, 3 Silverstein, 3400 Spruce Street, Philadelphia, PA, 19104, USA.
| | - John Lee
- Department of Neurosurgery, University of Pennsylvania, 3 Silverstein, 3400 Spruce Street, Philadelphia, PA, 19104, USA.
| | - Michelle Alonso-Basanta
- Department of Radiation Oncology, University of Pennsylvania, TRC-2 West, 3400 Civic Center Boulevard, Philadelphia, PA, 19104, USA.
| |
Collapse
|
16
|
Croker J, Chua B, Bernard A, Allon M, Foote M. Treatment of brain oligometastases with hypofractionated stereotactic radiotherapy utilising volumetric modulated arc therapy. Clin Exp Metastasis 2015; 33:125-32. [PMID: 26482476 DOI: 10.1007/s10585-015-9762-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2015] [Accepted: 10/14/2015] [Indexed: 11/24/2022]
Abstract
Stereotactic radiosurgery (SRS) is commonly used to treat brain metastases, particularly in the oligometastatic setting. This study analyses our initial experience in treating oligometastatic brain disease using Volumetric Modulated Arc Therapy (VMAT) to deliver hypofractionated stereotactic radiotherapy (HFSRT). Sixty-one patients were treated with HFSRT with a median dose of 24 Gy (range 22-40 Gy) in a median of three fractions (range 2-10 fractions). With a median follow-up of 23 months, the local control rate was 74 % for the entire cohort. Local control was 87 % for patients who had surgery with no radiological evidence of residual disease followed by HFSRT compared with 69 % in patients treated with HFSRT alone. The overall median time post radiotherapy to local failure was 8.6 months and to extracranial failure was 7.9 months. The mean time to distant brain failure was 9.9 months. Twenty-two patients (36 %) died during the study with median time to death of 4.4 months. Median overall survival (OS) from treatment was 21 months and 12 month OS was 60 %. Our experience with HFSRT using VMAT for oligometastatic brain metastases in the post-operative setting demonstrates comparable local control and survival rates compared with international published data. In the intact brain metastasis setting, local control using the dose levels and delivery in this cohort may be inferior to radio-surgical series. Local control is independent of histology. Careful selection of patients remains critical.
Collapse
Affiliation(s)
- Jeremy Croker
- Department of Radiation Oncology, Comprehensive Cancer Centre, Sir Charles Gairdner Hospital, Gairdner Drive, Nedlands, WA, 6009, Australia. .,School of Medicine, The University of Queensland, 288 Herston Road, Herston, QLD, 4006, Australia.
| | - Benjamin Chua
- School of Medicine, The University of Queensland, 288 Herston Road, Herston, QLD, 4006, Australia. .,Department of Radiation Oncology, Cancer Care Services, Royal Brisbane and Women's Hospital, Joyce Tweddell Building, Herston, QLD, 4029, Australia.
| | - Anne Bernard
- QFAB Bioinformatics, Institute for Molecular Bioscience, Queensland Bioscience Precinct, The University of Queensland, 306 Carmody Road, St Lucia, QLD, 4072, Australia.
| | - Maryse Allon
- Department of Radiation Oncology, Division of Cancer Services, Princess Alexandra Hospital, University of Queensland, 199 Ipswich Road, Woolloongabba, QLD, 4102, Australia.
| | - Matthew Foote
- School of Medicine, The University of Queensland, 288 Herston Road, Herston, QLD, 4006, Australia. .,Department of Radiation Oncology, Division of Cancer Services, Princess Alexandra Hospital, University of Queensland, 199 Ipswich Road, Woolloongabba, QLD, 4102, Australia.
| |
Collapse
|
17
|
Hypofractionated radiosurgery has a better safety profile than single fraction radiosurgery for large resected brain metastases. J Neurooncol 2015; 123:103-11. [PMID: 25862006 DOI: 10.1007/s11060-015-1767-4] [Citation(s) in RCA: 65] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2014] [Accepted: 04/02/2015] [Indexed: 11/12/2022]
Abstract
The purpose of this study is to compare the safety and efficacy of single fraction radiosurgery (SFR) with hypofractionated radiosurgery (HR) for the adjuvant treatment of large, surgically resected brain metastases. Seventy-five patients with 76 resection cavities ≥ 3 cm received 15 Gray (Gy) × 1 SFR (n = 40) or 5-8 Gy × 3-5 HR (n = 36). Cumulative incidence of local failure (LF) and radiation necrosis (RN) was estimated accounting for death as a competing risk and compared with Gray's test. The effect of multiple covariates was evaluated with the Fine-Gray proportional hazards model. The most common HR dose-fractionation schedules were 6 Gy × 5 (44%), 7-8 Gy × 3 (36%), and 6 Gy × 4 (8%). The median follow-up was 11 months (range 2-71). HR patients had larger median resection cavity volumes (24.0 vs. 13.3 cc, p < 0.001), planning target volumes (PTV) (37.7 vs. 20.5 cc, p < 0.001), and cavity to PTV expansion margins (2 vs. 1.5 mm, p = 0.002) than SFR patients. Cumulative incidence of LF (95% CI) at 6 and 12-months for HR versus SFR was 18.9% (0.07-0.34) versus 15.9% (0.06-0.29), and 25.6% (0.12-0.42) versus 27.2% (0.14-0.42), p = 0.80. Cumulative incidence of RN (95% CI) at 6 and 12 months for HR vs. SFR was 3.3% (0.00-0.15) versus 10.7% (0.03-0.23), and 10.3% (0.02-0.25) versus 19.2% (0.08-0.34), p = 0.28. On multivariable analysis, SFR was significantly associated with an increased risk of RN, with a HR of 3.81 (95% CI 1.04-13.93, p = 0.043). Hypofractionated radiosurgery may be the more favorable treatment approach for radiosurgery of cavities 3-4 cm in size and greater.
Collapse
|
18
|
Doré M, Lefebvre L, Delpon G, Thillays F. Radionécrose cérébrale après irradiation en conditions stéréotaxiques des berges opératoires : analyse de la littérature à partir de quatre cas. Cancer Radiother 2015; 19:111-9. [DOI: 10.1016/j.canrad.2014.10.008] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2014] [Revised: 10/14/2014] [Accepted: 10/15/2014] [Indexed: 11/16/2022]
|
19
|
Whole brain irradiation with hippocampal sparing and dose escalation on multiple brain metastases: Local tumour control and survival. Strahlenther Onkol 2015; 191:461-9. [PMID: 25592907 DOI: 10.1007/s00066-014-0808-9] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2014] [Accepted: 12/19/2014] [Indexed: 01/27/2023]
Abstract
PURPOSE Hippocampal-avoidance whole brain radiotherapy (HA-WBRT) for multiple brain metastases may prevent treatment-related cognitive decline, compared to standard WBRT. Additionally, simultaneous integrated boost (SIB) on individual metastases may further improve the outcome. Here, we present initial data concerning local tumour control (LTC), intracranial progression-free survival (PFS), overall survival (OS), toxicity and safety for this new irradiation technique. METHODS AND MATERIALS Twenty patients, enrolled between 2011 and 2013, were treated with HA-WBRT (30 Gy in 12 fractions, D98% to hippocampus ≤ 9 Gy) and a SIB (51 Gy) on multiple (2-13) metastases using a volumetric modulated arc therapy (VMAT) approach based on 2-4 arcs. Metastases were evaluated bidimensionally along the two largest diameters in contrast-enhanced three-dimensional T1-weighed MRI. RESULTS Median follow-up was 40 weeks. The median time to progression of boosted metastases has not been reached yet, corresponding to a LTC rate of 73%. Median intracranial PFS was 40 weeks, corresponding to a 1-year PFS of 45.3%. Median OS was 71.5 weeks, corresponding to a 1-year OS of 60%. No obvious acute or late toxicities grade > 2 (NCI CTCAE v4.03) were observed. Dmean to the bilateral hippocampi was 6.585 Gy ± 0.847 (α/β = 2 Gy). Two patients developed a new metastasis in the area of hippocampal avoidance. CONCLUSION HA-WBRT (simultaneous integrated protection, SIP) with SIB to metastases is a safe and tolerable regime that shows favorable LTC for patients with multiple brain metastases, while it has the potential to minimize the side-effect of cognitive deterioration.
Collapse
|