1
|
Horvat-Menih I, Khan AS, McLean MA, Duarte J, Serrao E, Ursprung S, Kaggie JD, Gill AB, Priest AN, Crispin-Ortuzar M, Warren AY, Welsh SJ, Mitchell TJ, Stewart GD, Gallagher FA. K-Means Clustering of Hyperpolarised 13C-MRI Identifies Intratumoral Perfusion/Metabolism Mismatch in Renal Cell Carcinoma as the Best Predictor of the Highest Grade. Cancers (Basel) 2025; 17:569. [PMID: 40002163 PMCID: PMC11852806 DOI: 10.3390/cancers17040569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Revised: 01/19/2025] [Accepted: 01/24/2025] [Indexed: 02/27/2025] Open
Abstract
Background: Early and accurate grading of renal cell carcinoma (RCC) improves patient risk stratification and has implications for clinical management and mortality. However, current diagnostic approaches using imaging and renal mass biopsy have limited specificity and may lead to undergrading. Methods: This study explored the use of hyperpolarised [1-13C]pyruvate MRI (HP 13C-MRI) to identify the most aggressive areas within the tumour of patients with clear cell renal cell carcinoma (ccRCC) as a method to guide biopsy targeting and to reduce undergrading. Six patients with ccRCC underwent presurgical HP 13C-MRI and conventional contrast-enhanced MRI. From the imaging data, three k-means clusters were computed by combining the kPL as a marker of metabolic activity, and the 13C-pyruvate signal-to-noise ratio (SNRPyr) as a perfusion surrogate. The combined clusters were compared to those derived from individual parameters and to those derived from the percentage of enhancement on the nephrographic phase (%NG). The diagnostic performance of each cluster was assessed based on its ability to predict the highest histological tumour grade in postsurgical tissue samples. The postsurgical tissue samples underwent immunohistochemical staining for the pyruvate transporter (monocarboxylate transporter 1, MCT1), as well as RNA and whole-exome sequencing. Results: The clustering approach combining SNRPyr and kPL demonstrated the best performance for predicting the highest tumour grade: specificity 85%; sensitivity 64%; positive predictive value 82%; and negative predictive value 68%. Epithelial MCT1 was identified as the major determinant of the HP 13C-MRI signal. The perfusion/metabolism mismatch cluster showed an increased expression of metabolic genes and markers of aggressiveness. Conclusions: This study demonstrates the potential of using HP 13C-MRI-derived metabolic clusters to identify intratumoral variations in tumour grade with high specificity. This work supports the use of metabolic imaging to guide biopsies to the most aggressive tumour regions and could potentially reduce sampling error.
Collapse
Affiliation(s)
- Ines Horvat-Menih
- Department of Radiology, University of Cambridge, Cambridge CB2 0QQ, UK; (I.H.-M.); (A.S.K.); (M.A.M.); (J.D.); (E.S.); (S.U.); (J.D.K.); (A.B.G.); (A.N.P.)
| | - Alixander S. Khan
- Department of Radiology, University of Cambridge, Cambridge CB2 0QQ, UK; (I.H.-M.); (A.S.K.); (M.A.M.); (J.D.); (E.S.); (S.U.); (J.D.K.); (A.B.G.); (A.N.P.)
| | - Mary A. McLean
- Department of Radiology, University of Cambridge, Cambridge CB2 0QQ, UK; (I.H.-M.); (A.S.K.); (M.A.M.); (J.D.); (E.S.); (S.U.); (J.D.K.); (A.B.G.); (A.N.P.)
| | - Joao Duarte
- Department of Radiology, University of Cambridge, Cambridge CB2 0QQ, UK; (I.H.-M.); (A.S.K.); (M.A.M.); (J.D.); (E.S.); (S.U.); (J.D.K.); (A.B.G.); (A.N.P.)
| | - Eva Serrao
- Department of Radiology, University of Cambridge, Cambridge CB2 0QQ, UK; (I.H.-M.); (A.S.K.); (M.A.M.); (J.D.); (E.S.); (S.U.); (J.D.K.); (A.B.G.); (A.N.P.)
| | - Stephan Ursprung
- Department of Radiology, University of Cambridge, Cambridge CB2 0QQ, UK; (I.H.-M.); (A.S.K.); (M.A.M.); (J.D.); (E.S.); (S.U.); (J.D.K.); (A.B.G.); (A.N.P.)
| | - Joshua D. Kaggie
- Department of Radiology, University of Cambridge, Cambridge CB2 0QQ, UK; (I.H.-M.); (A.S.K.); (M.A.M.); (J.D.); (E.S.); (S.U.); (J.D.K.); (A.B.G.); (A.N.P.)
| | - Andrew B. Gill
- Department of Radiology, University of Cambridge, Cambridge CB2 0QQ, UK; (I.H.-M.); (A.S.K.); (M.A.M.); (J.D.); (E.S.); (S.U.); (J.D.K.); (A.B.G.); (A.N.P.)
- Department of Radiology, Royal Papworth Hospitals NHS Foundation Trust, Cambridge CB2 0AY, UK
| | - Andrew N. Priest
- Department of Radiology, University of Cambridge, Cambridge CB2 0QQ, UK; (I.H.-M.); (A.S.K.); (M.A.M.); (J.D.); (E.S.); (S.U.); (J.D.K.); (A.B.G.); (A.N.P.)
- Department of Radiology, Addenbrooke’s Hospital, Cambridge University Hospitals NHS Foundation Trust, Cambridge CB2 0QQ, UK
| | | | - Anne Y. Warren
- Department of Pathology, Addenbrooke’s Hospital, Cambridge University Hospitals NHS Foundation Trust, Cambridge CB2 0QQ, UK;
| | - Sarah J. Welsh
- Pinto Medical Consultancy, Cart House 2 Copley Hill Business Park, Cambridge CB22 3GN, UK;
| | - Thomas J. Mitchell
- Department of Surgery, University of Cambridge, Cambridge CB2 0QQ, UK; (T.J.M.); (G.D.S.)
| | - Grant D. Stewart
- Department of Surgery, University of Cambridge, Cambridge CB2 0QQ, UK; (T.J.M.); (G.D.S.)
| | - Ferdia A. Gallagher
- Department of Radiology, University of Cambridge, Cambridge CB2 0QQ, UK; (I.H.-M.); (A.S.K.); (M.A.M.); (J.D.); (E.S.); (S.U.); (J.D.K.); (A.B.G.); (A.N.P.)
| |
Collapse
|
2
|
Capaldi DPI, Wang JY, Liu L, Sheth VR, Kidd EA, Hristov DH. Parametric response mapping of co-registered intravoxel incoherent motion magnetic resonance imaging and positron emission tomography in locally advanced cervical cancer undergoing concurrent chemoradiation therapy. Phys Imaging Radiat Oncol 2024; 31:100630. [PMID: 39262680 PMCID: PMC11387531 DOI: 10.1016/j.phro.2024.100630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 08/08/2024] [Accepted: 08/13/2024] [Indexed: 09/13/2024] Open
Abstract
Background and Purpose Intravoxel-incoherent-motion (IVIM) magnetic-resonance-imaging (MRI) and positron-emission-tomography (PET) have been investigated independently but not voxel-wise to evaluate tumor microenvironment in cervical carcinoma patients. Whether regionally combined information of IVIM and PET offers additional predictive benefit over each modality independently has not been explored. Here, we investigated parametric-response-mapping (PRM) of co-registered PET and IVIM in cervical cancer patients to identify sub-volumes that may predict tumor shrinkage to concurrent-chemoradiation-therapy (CCRT). Materials and Methods Twenty cervical cancer patients (age: 63[41-85]) were retrospectively evaluated. Diffusion-weighted-images (DWIs) were acquired on 3.0 T MRIs using a free-breathing single-shot-spin echo-planar-imaging (EPI) sequence. Pre- and on-treatment (∼after four-weeks of CCRT) MRI and pre-treatment FDG-PET/CT were acquired. IVIM model-fitting on the DWIs was performed using a Bayesian-fitting simplified two-compartment model. Three-dimensional rigidly-registered maps of PET/CT standardized-uptake-value (SUV) and IVIM diffusion-coefficient (D) and perfusion-fraction (f) were generated. Population-means of PET-SUV, IVIM-D and IVIM-f from pre-treatment-scans were calculated and used to generate PRM via a voxel-wise joint-histogram-analysis to classify voxels as high/low metabolic-activity and with high/low (hi/lo) cellular-density. Similar PRM maps were generated for SUV and f. Results Tumor-volume (p < 0.001) significantly decreased, while IVIM-f (p = 0.002) and IVIM-D (p = 0.03) significantly increased on-treatment. Pre-treatment tumor-volume (r = -0.45,p = 0.04) and PRM-SUVhi D lo (r = -0.65,p = 0.002) negatively correlated with ΔGTV, while pre-treatment IVIM-D (r = 0.64,p = 0.002), PRM-SUVlo f hi (r = 0.52,p = 0.02), and PRM-SUVlo D hi (r = 0.74,p < 0.001) positively correlated with ΔGTV. Conclusion IVIM and PET was performed on cervical cancer patients undergoing CCRT and we observed that both IVIM-f and IVIM-D increased during treatment. Additionally, PRM was applied, and sub-volumes were identified that were related to ΔGTV.
Collapse
Affiliation(s)
- Dante P I Capaldi
- Department of Radiation Oncology, University of California San Francisco, San Francisco, CA, USA
| | - Jen-Yeu Wang
- Department of Radiation Oncology, School of Medicine, Stanford University, Stanford, CA, USA
| | - Lianli Liu
- Department of Radiation Oncology, School of Medicine, Stanford University, Stanford, CA, USA
| | - Vipul R Sheth
- Department of Radiology, School of Medicine, Stanford University, Stanford, CA, USA
| | - Elizabeth A Kidd
- Department of Radiation Oncology, School of Medicine, Stanford University, Stanford, CA, USA
| | - Dimitre H Hristov
- Department of Radiation Oncology, School of Medicine, Stanford University, Stanford, CA, USA
| |
Collapse
|
3
|
Jochumsen MR, Overgaard DL, Vendelbo MH, Madsen MA, Tolbod LP, Gormsen LC, Barkholt TØ. Extracardiac findings with increased perfusion during clinical O-15-H 2O PET/CT myocardial perfusion imaging: A case series. J Nucl Cardiol 2023; 30:1458-1468. [PMID: 36600173 PMCID: PMC9812748 DOI: 10.1007/s12350-022-03156-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Accepted: 11/08/2022] [Indexed: 01/06/2023]
Abstract
BACKGROUND Coincidental extracardiac findings with increased perfusion were reported during myocardial perfusion imaging (MPI) with various retention radiotracers. Clinical parametric O-15-H2O PET MPI yielding quantitative measures of myocardial blood flow (MBF) was recently implemented at our facility. We aim to explore whether similar extracardiac findings are observed using O-15-H2O. METHODS AND RESULTS All patients (2963) were scanned with O-15-H2O PET MPI according to international guidelines and extracardiac findings were collected. In contrast to parametric O-15-H2O MBF images, extracardiac perfusion was assessed using summed images. Biopsy histopathology and other imaging modalities served as reference standards. Various malignant lesions with increased perfusion were detected, including lymphomas, large-celled neuroendocrine tumour, breast, and lung cancer plus metastases from colonic and renal cell carcinomas. Furthermore, inflammatory and hyperplastic benign conditions with increased perfusion were observed: rib fractures, gynecomastia, atelectasis, sarcoidosis, pneumonia, chronic lung inflammation and fibrosis, benign lung nodule, chronic diffuse lung infiltrates, pleural plaques and COVID-19 infiltrates. CONCLUSIONS Malignant and benign extracardiac coincidental findings with increased perfusion are readily visible and frequently seen on O-15-H2O PET MPI. We recommend evaluating the summed O-15-H2O PET images in addition to the low-dose CT attenuation images.
Collapse
Affiliation(s)
- Mads Ryø Jochumsen
- Department of Nuclear Medicine and PET-Centre, Aarhus University Hospital, Palle Juul-Jensens Boulevard 165, 8200 Aarhus N, Denmark
- Department of Clinical Medicine, Aarhus University, Palle Juul-Jensens Boulevard 82, Aarhus N, Denmark
| | - David Lyse Overgaard
- Department of Nuclear Medicine and PET-Centre, Aarhus University Hospital, Palle Juul-Jensens Boulevard 165, 8200 Aarhus N, Denmark
| | - Mikkel Holm Vendelbo
- Department of Nuclear Medicine and PET-Centre, Aarhus University Hospital, Palle Juul-Jensens Boulevard 165, 8200 Aarhus N, Denmark
- Department of Biomedicine, Aarhus University, Høegh-Guldbergs Gade 10, 8000 Aarhus C, Denmark
| | - Michael Alle Madsen
- Department of Nuclear Medicine and PET-Centre, Aarhus University Hospital, Palle Juul-Jensens Boulevard 165, 8200 Aarhus N, Denmark
| | - Lars Poulsen Tolbod
- Department of Nuclear Medicine and PET-Centre, Aarhus University Hospital, Palle Juul-Jensens Boulevard 165, 8200 Aarhus N, Denmark
- Department of Clinical Medicine, Aarhus University, Palle Juul-Jensens Boulevard 82, Aarhus N, Denmark
| | - Lars Christian Gormsen
- Department of Nuclear Medicine and PET-Centre, Aarhus University Hospital, Palle Juul-Jensens Boulevard 165, 8200 Aarhus N, Denmark
- Department of Clinical Medicine, Aarhus University, Palle Juul-Jensens Boulevard 82, Aarhus N, Denmark
| | - Trine Ørhøj Barkholt
- Department of Nuclear Medicine and PET-Centre, Aarhus University Hospital, Palle Juul-Jensens Boulevard 165, 8200 Aarhus N, Denmark
| |
Collapse
|
4
|
Qin H, Tang S, Riselli AM, Bok RA, Delos Santos R, van Criekinge M, Gordon JW, Aggarwal R, Chen R, Goddard G, Zhang CT, Chen A, Reed G, Ruscitto DM, Slater J, Sriram R, Larson PEZ, Vigneron DB, Kurhanewicz J. Clinical translation of hyperpolarized 13 C pyruvate and urea MRI for simultaneous metabolic and perfusion imaging. Magn Reson Med 2021; 87:138-149. [PMID: 34374471 PMCID: PMC8616838 DOI: 10.1002/mrm.28965] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 06/30/2021] [Accepted: 07/23/2021] [Indexed: 11/11/2022]
Abstract
Purpose The combined hyperpolarized (HP) 13C pyruvate and urea MRI has provided a simultaneous assessment of glycolytic metabolism and tissue perfusion for improved cancer diagnosis and therapeutic evaluation in preclinical studies. This work aims to translate this dual‐probe HP imaging technique to clinical research. Methods A co‐polarization system was developed where [1‐13C]pyruvic acid (PA) and [13C, 15N2]urea in water solution were homogeneously mixed and polarized on a 5T SPINlab system. Physical and chemical characterizations and toxicology studies of the combined probe were performed. Simultaneous metabolic and perfusion imaging was performed on a 3T clinical MR scanner by alternatively applying a multi‐slice 2D spiral sequence for [1‐13C]pyruvate and its downstream metabolites and a 3D balanced steady‐state free precession (bSSFP) sequence for [13C, 15N2]urea. Results The combined PA/urea probe has a glass‐formation ability similar to neat PA and can generate nearly 40% liquid‐state 13C polarization for both pyruvate and urea in 3‐4 h. A standard operating procedure for routine on‐site production was developed and validated to produce 40 mL injection product of approximately 150 mM pyruvate and 35 mM urea. The toxicology study demonstrated the safety profile of the combined probe. Dynamic metabolite‐specific imaging of [1‐13C]pyruvate, [1‐13C]lactate, [1‐13C]alanine, and [13C, 15N2]urea was achieved with adequate spatial (2.6 mm × 2.6 mm) and temporal resolution (4.2 s), and urea images showed reduced off‐resonance artifacts due to the JCN coupling. Conclusion The reported technical development and translational studies will lead to the first‐in‐human dual‐agent HP MRI study and mark the clinical translation of the first HP 13C MRI probe after pyruvate.
Collapse
Affiliation(s)
- Hecong Qin
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, San Francisco, California, USA.,Graduate Program in Bioengineering, University of California, Berkeley and San Francisco, San Francisco, California, USA
| | - Shuyu Tang
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, San Francisco, California, USA
| | - Andrew M Riselli
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, San Francisco, California, USA
| | - Robert A Bok
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, San Francisco, California, USA
| | - Romelyn Delos Santos
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, San Francisco, California, USA
| | - Mark van Criekinge
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, San Francisco, California, USA
| | - Jeremy W Gordon
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, San Francisco, California, USA
| | - Rahul Aggarwal
- Department of Medicine, University of California, San Francisco, San Francisco, California, USA
| | - Rui Chen
- General Electric Healthcare, Milwaukee, Wisconsin, USA
| | | | | | - Albert Chen
- General Electric Healthcare, Milwaukee, Wisconsin, USA
| | - Galen Reed
- General Electric Healthcare, Milwaukee, Wisconsin, USA
| | | | - James Slater
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, San Francisco, California, USA
| | - Renuka Sriram
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, San Francisco, California, USA
| | - Peder E Z Larson
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, San Francisco, California, USA.,Graduate Program in Bioengineering, University of California, Berkeley and San Francisco, San Francisco, California, USA
| | - Daniel B Vigneron
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, San Francisco, California, USA.,Graduate Program in Bioengineering, University of California, Berkeley and San Francisco, San Francisco, California, USA
| | - John Kurhanewicz
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, San Francisco, California, USA.,Graduate Program in Bioengineering, University of California, Berkeley and San Francisco, San Francisco, California, USA
| |
Collapse
|
5
|
Jochumsen MR, Sörensen J, Tolbod LP, Pedersen BG, Frøkiær J, Borre M, Bouchelouche K. Potential synergy between PSMA uptake and tumour blood flow for prediction of human prostate cancer aggressiveness. EJNMMI Res 2021; 11:12. [PMID: 33559792 PMCID: PMC7873172 DOI: 10.1186/s13550-021-00757-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Accepted: 02/01/2021] [Indexed: 12/02/2022] Open
Abstract
BACKGROUND Both prostate-specific membrane antigen (PSMA) uptake and tumour blood flow (TBF) correlate with International Society of Urological Pathology (ISUP) Grade Group (GG) and hence prostate cancer (PCa) aggressiveness. The aim of the present study was to evaluate the potential synergistic benefit of combining the two physiologic parameters for separating significant PCa from insignificant findings. METHODS From previous studies of [82Rb]Rb positron emission tomography (PET) TBF in PCa, the 43 patients that underwent clinical [68Ga]Ga-PSMA-11 PET were selected for this retrospective study. Tumours were delineated on [68Ga]Ga-PSMA-11 PET or magnetic resonance imaging. ISUP GG was recorded from 52 lesions. RESULTS [68Ga]Ga-PSMA-11 maximum standardized uptake value (SUVmax) and [82Rb]Rb SUVmax correlated moderately with ISUP GG (rho = 0.59 and rho = 0.56, both p < 0.001) and with each other (r = 0.65, p < 0.001). A combined model of [68Ga]Ga-PSMA-11 and [82Rb]Rb SUVmax separated ISUP GG > 2 from ISUP GG 1-2 and benign with an area-under-the-curve of 0.85, 96% sensitivity, 74% specificity, and 95% negative predictive value. The combined model performed significantly better than either tracer alone did (p < 0.001), primarily by reducing false negatives from five or six to one (p ≤ 0.025). CONCLUSION PSMA uptake and TBF provide complementary information about tumour aggressiveness. We suggest that a combined analysis of PSMA uptake and TBF could significantly improve the negative predictive value and allow non-invasive separation of significant from insignificant PCa.
Collapse
Affiliation(s)
- Mads Ryø Jochumsen
- Department of Nuclear Medicine & PET-Centre, Aarhus University Hospital, Palle Juul-Jensens Boulevard 165, 8200 Aarhus N, Denmark
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
- Department of Radiology, Viborg Regional Hospital, Viborg, Denmark
| | - Jens Sörensen
- Department of Nuclear Medicine & PET-Centre, Aarhus University Hospital, Palle Juul-Jensens Boulevard 165, 8200 Aarhus N, Denmark
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
- Department of Surgical Sciences, Uppsala University, Uppsala, Sweden
| | - Lars Poulsen Tolbod
- Department of Nuclear Medicine & PET-Centre, Aarhus University Hospital, Palle Juul-Jensens Boulevard 165, 8200 Aarhus N, Denmark
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Bodil Ginnerup Pedersen
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
- Department of Radiology, Aarhus University Hospital, Aarhus, Denmark
| | - Jørgen Frøkiær
- Department of Nuclear Medicine & PET-Centre, Aarhus University Hospital, Palle Juul-Jensens Boulevard 165, 8200 Aarhus N, Denmark
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Michael Borre
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
- Department of Urology, Aarhus University Hospital, Aarhus, Denmark
| | - Kirsten Bouchelouche
- Department of Nuclear Medicine & PET-Centre, Aarhus University Hospital, Palle Juul-Jensens Boulevard 165, 8200 Aarhus N, Denmark
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| |
Collapse
|
6
|
Johnson GB, Harms HJ, Johnson DR, Jacobson MS. PET Imaging of Tumor Perfusion: A Potential Cancer Biomarker? Semin Nucl Med 2020; 50:549-561. [PMID: 33059824 DOI: 10.1053/j.semnuclmed.2020.07.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Perfusion, as measured by imaging, is considered a standard of care biomarker for the evaluation of many tumors. Measurements of tumor perfusion may be used in a number of ways, including improving the visual detection of lesions, differentiating malignant from benign findings, assessing aggressiveness of tumors, identifying ischemia and by extension hypoxia within tumors, and assessing treatment response. While most clinical perfusion imaging is currently performed with CT or MR, a number of methods for PET imaging of tumor perfusion have been described. The inert PET radiotracer 15O-water PET represents the recognized gold standard for absolute quantification of tissue perfusion in both normal tissue and a variety of pathological conditions including cancer. Other cancer PET perfusion imaging strategies include the use of radiotracers with high first-pass uptake, analogous to those used in cardiac perfusion PET. This strategy produces more visually pleasing high-contrast images that provide relative rather than absolute perfusion quantification. Lastly, multiple timepoint imaging of PET tracers such as 18F-FDG, are not specifically optimized for perfusion, but have advantages related to availability, convenience, and reimbursement. Multiple obstacles have thus far blocked the routine use of PET imaging for tumor perfusion, including tracer production and distribution, image processing, patient body coverage, clinical validation, regulatory approval and reimbursement, and finally feasible clinical workflows. Fortunately, these obstacles are being overcome, especially within larger imaging centers, opening the door for PET imaging of tumor perfusion to become standard clinical practice. In the foreseeable future, it is possible that whole-body PET perfusion imaging with 15O-water will be able to be performed in a single imaging session concurrent with standard PET imaging techniques such as 18F-FDG-PET. This approach could establish an efficient clinical workflow. The resultant ability to measure absolute tumor blood flow in combination with glycolysis will provide important complementary information to inform prognosis and clinical decisions.
Collapse
Affiliation(s)
- Geoffrey B Johnson
- Department of Radiology, Mayo Clinic, Rochester, MNDepartment of Neurology, Mayo Clinic, Rochester, MN; Department of Immunology, Mayo Clinic, Rochester, MN.
| | - Hendrik J Harms
- Department of Surgical Sciences, Nuclear Medicine, PET and Radiology, Uppsala University, Uppsala Sweden
| | - Derek R Johnson
- Department of Radiology, Mayo Clinic, Rochester, MNDepartment of Neurology, Mayo Clinic, Rochester, MN
| | - Mark S Jacobson
- Department of Radiology, Mayo Clinic, Rochester, MNDepartment of Neurology, Mayo Clinic, Rochester, MN
| |
Collapse
|
7
|
Banks TI, von Eyben R, Hristov D, Kidd EA. Pilot study of combined FDG-PET and dynamic contrast-enhanced CT of locally advanced cervical carcinoma before and during concurrent chemoradiotherapy suggests association between changes in tumor blood volume and treatment response. Cancer Med 2018; 7:3642-3651. [PMID: 29963760 PMCID: PMC6089147 DOI: 10.1002/cam4.1632] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2018] [Revised: 05/30/2018] [Accepted: 06/01/2018] [Indexed: 12/26/2022] Open
Abstract
Modern PET/CT radiotherapy simulators offer FDG-PET and dynamic contrast-enhanced (DCE) CT imaging for combined volumetric assessment of tumor metabolism and perfusion. However, the clinical utility of such assessment has not been clearly defined. Thus, in a prospective longitudinal study of primary cervical tumors treated with concurrent chemoradiotherapy (CCRT) we evaluated: (1) whether PET and perfusion parameters correlate or provide complementary information; (2) what imaging changes occur during CCRT; and (3) whether any parameters are predictive of treatment response as assessed by PET/CT 3 months posttherapy. FDG-PET/CT and DCE-CT scans were performed on 21 patients prior to and during CCRT. Coregistered volumetric parametric maps of standardized uptake value (SUV) measures and perfusion parameters blood flow (BF), blood volume (BV), and permeability were generated. Summary statistics for these parameters and their changes were calculated within the metabolic tumor volume (MTV). Correlations between SUV and BF/BV/permeability on local and global bases were assessed with Pearson's coefficient r. MTV, maximum SUV, and mean SUV decreased significantly between the pre- and during-treatment time points, while mean BV and permeability increased significantly. Global correlations between mean BF/BV/permeability and mean SUV values (-.15 < r < .29) were at most moderate. An increase in mean tumor BV during treatment was significantly correlated with complete metabolic response on 3-month posttreatment PET/CT. Weak correlations of SUV and perfusion parameters suggest a complementary role of FDG-PET and DCE-CT for tumor characterization. The association between relative change in mean BV and outcome suggests a potential role for DCE-CT in early evaluation of cervical tumor response to chemoradiotherapy.
Collapse
Affiliation(s)
- Thomas I. Banks
- Department of Radiation OncologySchool of MedicineStanford UniversityStanfordCAUSA
| | - Rie von Eyben
- Department of Radiation OncologySchool of MedicineStanford UniversityStanfordCAUSA
| | - Dimitre Hristov
- Department of Radiation OncologySchool of MedicineStanford UniversityStanfordCAUSA
| | - Elizabeth A. Kidd
- Department of Radiation OncologySchool of MedicineStanford UniversityStanfordCAUSA
| |
Collapse
|
8
|
Lyng H, Malinen E. Hypoxia in cervical cancer: from biology to imaging. Clin Transl Imaging 2017; 5:373-388. [PMID: 28804704 PMCID: PMC5532411 DOI: 10.1007/s40336-017-0238-7] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2017] [Accepted: 06/24/2017] [Indexed: 12/14/2022]
Abstract
PURPOSE Hypoxia imaging may improve identification of cervical cancer patients at risk of treatment failure and be utilized in treatment planning and monitoring, but its clinical potential is far from fully realized. Here, we briefly describe the biology of hypoxia in cervix tumors of relevance for imaging, and evaluate positron emission tomography (PET) and magnetic resonance imaging (MRI) techniques that have shown promise for assessing hypoxia in a clinical setting. We further discuss emerging imaging approaches, and how imaging can play a role in future treatment strategies to target hypoxia. METHODS We performed a PubMed literature search, using keywords related to imaging and hypoxia in cervical cancer, with a particular emphasis on studies correlating imaging with other hypoxia measures and treatment outcome. RESULTS Only a few and rather small studies have utilized PET with tracers specific for hypoxia, and no firm conclusions regarding preferred tracer or clinical potential can be drawn so far. Most studies address indirect hypoxia imaging with dynamic contrast-enhanced techniques. Strong evidences for a role of these techniques in hypoxia imaging have been presented. Pre-treatment images have shown significant association to outcome in several studies, and images acquired during fractionated radiotherapy may further improve risk stratification. Multiparametric MRI and multimodality PET/MRI enable combined imaging of factors of relevance for tumor hypoxia and warrant further investigation. CONCLUSIONS Several imaging approaches have shown promise for hypoxia imaging in cervical cancer. Evaluation in large clinical trials is required to decide upon the optimal modality and approach.
Collapse
Affiliation(s)
- Heidi Lyng
- Department of Radiation Biology, Institute for Cancer Research, Norwegian Radium Hospital, Oslo University Hospital, Oslo, Norway
| | - Eirik Malinen
- Department of Medical Physics, Norwegian Radium Hospital, Oslo University Hospital, Oslo, Norway
- Department of Physics, University of Oslo, Oslo, Norway
| |
Collapse
|
9
|
Apostolova I, Wedel F, Brenner W. Imaging of Tumor Metabolism Using Positron Emission Tomography (PET). Recent Results Cancer Res 2016; 207:177-205. [PMID: 27557539 DOI: 10.1007/978-3-319-42118-6_8] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Molecular imaging employing PET/CT enables in vivo visualization, characterization, and measurement of biologic processes in tumors at a molecular and cellular level. Using specific metabolic tracers, information about the integrated function of multiple transporters and enzymes involved in tumor metabolic pathways can be depicted, and the tracers can be directly applied as biomarkers of tumor biology. In this review, we discuss the role of F-18-fluorodeoxyglucose (FDG) as an in vivo glycolytic marker which reflects alterations of glucose metabolism in cancer cells. This functional molecular imaging technique offers a complementary approach to anatomic imaging such as computed tomography (CT) and magnetic resonance imaging (MRI) and has found widespread application as a diagnostic modality in oncology to monitor tumor biology, optimize the therapeutic management, and guide patient care. Moreover, emerging methods for PET imaging of further biologic processes relevant to cancer are reviewed, with a focus on tumor hypoxia and aberrant tumor perfusion. Hypoxic tumors are associated with poor disease control and increased resistance to cytotoxic and radiation treatment. In vivo imaging of hypoxia, perfusion, and mismatch of metabolism and perfusion has the potential to identify specific features of tumor microenvironment associated with poor treatment outcome and, thus, contribute to personalized treatment approaches.
Collapse
Affiliation(s)
- Ivayla Apostolova
- Department of Radiology and Nuclear Medicine, Medical School, Otto-von-Guericke University, Magdeburg A.ö.R., Magdeburg, Germany
| | - Florian Wedel
- Department of Nuclear Medicine, University Medicine Charité, Berlin, Germany
| | - Winfried Brenner
- Department of Nuclear Medicine, University Medicine Charité, Berlin, Germany.
| |
Collapse
|
10
|
Omidi Y, Barar J. Targeting tumor microenvironment: crossing tumor interstitial fluid by multifunctional nanomedicines. BIOIMPACTS : BI 2014; 4:55-67. [PMID: 25035848 PMCID: PMC4097973 DOI: 10.5681/bi.2014.021] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/22/2014] [Revised: 05/07/2014] [Accepted: 06/01/2014] [Indexed: 12/19/2022]
Abstract
Introduction: The genesis of cancer appears to be a complex matter, which is not simply based upon few genetic abnormalities/alteration. In fact, irregular microvasculature and aberrant interstitium of solid tumors impose significant pathophysiologic barrier functions against cancer treatment modalities, hence novel strategies should holistically target bioelements of tumor microenvironment (TME). In this study, we provide some overview and insights on TME and important strategies used to control the impacts of such pathophysiologic barriers.
Methods: We reviewed all relevant literature for the impacts of tumor interstitium and microvasculature within the TME as well as the significance of the implemented strategies.
Results: While tumorigenesis initiation seems to be in close relation with an emergence of hypoxia and alterations in epigenetic/genetic materials, large panoplies of molecular events emerge as intricate networks during oncogenesis to form unique lenient TME in favor of tumor progression. Within such irregular interstitium, immune system displays defective surveillance functionalities against malignant cells. Solid tumors show multifacial traits with coadaptation and self-regulation potentials, which bestow profound resistance against the currently used conventional chemotherapy and immunotherapy agents that target solely one face of the disease.
Conclusion: The cancerous cells attain unique abilities to form its permissive microenvironment, wherein (a) extracellular pH is dysregulated towards acidification, (b) extracellular matrix (ECM) is deformed, (c) stromal cells are cooperative with cancer cells, (d) immune system mechanisms are defective, (e) non-integrated irregular microvasculature with pores (120-1200 nm) are formed, and (h) interstitial fluid pressure is high. All these phenomena are against cancer treatment modalities. As a result, to control such abnormal pathophysiologic traits, novel cancer therapy strategies need to be devised using multifunctional nanomedicines and theranostics.
Collapse
Affiliation(s)
- Yadollah Omidi
- Research Center for Pharmaceutical Nanotechnology, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Jaleh Barar
- Research Center for Pharmaceutical Nanotechnology, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|