1
|
Vaz SC, Adam JA, Delgado Bolton RC, Vera P, van Elmpt W, Herrmann K, Hicks RJ, Lievens Y, Santos A, Schöder H, Dubray B, Visvikis D, Troost EGC, de Geus-Oei LF. Joint EANM/SNMMI/ESTRO practice recommendations for the use of 2-[ 18F]FDG PET/CT external beam radiation treatment planning in lung cancer V1.0. Eur J Nucl Med Mol Imaging 2022; 49:1386-1406. [PMID: 35022844 PMCID: PMC8921015 DOI: 10.1007/s00259-021-05624-5] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Accepted: 11/15/2021] [Indexed: 12/16/2022]
Abstract
PURPOSE 2-[18F]FDG PET/CT is of utmost importance for radiation treatment (RT) planning and response monitoring in lung cancer patients, in both non-small and small cell lung cancer (NSCLC and SCLC). This topic has been addressed in guidelines composed by experts within the field of radiation oncology. However, up to present, there is no procedural guideline on this subject, with involvement of the nuclear medicine societies. METHODS A literature review was performed, followed by a discussion between a multidisciplinary team of experts in the different fields involved in the RT planning of lung cancer, in order to guide clinical management. The project was led by experts of the two nuclear medicine societies (EANM and SNMMI) and radiation oncology (ESTRO). RESULTS AND CONCLUSION This guideline results from a joint and dynamic collaboration between the relevant disciplines for this topic. It provides a worldwide, state of the art, and multidisciplinary guide to 2-[18F]FDG PET/CT RT planning in NSCLC and SCLC. These practical recommendations describe applicable updates for existing clinical practices, highlight potential flaws, and provide solutions to overcome these as well. Finally, the recent developments considered for future application are also reviewed.
Collapse
Affiliation(s)
- Sofia C. Vaz
- Nuclear Medicine Radiopharmacology, Champalimaud Centre for the Unkown, Champalimaud Foundation, Lisbon, Portugal
- Department of Radiology, Leiden University Medical Center, Leiden, The Netherlands
| | - Judit A. Adam
- Department of Radiology and Nuclear Medicine, Amsterdam University Medical Center, Amsterdam, The Netherlands
| | - Roberto C. Delgado Bolton
- Department of Diagnostic Imaging (Radiology) and Nuclear Medicine, University Hospital San Pedro and Centre for Biomedical Research of La Rioja (CIBIR), Logroño (La Rioja), Spain
| | - Pierre Vera
- Henri Becquerel Cancer Center, QuantIF-LITIS EA 4108, Université de Rouen, Rouen, France
| | - Wouter van Elmpt
- Department of Radiation Oncology (MAASTRO), GROW – School for Oncology, Maastricht University Medical Centre, Maastricht, The Netherlands
| | - Ken Herrmann
- Department of Nuclear Medicine, University of Duisburg-Essen and German Cancer Consortium (DKTK)-University Hospital Essen, Essen, Germany
| | - Rodney J. Hicks
- The Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, Australia
| | - Yolande Lievens
- Radiation Oncology Department, Ghent University Hospital and Ghent University, Ghent, Belgium
| | - Andrea Santos
- Nuclear Medicine Department, CUF Descobertas Hospital, Lisbon, Portugal
| | - Heiko Schöder
- Molecular Imaging and Therapy Service, Memorial Sloan Kettering Cancer Center, New York, USA
| | - Bernard Dubray
- Department of Radiotherapy and Medical Physics, Centre Henri Becquerel, Rouen, France
- QuantIF-LITIS EA4108, University of Rouen, Rouen, France
| | | | - Esther G. C. Troost
- Department of Radiotherapy and Radiation Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
- OncoRay – National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Helmholtz-Zentrum Dresden-Rossendorf, Dresden, Germany
- Helmholtz-Zentrum Dresden - Rossendorf, Institute of Radiooncology - OncoRay, Dresden, Germany
- National Center for Tumor Diseases (NCT), Partner Site Dresden, Germany: German Cancer Research Center (DKFZ), Heidelberg, Germany; Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany; Helmholtz Association / Helmholtz-Zentrum Dresden – Rossendorf (HZDR), Dresden, Germany
- German Cancer Consortium (DKTK), Partner Site Dresden, and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Lioe-Fee de Geus-Oei
- Department of Radiology, Leiden University Medical Center, Leiden, The Netherlands
| |
Collapse
|
2
|
Adam JA, Loft A, Chargari C, Delgado Bolton RC, Kidd E, Schöder H, Veit-Haibach P, Vogel WV. EANM/SNMMI practice guideline for [ 18F]FDG PET/CT external beam radiotherapy treatment planning in uterine cervical cancer v1.0. Eur J Nucl Med Mol Imaging 2021; 48:1188-1199. [PMID: 33275178 PMCID: PMC8041686 DOI: 10.1007/s00259-020-05112-2] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2020] [Accepted: 11/08/2020] [Indexed: 01/12/2023]
Abstract
PURPOSE The aim of this EANM / SNMMI Practice Guideline with ESTRO endorsement is to provide general information and specific considerations about [18F]FDG PET/CT in advanced uterine cervical cancer for external beam radiotherapy planning with emphasis on staging and target definition, mostly in FIGO stages IB3-IVA and IVB, treated with curative intention. METHODS Guidelines from related fields, relevant literature and leading experts have been consulted during the development of this guideline. As this field is rapidly evolving, this guideline cannot be seen as definitive, nor is it a summary of all existing protocols. Local variations should be taken into consideration when applying this guideline. CONCLUSION The background, common clinical indications, qualifications and responsibilities of personnel, procedure / specifications of the examination, documentation / reporting and equipment specifications, quality control and radiation safety in imaging is discussed with an emphasis on the multidisciplinary approach.
Collapse
Affiliation(s)
- Judit A Adam
- Department of Radiology and Nuclear Medicine, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands.
| | - Annika Loft
- Department of Clinical Physiology, Nuclear Medicine and PET, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark
| | - Cyrus Chargari
- Brachytherapy Unit, Gustave Roussy, Villejuif, France
- Institut de Recherche Biomédicale des Armées, Bretigny-sur-Orge, France
- French Military Health Academy, Ecole du Val-de-Grâce, Paris, France
| | - Roberto C Delgado Bolton
- Department of Diagnostic Imaging (Radiology) and Nuclear Medicine, San Pedro University Hospital and Centre for Biomedical Research of la Rioja (CIBIR), Logroño, La Rioja, Spain
| | - Elisabeth Kidd
- Department of Radiation Oncology, Stanford Cancer Center, Stanford, CA, USA
| | - Heiko Schöder
- Department of Radiology, Molecular Imaging and Therapy Service, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | | | - Wouter V Vogel
- Department of Nuclear Medicine and Radiation Oncology, Netherlands Cancer Institute - Antoni van Leeuwenhoek Hospital, Amsterdam, Netherlands
| |
Collapse
|
3
|
Fennell JT, Gkika E, Grosu AL. Molecular Imaging in Photon Radiotherapy. Recent Results Cancer Res 2020; 216:845-863. [PMID: 32594409 DOI: 10.1007/978-3-030-42618-7_27] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Nowadays, more than ever before, the treatment of cancer patients requires an interdisciplinary approach more than ever. Radiation therapy (RT) has become an indispensable pillar of cancer treatment early on, offering a local, curative treatment option and symptom control in palliative cases.
Collapse
Affiliation(s)
| | - Eleni Gkika
- Department of Radiation Oncology, University of Freiburg, Freiburg, Germany
| | - Anca L Grosu
- Department of Radiation Oncology, University of Freiburg, Freiburg, Germany.
| |
Collapse
|
4
|
« Définition des volumes cibles : quand et comment l’oncologue radiothérapeute peut-il utiliser la TEP ? ». Cancer Radiother 2019; 23:745-752. [DOI: 10.1016/j.canrad.2019.07.133] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Accepted: 07/28/2019] [Indexed: 12/12/2022]
|
5
|
PET/MRI-guided GTV delineation during radiotherapy planning in patients with squamous cell carcinoma of the tongue. Strahlenther Onkol 2019; 195:780-791. [PMID: 31214735 PMCID: PMC6704108 DOI: 10.1007/s00066-019-01480-3] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Accepted: 05/30/2019] [Indexed: 01/17/2023]
Abstract
Purpose The aim of the study was to evaluate the usefulness and accuracy of 18-fluorine-labeled fluorodeoxyglucose (PET) and magnetic resonance imaging (MRI) hybrid in gross tumor volume (GTV) delineation during radiotherapy planning in patients with carcinoma of the tongue. Methods Ten patients with squamous cell carcinoma (SCC) of the tongue underwent computed tomography (CT) and PET/MRI examination. The GTV for primary tumor and lymph nodes (nGTV) were defined on CT (GTV-CT) and compared to GTVs obtained from PET (GTV-PET) and MRI (GTV-MRI) images. Two methods of GTV determination were used: visual interpretation of CT, PET (GTV-PETvis) and MRI images and quantitative automatic method (Syngovia, Siemens) based on a chosen threshold value (20%, 30%, 40%, 50%) of standardized uptake values (SUVmax) from PET examination (GTV-PET20%, GTV-PET30%, etc.). Statistical analysis of differences in GTV values obtained from CT, PET and MRI studies was performed. GTV-CT was used as a reference. Results In all, 80% of GTV-MRI and 40% of GTV-PETvis were larger than GTV-CT. Respectively, 20% of GTV-MRI and 60% of GTV-PETvis were smaller than GTV-CT. Taking into account all threshold measurements, 70% of volumes were smaller than GTV-CT. GTV-PET30% were the most closely related volumes to GTV-CT from all threshold methods in 50% of patients. GTV-PETvis generated the most similar volumes in relation to GTV-CT from all PET measurements. Statistical analysis confirmed those results. Compared to nGTV-CT, 70% of nGTV-MRI and 20% of nGTV-PETvis were larger. The remaining nGTV-MRI and nGTV-PETvis measurements were smaller than nGTV-CT. Measurements of all thresholds nGTVs were smaller than nGTV-CTV in 52.5% of cases. nGTV-PET20% were the most closely related volumes to nGTV-CT in 40% of the cases. Statistical analysis showed that nGTV-PET20% (p = 0.0468), nGTV-PETvis (p = 0.0166), and nGTV-PET50% (p = 0.0166) diverge significantly from nGTV-CT results. nGTV-MRI (p = 0.1141), nGTV-PET30% (p = 0.2845), and nGTV-PET40% (p = 0.5076) were significantly related with nGTV-CT. Conclusion Combination of PET/MRI provides more information during target tumor mass delineation in radiotherapy planning of patients with SCC of the tongue than other standard imaging methods. The most frequently matching threshold value was 30% of SUVmax for primary tumor delineation and 30–40% of SUVmax for nGTV determination. Electronic supplementary material The online version of this article (10.1007/s00066-019-01480-3) contains supplementary material, which is available to authorized users.
Collapse
|
6
|
Aboudaram A, Khalifa J, Massabeau C, Simon L, Hadj Henni A, Thureau S. [Image-guided radiotherapy in lung cancer]. Cancer Radiother 2018; 22:602-607. [PMID: 30104150 DOI: 10.1016/j.canrad.2018.06.009] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2018] [Accepted: 06/29/2018] [Indexed: 12/20/2022]
Abstract
Image-guided radiotherapy takes place at every step of the treatment in lung cancer, from treatment planning, with fusion imaging, to daily in-room repositioning. Managing tumoral and surrounding thoracic structures motion has been allowed since the routine use of 4D computed tomography (4DCT). The integration of respiratory motion has been made with "passive" techniques based on reconstruction images from 4DCT planning, or "active" techniques adapted to the patient's breathing. Daily repositioning is based on regular images, weekly or daily, low (kV) or high (MV) energy. MRI and functional imaging also play an important part in lung cancer radiation and open the way for adaptative radiotherapy.
Collapse
Affiliation(s)
- A Aboudaram
- Département de radiothérapie, institut universitaire du cancer de Toulouse-oncopôle, 1, avenue Irène-Joliot Curie, 31037 Toulouse, France.
| | - J Khalifa
- Département de radiothérapie, institut universitaire du cancer de Toulouse-oncopôle, 1, avenue Irène-Joliot Curie, 31037 Toulouse, France
| | - C Massabeau
- Département de radiothérapie, institut universitaire du cancer de Toulouse-oncopôle, 1, avenue Irène-Joliot Curie, 31037 Toulouse, France
| | - L Simon
- Département de radiothérapie, institut universitaire du cancer de Toulouse-oncopôle, 1, avenue Irène-Joliot Curie, 31037 Toulouse, France; CRCT UMR 1037 Inserm/UPS, 2, avenue Hubert-Curien, 31037 Toulouse, France
| | - A Hadj Henni
- Département de physique médicale, centre Henri-Becquerel, 1, rue d'Amiens, 76000 Rouen, France
| | - S Thureau
- Département de radiothérapie, centre Henri-Becquerel, 1, rue d'Amiens, 76000 Rouen, France; Laboratoire QuantIF, EA4108-Litis, FR CNRS 3638, 1, rue d'Amiens, 76000 Rouen, France; Département de médecine nucléaire, centre Henri-Becquerel, 1, rue d'Amiens, 76000 Rouen, France
| |
Collapse
|
7
|
Konert T, van de Kamer JB, Sonke JJ, Vogel WV. The developing role of FDG PET imaging for prognostication and radiotherapy target volume delineation in non-small cell lung cancer. J Thorac Dis 2018; 10:S2508-S2521. [PMID: 30206495 DOI: 10.21037/jtd.2018.07.101] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Advancements in functional imaging technology have allowed new possibilities in contouring of target volumes, monitoring therapy, and predicting treatment outcome in non-small cell lung cancer (NSCLC). Consequently, the role of 18F-fluorodeoxyglucose positron emission tomography (FDG PET) has expanded in the last decades from a stand-alone diagnostic tool to a versatile instrument integrated with computed tomography (CT), with a prominent role in lung cancer radiotherapy. This review outlines the most recent literature on developments in FDG PET imaging for prognostication and radiotherapy target volume delineation (TVD) in NSCLC. We also describe the challenges facing the clinical implementation of these developments and present new ideas for future research.
Collapse
Affiliation(s)
- Tom Konert
- Nuclear Medicine Department, Netherlands Cancer Institute, Amsterdam, The Netherlands.,Department of Radiation Oncology, Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Jeroen B van de Kamer
- Department of Radiation Oncology, Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Jan-Jakob Sonke
- Department of Radiation Oncology, Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Wouter V Vogel
- Nuclear Medicine Department, Netherlands Cancer Institute, Amsterdam, The Netherlands.,Department of Radiation Oncology, Netherlands Cancer Institute, Amsterdam, The Netherlands
| |
Collapse
|
8
|
Gkika E, Oehlke O, Bunea H, Wiedenmann N, Adebahr S, Nestle U, Zamboglou C, Kirste S, Fennell J, Brunner T, Gainey M, Baltas D, Langer M, Urbach H, Bock M, Meyer PT, Grosu AL. Biological imaging for individualized therapy in radiation oncology: part II medical and clinical aspects. Future Oncol 2018. [DOI: 10.2217/fon-2017-0465] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Positron emission tomography and multiparametric MRI provide crucial information concerning tumor extent and normal tissue anatomy. Moreover, they are able to visualize biological characteristics of the tumor, which can be considered in the radiation treatment planning and monitoring. In this review we discuss the impact of biological imaging positron emission tomography and multiparametric MRI for radiation oncology, based on the data of the literature and on the experience of our own institution in this field.
Collapse
Affiliation(s)
- Eleni Gkika
- Department of Radiation Oncology, Medical Center, Faculty of Medicine, University of Freiburg, D-79106, Germany
- German Cancer Consortium (DKTK), Partner Site Freiburg, German Cancer Research Center (DKFZ), Heidelberg, D-69120, Germany
| | - Oliver Oehlke
- Department of Radiation Oncology, Medical Center, Faculty of Medicine, University of Freiburg, D-79106, Germany
- German Cancer Consortium (DKTK), Partner Site Freiburg, German Cancer Research Center (DKFZ), Heidelberg, D-69120, Germany
| | - Hatice Bunea
- Department of Radiation Oncology, Medical Center, Faculty of Medicine, University of Freiburg, D-79106, Germany
- German Cancer Consortium (DKTK), Partner Site Freiburg, German Cancer Research Center (DKFZ), Heidelberg, D-69120, Germany
| | - Nicole Wiedenmann
- Department of Radiation Oncology, Medical Center, Faculty of Medicine, University of Freiburg, D-79106, Germany
- German Cancer Consortium (DKTK), Partner Site Freiburg, German Cancer Research Center (DKFZ), Heidelberg, D-69120, Germany
| | - Sonja Adebahr
- Department of Radiation Oncology, Medical Center, Faculty of Medicine, University of Freiburg, D-79106, Germany
- German Cancer Consortium (DKTK), Partner Site Freiburg, German Cancer Research Center (DKFZ), Heidelberg, D-69120, Germany
| | - Ursula Nestle
- Department of Radiation Oncology, Medical Center, Faculty of Medicine, University of Freiburg, D-79106, Germany
- German Cancer Consortium (DKTK), Partner Site Freiburg, German Cancer Research Center (DKFZ), Heidelberg, D-69120, Germany
| | - Constantinos Zamboglou
- Department of Radiation Oncology, Medical Center, Faculty of Medicine, University of Freiburg, D-79106, Germany
- German Cancer Consortium (DKTK), Partner Site Freiburg, German Cancer Research Center (DKFZ), Heidelberg, D-69120, Germany
| | - Simon Kirste
- Department of Radiation Oncology, Medical Center, Faculty of Medicine, University of Freiburg, D-79106, Germany
- German Cancer Consortium (DKTK), Partner Site Freiburg, German Cancer Research Center (DKFZ), Heidelberg, D-69120, Germany
| | - Jamina Fennell
- Department of Radiation Oncology, Medical Center, Faculty of Medicine, University of Freiburg, D-79106, Germany
- German Cancer Consortium (DKTK), Partner Site Freiburg, German Cancer Research Center (DKFZ), Heidelberg, D-69120, Germany
| | - Thomas Brunner
- Department of Radiation Oncology, Medical Center, Faculty of Medicine, University of Freiburg, D-79106, Germany
- German Cancer Consortium (DKTK), Partner Site Freiburg, German Cancer Research Center (DKFZ), Heidelberg, D-69120, Germany
| | - Mark Gainey
- Department of Radiation Oncology, Medical Center, Faculty of Medicine, University of Freiburg, D-79106, Germany
- German Cancer Consortium (DKTK), Partner Site Freiburg, German Cancer Research Center (DKFZ), Heidelberg, D-69120, Germany
| | - Dimos Baltas
- Department of Radiation Oncology, Medical Center, Faculty of Medicine, University of Freiburg, D-79106, Germany
- German Cancer Consortium (DKTK), Partner Site Freiburg, German Cancer Research Center (DKFZ), Heidelberg, D-69120, Germany
| | - Mathias Langer
- Department of Radiology, Medical Center, Faculty of Medicine, University of Freiburg, D-79106, Germany
| | - Horst Urbach
- Department of Neuroradiology, Medical Center, Faculty of Medicine, University of Freiburg, D-79106, Germany
| | - Michael Bock
- Department of Radiology – Medical Physics, Department of Radiology, Faculty of Medicine, Medical Center, University of Freiburg, D-79106, Germany
| | - Philipp T Meyer
- German Cancer Consortium (DKTK), Partner Site Freiburg, German Cancer Research Center (DKFZ), Heidelberg, D-69120, Germany
- Department of Nuclear Medicine, Medical Center, Faculty of Medicine, University of Freiburg, D-79106, Germany
| | - Anca-Ligia Grosu
- Department of Radiation Oncology, Medical Center, Faculty of Medicine, University of Freiburg, D-79106, Germany
- German Cancer Consortium (DKTK), Partner Site Freiburg, German Cancer Research Center (DKFZ), Heidelberg, D-69120, Germany
| |
Collapse
|
9
|
|
10
|
MacManus M, Everitt S, Schimek-Jasch T, Li XA, Nestle U, Kong FMS. Anatomic, functional and molecular imaging in lung cancer precision radiation therapy: treatment response assessment and radiation therapy personalization. Transl Lung Cancer Res 2017; 6:670-688. [PMID: 29218270 DOI: 10.21037/tlcr.2017.09.05] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
This article reviews key imaging modalities for lung cancer patients treated with radiation therapy (RT) and considers their actual or potential contributions to critical decision-making. An international group of researchers with expertise in imaging in lung cancer patients treated with RT considered the relevant literature on modalities, including computed tomography (CT), magnetic resonance imaging (MRI) and positron emission tomography (PET). These perspectives were coordinated to summarize the current status of imaging in lung cancer and flag developments with future implications. Although there are no useful randomized trials of different imaging modalities in lung cancer, multiple prospective studies indicate that management decisions are frequently impacted by the use of complementary imaging modalities, leading both to more appropriate treatments and better outcomes. This is especially true of 18F-fluoro-deoxyglucose (FDG)-PET/CT which is widely accepted to be the standard imaging modality for staging of lung cancer patients, for selection for potentially curative RT and for treatment planning. PET is also more accurate than CT for predicting survival after RT. PET imaging during RT is also correlated with survival and makes response-adapted therapies possible. PET tracers other than FDG have potential for imaging important biological process in tumors, including hypoxia and proliferation. MRI has superior accuracy in soft tissue imaging and the MRI Linac is a rapidly developing technology with great potential for online monitoring and modification of treatment. The role of imaging in RT-treated lung cancer patients is evolving rapidly and will allow increasing personalization of therapy according to the biology of both the tumor and dose limiting normal tissues.
Collapse
Affiliation(s)
- Michael MacManus
- Department of Radiation Oncology, Division of Radiation Oncology and Cancer Imaging, Peter MacCallum Cancer Centre, Melbourne, Australia.,The Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, Australia
| | - Sarah Everitt
- Department of Radiation Oncology, Division of Radiation Oncology and Cancer Imaging, Peter MacCallum Cancer Centre, Melbourne, Australia.,The Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, Australia
| | - Tanja Schimek-Jasch
- Department of Radiation Oncology, Medical Center, Faculty of Medicine, University of Freiburg, German Cancer Consortium (DKTK) Partner Site Freiburg, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - X Allen Li
- Department of Radiation Oncology, Medical College of Wisconsin, WI, USA
| | - Ursula Nestle
- Department of Radiation Oncology, Medical Center, Faculty of Medicine, University of Freiburg, German Cancer Consortium (DKTK) Partner Site Freiburg, German Cancer Research Center (DKFZ), Heidelberg, Germany.,Department of Radiation Oncology, Kliniken Maria Hilf, Moenchengladbach, Germany
| | - Feng-Ming Spring Kong
- Indiana University Simon Cancer Center, Indiana University School of Medicine, Indianapolis, IN, USA
| |
Collapse
|
11
|
Vinod SK, Jameson MG, Min M, Holloway LC. Uncertainties in volume delineation in radiation oncology: A systematic review and recommendations for future studies. Radiother Oncol 2016; 121:169-179. [PMID: 27729166 DOI: 10.1016/j.radonc.2016.09.009] [Citation(s) in RCA: 239] [Impact Index Per Article: 26.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2016] [Revised: 08/27/2016] [Accepted: 09/25/2016] [Indexed: 12/25/2022]
Abstract
BACKGROUND AND PURPOSE Volume delineation is a well-recognised potential source of error in radiotherapy. Whilst it is important to quantify the degree of interobserver variability (IOV) in volume delineation, the resulting impact on dosimetry and clinical outcomes is a more relevant endpoint. We performed a literature review of studies evaluating IOV in target volume and organ-at-risk (OAR) delineation in order to analyse these with respect to the metrics used, reporting of dosimetric consequences, and use of statistical tests. METHODS AND MATERIALS Medline and Pubmed databases were queried for relevant articles using keywords. We included studies published in English between 2000 and 2014 with more than two observers. RESULTS 119 studies were identified covering all major tumour sites. CTV (n=47) and GTV (n=38) were most commonly contoured. Median number of participants and data sets were 7 (3-50) and 9 (1-132) respectively. There was considerable heterogeneity in the use of metrics and methods of analysis. Statistical analysis of results was reported in 68% (n=81) and dosimetric consequences in 21% (n=25) of studies. CONCLUSION There is a lack of consistency in conducting and reporting analyses from IOV studies. We suggest a framework to use for future studies evaluating IOV.
Collapse
Affiliation(s)
- Shalini K Vinod
- Cancer Therapy Centre, Liverpool Hospital, Australia; South Western Sydney Clinical School, University of New South Wales, Australia; Western Sydney University, Australia.
| | - Michael G Jameson
- Cancer Therapy Centre, Liverpool Hospital, Australia; Ingham Institute of Applied Medical Research, Liverpool Hospital, Australia; Centre for Medical Radiation Physics, University of Wollongong, Australia
| | - Myo Min
- Cancer Therapy Centre, Liverpool Hospital, Australia; South Western Sydney Clinical School, University of New South Wales, Australia; Ingham Institute of Applied Medical Research, Liverpool Hospital, Australia
| | - Lois C Holloway
- Cancer Therapy Centre, Liverpool Hospital, Australia; South Western Sydney Clinical School, University of New South Wales, Australia; Ingham Institute of Applied Medical Research, Liverpool Hospital, Australia; Centre for Medical Radiation Physics, University of Wollongong, Australia
| |
Collapse
|
12
|
Multiple training interventions significantly improve reproducibility of PET/CT-based lung cancer radiotherapy target volume delineation using an IAEA study protocol. Radiother Oncol 2016; 121:39-45. [PMID: 27663950 DOI: 10.1016/j.radonc.2016.09.002] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2016] [Revised: 09/01/2016] [Accepted: 09/04/2016] [Indexed: 12/14/2022]
Abstract
BACKGROUND AND PURPOSE To assess the impact of a standardized delineation protocol and training interventions on PET/CT-based target volume delineation (TVD) in NSCLC in a multicenter setting. MATERIAL AND METHODS Over a one-year period, 11 pairs, comprised each of a radiation oncologist and nuclear medicine physician with limited experience in PET/CT-based TVD for NSCLC from nine different countries took part in a training program through an International Atomic Energy Agency (IAEA) study (NCT02247713). Teams delineated gross tumor volume of the primary tumor, during and after training interventions, according to a provided delineation protocol. In-house developed software recorded the performed delineations, to allow visual inspection of strategies and to assess delineation accuracy. RESULTS Following the first training, overall concordance indices for 3 repetitive cases increased from 0.57±0.07 to 0.66±0.07. The overall mean surface distance between observer and expert contours decreased from -0.40±0.03cm to -0.01±0.33cm. After further training overall concordance indices for another 3 repetitive cases further increased from 0.64±0.06 to 0.80±0.05 (p=0.01). Mean surface distances decreased from -0.34±0.16cm to -0.05±0.20cm (p=0.01). CONCLUSION Multiple training interventions improve PET/CT-based TVD delineation accuracy in NSCLC and reduce interobserver variation.
Collapse
|
13
|
Thureau S, Hapdey S, Vera P. [Role of functional imaging in the definition of target volumes for lung cancer radiotherapy]. Cancer Radiother 2016; 20:699-704. [PMID: 27614514 DOI: 10.1016/j.canrad.2016.08.121] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2016] [Accepted: 08/01/2016] [Indexed: 12/23/2022]
Abstract
Functional imaging with positron emission tomography (PET) is interesting to optimize lung radiotherapy planning, and probably to deliver a heterogeneous dose or adapt the radiation dose during treatment. Only fluorodeoxyglucose (FDG) PET-computed tomography (CT) is validated for staging lung cancer and planning radiotherapy. The optimal segmentation methods remain to be defined as well as the interest of "dose painting" from pre-treatment PET (metabolism: FDG) or hypoxia (fluoromisonidazole: FMISO) and the interest of replanning based on pertherapeutic PET.
Collapse
Affiliation(s)
- S Thureau
- Département de médecine nucléaire, centre de lutte contre le cancer Henri-Becquerel, rue d'Amiens, 76000 Rouen, France; Département de radiothérapie et de physique médicale, centre de lutte contre le cancer Henri-Becquerel, rue d'Amiens, 76000 Rouen, France; Laboratoire QuantIF, EA4108-Litis, FR CNRS 3638, 1, rue d'Amiens, 76000 Rouen, France.
| | - S Hapdey
- Département de médecine nucléaire, centre de lutte contre le cancer Henri-Becquerel, rue d'Amiens, 76000 Rouen, France; Laboratoire QuantIF, EA4108-Litis, FR CNRS 3638, 1, rue d'Amiens, 76000 Rouen, France
| | - P Vera
- Département de médecine nucléaire, centre de lutte contre le cancer Henri-Becquerel, rue d'Amiens, 76000 Rouen, France; Laboratoire QuantIF, EA4108-Litis, FR CNRS 3638, 1, rue d'Amiens, 76000 Rouen, France
| |
Collapse
|
14
|
Impact of coronal and sagittal views on lung gross tumor volume delineation. Phys Med 2016; 32:1082-7. [PMID: 27599608 DOI: 10.1016/j.ejmp.2016.08.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/06/2016] [Revised: 08/04/2016] [Accepted: 08/05/2016] [Indexed: 11/20/2022] Open
Abstract
BACKGROUND AND PURPOSE To study the impact of coronal and sagittal views (CSV) on the gross tumor volume (GTV) delineation on CT and matched PET/CT scans in non-small cell lung cancer. MATERIAL AND METHODS GTV delineations were performed by 11 experienced radiation oncologists on CT and PET/CT in 22 patients. Two tumor groups were defined: Group I: Primary tumors surrounded by lung or visceral pleura, without venous invasion, and without large extensions to the chest wall or the mediastinum. Group II: Tumors invading the hilar region, heart, large vessels, pericardium, and the mediastinum and/or associated with atelectasis. Tumor volumes and inter-observers variations (SD) were calculated and compared according to the use of axial view only (AW), axial/coronal/sagittal views (ACSW) and ACSW/PET (ACSWP). RESULTS CSV were not frequently used (57.4% out of 242 delineations on CT). For group I, ACSW didn't improve significantly mean GTVs. SDs were small on CT and on PET (SD=0.3cm). For group II, ACSW had 27-46% smaller observer variation (mean SD=0.7cm) than AW (mean SD=1.1cm). The smaller observer variation of ACSW users was associated with, on average, a 40% smaller delineated volume (p=0.038). Mean GTV of ACSWP was 21% larger than mean GTV of ACSW on CT. CONCLUSIONS For smaller lung tumors surrounded by healthy lung tissue the effect of multiple axis delineation is limited. However, application of coronal and sagittal windows is highly beneficial for delineation of more complex tumors, with atelectasis and/or pathological lymph nodes even if PET is used.
Collapse
|
15
|
Berberoğlu K. Use of Positron Emission Tomography/Computed Tomography in Radiation Treatment Planning for Lung Cancer. Mol Imaging Radionucl Ther 2016; 25:50-62. [PMID: 27277321 PMCID: PMC5096621 DOI: 10.4274/mirt.19870] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Radiotherapy (RT) plays an important role in the treatment of lung cancer. Accurate diagnosis and staging are crucial in the delivery of RT with curative intent. Target miss can be prevented by accurate determination of tumor contours during RT planning. Currently, tumor contours are determined manually by computed tomography (CT) during RT planning. This method leads to differences in delineation of tumor volume between users. Given the change in RT tools and methods due to rapidly developing technology, it is now more significant to accurately delineate the tumor tissue. F18 fluorodeoxyglucose positron emission tomography/CT (F18 FDG PET/CT) has been established as an accurate method in correctly staging and detecting tumor dissemination in lung cancer. Since it provides both anatomic and biologic information, F18 FDG PET decreases inter-user variability in tumor delineation. For instance, tumor volumes may be decreased as atelectasis and malignant tissue can be more accurately differentiated, as well as better evaluation of benign and malignant lymph nodes given the difference in FDG uptake. Using F18 FDG PET/CT, the radiation dose can be escalated without serious adverse effects in lung cancer. In this study, we evaluated the contribution of F18 FDG PET/CT for RT planning in lung cancer.
Collapse
Affiliation(s)
- Kezban Berberoğlu
- Anadolu Medical Center, Clinic of Nuclear Medicine, İstanbul, Turkey, Phone: +90 532 584 62 56 E-mail:
| |
Collapse
|
16
|
4D-Listmode-PET-CT and 4D-CT for optimizing PTV margins in gastric lymphoma : Determination of intra- and interfractional gastric motion. Strahlenther Onkol 2016; 192:322-32. [PMID: 26902523 DOI: 10.1007/s00066-016-0949-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2015] [Accepted: 01/26/2016] [Indexed: 12/13/2022]
Abstract
PURPOSE New imaging protocols for radiotherapy in localized gastric lymphoma were evaluated to optimize planning target volume (PTV) margin and determine intra-/interfractional variation of the stomach. METHODS Imaging of 6 patients was explored prospectively. Intensity-modulated radiotherapy (IMRT) planning was based on 4D/3D imaging of computed tomography (CT) and positron-emission tomography (PET)-CT. Static and motion gross tumor volume (sGTV and mGTV, respectively) were distinguished by defining GTV (empty stomach), clinical target volume (CTV = GTV + 5 mm margin), PTV (GTV + 10/15/20/25 mm margins) plus paraaortic lymph nodes and proximal duodenum. Overlap of 4D-Listmode-PET-based mCTV with 3D-CT-based PTV (increasing margins) and V95/D95 of mCTV were evaluated. Gastric shifts were determined using online cone-beam CT. Dose contribution to organs at risk was assessed. RESULTS The 4D data demonstrate considerable intra-/interfractional variation of the stomach, especially along the vertical axis. Conventional 3D-CT planning utilizing advancing PTV margins of 10/15/20/25 mm resulted in rising dose coverage of mCTV (4D-Listmode-PET-Summation-CT) and rising D95 and V95 of mCTV. A PTV margin of 15 mm was adequate in 3 of 6 patients, a PTV margin of 20 mm was adequate in 4 of 6 patients, and a PTV margin of 25 mm was adequate in 5 of 6 patients. CONCLUSION IMRT planning based on 4D-PET-CT/4D-CT together with online cone-beam CT is advisable to individualize the PTV margin and optimize target coverage in gastric lymphoma.
Collapse
|
17
|
Cobben DCP, de Boer HCJ, Tijssen RH, Rutten EGGM, van Vulpen M, Peerlings J, Troost EGC, Hoffmann AL, van Lier ALHMW. Emerging Role of MRI for Radiation Treatment Planning in Lung Cancer. Technol Cancer Res Treat 2015; 15:NP47-NP60. [PMID: 26589726 DOI: 10.1177/1533034615615249] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2015] [Accepted: 10/01/2015] [Indexed: 12/25/2022] Open
Abstract
Magnetic resonance imaging (MRI) provides excellent soft-tissue contrast and allows for specific scanning sequences to optimize differentiation between various tissue types and properties. Moreover, it offers the potential for real-time motion imaging. This makes magnetic resonance imaging an ideal candidate imaging modality for radiation treatment planning in lung cancer. Although the number of clinical research protocols for the application of magnetic resonance imaging for lung cancer treatment is increasing (www.clinicaltrials.gov) and the magnetic resonance imaging sequences are becoming faster, there are still some technical challenges. This review describes the opportunities and challenges of magnetic resonance imaging for radiation treatment planning in lung cancer.
Collapse
Affiliation(s)
- David C P Cobben
- Department of Radiation Oncology, University Medical Center, Utrecht, the Netherlands
| | - Hans C J de Boer
- Department of Radiation Oncology, University Medical Center, Utrecht, the Netherlands
| | - Rob H Tijssen
- Department of Radiation Oncology, University Medical Center, Utrecht, the Netherlands
| | - Emma G G M Rutten
- Department of Radiation Oncology, University Medical Center, Utrecht, the Netherlands
| | - Marco van Vulpen
- Department of Radiation Oncology, University Medical Center, Utrecht, the Netherlands
| | - Jurgen Peerlings
- Department of Radiation Oncology, MAASTRO Clinic, GROW-School for Oncology and Developmental Biology, Maastricht University Medical Centre, Maastricht, the Netherlands
| | - Esther G C Troost
- Department of Radiation Oncology, MAASTRO Clinic, GROW-School for Oncology and Developmental Biology, Maastricht University Medical Centre, Maastricht, the Netherlands.,Helmholtz-Zentrum Dresden-Rossendorf, Dresden, Germany.,OncoRay, National Center for Radiation Research in Oncology, Dresden, Germany.,Department of Radiation Oncology, Medical Faculty and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Aswin L Hoffmann
- Department of Radiation Oncology, MAASTRO Clinic, GROW-School for Oncology and Developmental Biology, Maastricht University Medical Centre, Maastricht, the Netherlands.,Helmholtz-Zentrum Dresden-Rossendorf, Dresden, Germany.,OncoRay, National Center for Radiation Research in Oncology, Dresden, Germany.,Department of Radiation Oncology, Medical Faculty and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | | |
Collapse
|
18
|
Impact of 4D-(18)FDG-PET/CT imaging on target volume delineation in SBRT patients with central versus peripheral lung tumors. Multi-reader comparative study. Radiother Oncol 2015; 115:335-41. [PMID: 26116339 DOI: 10.1016/j.radonc.2015.05.019] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2014] [Revised: 05/13/2015] [Accepted: 05/31/2015] [Indexed: 01/05/2023]
Abstract
PURPOSE Evaluation of the effect of co-registered 4D-(18)FDG-PET/CT for SBRT target delineation in patients with central versus peripheral lung tumors. METHODS Analysis of internal target volume (ITV) delineation of central and peripheral lung lesions in 21 SBRT-patients. Manual delineation was performed by 4 observers in 2 contouring phases: on respiratory gated 4DCT with diagnostic 3DPET available aside (CT-ITV) and on co-registered 4DPET/CT (PET/CT-ITV). Comparative analysis of volumes and inter-reader agreement. RESULTS 11 cases of peripheral and 10 central lesions were evaluated. In peripheral lesions, average CT-ITV was 6.2 cm(3) and PET/CT-ITV 8.6 cm(3), resembling a mean change in hypothetical radius of 2 mm. For both CT-ITVs and PET/CT-ITVs inter reader agreement was good and unchanged (0.733 and 0.716; p=0.58). All PET/CT-ITVs stayed within the PTVs derived from CT-ITVs. In central lesions, average CT-ITVs were 42.1 cm(3), PET/CT-ITVs 44.2 cm(3), without significant overall volume changes. Inter-reader agreement improved significantly (0.665 and 0.750; p<0.05). 2/10 PET/CT-ITVs exceeded the PTVs derived from CT-ITVs by >1 ml in average for all observers. CONCLUSION The addition of co-registered 4DPET data to 4DCT based target volume delineation for SBRT of centrally located lung tumors increases the inter-observer agreement and may help to avoid geographic misses.
Collapse
|
19
|
PET/CT imaging for target volume delineation in curative intent radiotherapy of non-small cell lung cancer: IAEA consensus report 2014. Radiother Oncol 2015; 116:27-34. [PMID: 25869338 DOI: 10.1016/j.radonc.2015.03.014] [Citation(s) in RCA: 106] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2014] [Revised: 03/09/2015] [Accepted: 03/15/2015] [Indexed: 12/20/2022]
Abstract
This document describes best practice and evidence based recommendations for the use of FDG-PET/CT for the purposes of radiotherapy target volume delineation (TVD) for curative intent treatment of non-small cell lung cancer (NSCLC). These recommendations have been written by an expert advisory group, convened by the International Atomic Energy Agency (IAEA) to facilitate a Coordinated Research Project (CRP) aiming to improve the applications of PET based radiation treatment planning (RTP) in low and middle income countries. These guidelines can be applied in routine clinical practice of radiotherapy TVD, for NSCLC patients treated with concurrent chemoradiation or radiotherapy alone, where FDG is used, and where a calibrated PET camera system equipped for RTP patient positioning is available. Recommendations are provided for PET and CT image visualization and interpretation, and for tumor delineation using planning CT with and without breathing motion compensation.
Collapse
|
20
|
Thorwarth D. Functional imaging for radiotherapy treatment planning: current status and future directions-a review. Br J Radiol 2015; 88:20150056. [PMID: 25827209 PMCID: PMC4628531 DOI: 10.1259/bjr.20150056] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
In recent years, radiotherapy (RT) has been subject to a number of technological innovations. Today, RT is extremely flexible, allowing irradiation of tumours with high doses, whilst also sparing normal tissues from doses. To make use of these additional degrees of freedom, integration of functional image information may play a key role (i) for better staging and tumour detection, (ii) for more accurate RT target volume delineation, (iii) to assess functional information about biological characteristics and individual radiation resistance and (iv) to apply personalized dose prescriptions. In this article, we discuss the current status and future directions of different clinically available functional imaging modalities; CT, MRI, positron emission tomography (PET) as well as the hybrid imaging techniques PET/CT and PET/MRI and their potential for individualized RT.
Collapse
Affiliation(s)
- D Thorwarth
- Section for Biomedical Physics, Department of Radiation Oncology, Eberhard Karls University Tübingen, Tübingen, Germany
| |
Collapse
|