1
|
Sabloff M, Tisseverasinghe S, Babadagli ME, Samant R. Total Body Irradiation for Hematopoietic Stem Cell Transplantation: What Can We Agree on? ACTA ACUST UNITED AC 2021; 28:903-917. [PMID: 33617507 PMCID: PMC7985756 DOI: 10.3390/curroncol28010089] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Revised: 01/19/2021] [Accepted: 02/02/2021] [Indexed: 01/23/2023]
Abstract
Total body irradiation (TBI), used as part of the conditioning regimen prior to allogeneic and autologous hematopoietic cell transplantation, is the delivery of a relatively homogeneous dose of radiation to the entire body. TBI has a dual role, being cytotoxic and immunosuppressive. This allows it to eliminate disease and create “space” in the marrow while also impairing the immune system from rejecting the foreign donor cells being transplanted. Advantages that TBI may have over chemotherapy alone are that it may achieve greater tumour cytotoxicity and better tissue penetration than chemotherapy as its delivery is independent of vascular supply and physiologic barriers such as renal and hepatic function. Therefore, the so-called “sanctuary” sites such as the central nervous system (CNS), testes, and orbits or other sites with limited blood supply are not off-limits to radiation. Nevertheless, TBI is hampered by challenging logistics of administration, coordination between hematology and radiation oncology departments, increased rates of acute treatment-related morbidity and mortality along with late toxicity to other tissues. Newer technologies and a better understanding of the biology and physics of TBI has allowed the field to develop novel delivery systems which may help to deliver radiation more safely while maintaining its efficacy. However, continued research and collaboration are needed to determine the best approaches for the use of TBI in the future.
Collapse
Affiliation(s)
- Mitchell Sabloff
- Division of Hematology, Department of Medicine, University of Ottawa, Ottawa, ON K1H 8L6, Canada;
- The Ottawa Hospital Research Institute, Ottawa, ON K1H 8L6, Canada
| | | | - Mustafa Ege Babadagli
- Division of Radiation Oncology, The Ottawa Hospital, Ottawa, ON K1H 8L6, Canada;
- Correspondence:
| | - Rajiv Samant
- Division of Radiation Oncology, The Ottawa Hospital, Ottawa, ON K1H 8L6, Canada;
| |
Collapse
|
2
|
Losert C, Shpani R, Kießling R, Freislederer P, Li M, Walter F, Niyazi M, Reiner M, Belka C, Corradini S. Novel rotatable tabletop for total-body irradiation using a linac-based VMAT technique. Radiat Oncol 2019; 14:244. [PMID: 31888680 PMCID: PMC6937701 DOI: 10.1186/s13014-019-1445-3] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2019] [Accepted: 12/12/2019] [Indexed: 01/28/2023] Open
Abstract
BACKGROUND Volumetric Modulated Arc Therapy (VMAT) techniques have recently been implemented in clinical practice for total-body irradiation (TBI). To date, most techniques still use special couches, translational tables, or other self-made immobilization devices for dose delivery. Aim of the present study was to report the first results of a newly developed rotatable tabletop designed for VMAT-TBI. METHODS The VMAT-TBI technique theoretically allows the use of any standard positioning device at the linear accelerator. Nevertheless, the main problem is that patients taller than 120 cm cannot be treated in one position due to the limited cranial-caudal couch shift capacities of the linac. Therefore, patients are usually turned from a head-first supine position (HFS) to a feet-first supine position (FFS) to overcome this limitation. The newly developed rotatable tabletop consists completely of carbon fiber, including the ball bearing within the base plate of the rotation unit. The patient can be turned 180° from a HFS to a FFS position within a few seconds, without the need of repositioning. RESULTS The first 20 patients had a median age of 47 years, and received TBI before bone marrow transplantation for acute myeloid leukemia. Most patients (13/20) received a TBI dose of 4 Gy in 2 fractions, twice daily. The mean number of applied monitor units (MU) was 6476 MU using a multi-arcs and multi-isocenter VMAT-TBI technique. The tabletop has been successfully used in daily clinical practice and helped to keep the treatment times at an acceptable level. During the first treatment fraction, the mean overall treatment time (OTT) was 57 min. Since no additional image guidance was used in fraction 2 of the same day, the OTT was reduced to mean 38 min. CONCLUSIONS The easy and reproducible rotation of the patient on the treatment couch using the rotatable tabletop, is time-efficient and overcomes the need of repositioning the patient after turning from a HFS to a FFS position during VMAT TBI. Furthermore, it prevents couch-gantry collisions, incorrect isocenter shifts and beam mix-up due to predicted absolute table coordinates, which are recorded to the R + V system with the corresponding beams.
Collapse
Affiliation(s)
- Christoph Losert
- Department of Radiation Oncology, University Hospital, LMU Munich, Marchioninistr. 15, 81377, Munich, Germany
| | - Roel Shpani
- Department of Radiation Oncology, University Hospital, LMU Munich, Marchioninistr. 15, 81377, Munich, Germany
| | - Robert Kießling
- Department of Radiation Oncology, University Hospital, LMU Munich, Marchioninistr. 15, 81377, Munich, Germany
| | - Philipp Freislederer
- Department of Radiation Oncology, University Hospital, LMU Munich, Marchioninistr. 15, 81377, Munich, Germany
| | - Minglun Li
- Department of Radiation Oncology, University Hospital, LMU Munich, Marchioninistr. 15, 81377, Munich, Germany
| | - Franziska Walter
- Department of Radiation Oncology, University Hospital, LMU Munich, Marchioninistr. 15, 81377, Munich, Germany
| | - Maximilian Niyazi
- Department of Radiation Oncology, University Hospital, LMU Munich, Marchioninistr. 15, 81377, Munich, Germany
| | - Michael Reiner
- Department of Radiation Oncology, University Hospital, LMU Munich, Marchioninistr. 15, 81377, Munich, Germany
| | - Claus Belka
- Department of Radiation Oncology, University Hospital, LMU Munich, Marchioninistr. 15, 81377, Munich, Germany
| | - Stefanie Corradini
- Department of Radiation Oncology, University Hospital, LMU Munich, Marchioninistr. 15, 81377, Munich, Germany.
| |
Collapse
|
3
|
Pierce G, Balogh A, Frederick R, Gordon D, Yarschenko A, Hudson A. Extended SSD VMAT treatment for total body irradiation. J Appl Clin Med Phys 2018; 20:200-211. [PMID: 30592152 PMCID: PMC6333187 DOI: 10.1002/acm2.12519] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2018] [Revised: 11/09/2018] [Accepted: 11/13/2018] [Indexed: 12/17/2022] Open
Abstract
In this work, we develop a total body irradiation technique that utilizes arc delivery, a buildup spoiler, and inverse optimized multileaf collimator (MLC) motion to shield organs at risk. The current treatment beam model is verified to confirm its applicability at extended source‐to‐surface distance (SSD). The delivery involves 7–8 volumetric modulated arc therapy arcs delivered to the patient in the supine and prone positions. The patient is positioned at a 90° couch angle on a custom bed with a 1 cm acrylic spoiler to increase surface dose. Single‐step optimization using a patient CT scan provides enhanced dose homogeneity and limits organ at risk dose. Dosimetric data of 109 TBI patients treated with this technique is presented along with the clinical workflow. Treatment planning system (TPS) verification measurements were performed at an extended SSD of 175 cm. Measurements included: a 4‐point absolute depth‐dose curve, profiles at 1.5, 5, and 10 cm depth, absolute point‐dose measurements of an treatment field, 2D Gafchromic® films at four locations, and measurements of surface dose at multiple locations of a Alderson phantom. The results of the patient DVH parameters were: Body‐5 mm D98 95.3 ± 1.5%, Body‐5 mm D2 114.0 ± 3.6%, MLD 102.8 ± 2.1%. Differences between measured and calculated absolute depth‐dose values were all <2%. Profiles at extended SSD had a maximum point difference of 1.3%. Gamma pass rates of 2D films were greater than 90% at 5%/1 mm. Surface dose measurements with film confirmed surface dose values of >90% of the prescription dose. In conclusion, the inverse optimized delivery method presented in the paper has been used to deliver homogenous dose to over 100 patients. The method provides superior patient comfort utilizing a commercial TPS. In addition, the ability to easily shield organs at risk is available through the use of MLCs.
Collapse
Affiliation(s)
- Greg Pierce
- Department of Medical Physics, Tom Baker Cancer Centre, Calgary, AB, Canada.,Department of Physics & Astronomy, University of Calgary, Calgary, AB, Canada.,Department of Oncology, University of Calgary, Calgary, AB, Canada
| | - Alex Balogh
- Department of Oncology, University of Calgary, Calgary, AB, Canada.,Division of Radiation Oncology, Tom Baker Cancer Centre, Calgary, AB, Canada
| | - Rebecca Frederick
- Department of Medical Physics, Tom Baker Cancer Centre, Calgary, AB, Canada.,Department of Physics & Astronomy, University of Calgary, Calgary, AB, Canada
| | - Deborah Gordon
- Department of Radiation Therapy, Tom Baker Cancer Centre, Calgary, AB, Canada
| | - Adam Yarschenko
- Department of Medical Physics, Tom Baker Cancer Centre, Calgary, AB, Canada
| | - Alana Hudson
- Department of Medical Physics, Tom Baker Cancer Centre, Calgary, AB, Canada.,Department of Oncology, University of Calgary, Calgary, AB, Canada
| |
Collapse
|
4
|
Härtl PM, Treutwein M, Hautmann MG, März M, Pohl F, Kölbl O, Dobler B. Total body irradiation-an attachment free sweeping beam technique. Radiat Oncol 2016; 11:81. [PMID: 27287010 PMCID: PMC4902948 DOI: 10.1186/s13014-016-0658-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2015] [Accepted: 06/07/2016] [Indexed: 01/01/2023] Open
Abstract
Introduction A sweeping beam technique for total body irradiation in standard treatment rooms and for standard linear accelerators (linacs) is introduced, which does not require any accessory attached to the linac. Lung shielding is facilitated to reduce the risk of pulmonary toxicity. Additionally, the applicability of a commercial radiotherapy planning system (RTPS) is examined. Material and Methods The patient is positioned on a low couch on the floor, the longitudinal axis of the body in the rotational plane of the linac. Eight arc fields and five additional fixed beams are applied to the patient in supine and prone position respectively. The dose distributions were measured in a solid water phantom and in an Alderson phantom. Diode detectors were calibrated for in-vivo dosimetry. The RTPS Oncentra was employed for calculations of the dose distribution. Results For the cranial 120 cm the longitudinal dose profile in a slab phantom measured with ionization chamber varies between 94 and 107 % of the prescription dose. These values were confirmed by film measurements and RTPS calculations. The transmittance of the lung shields has been determined as a function of the thickness of the absorber material. Measurements in an Alderson phantom and in-vivo dosimetry of the first patients match the calculated dose. Discussion and conclusion A treatment technique with clinically good dose distributions has been introduced, which can be applied with each standard linac and in standard treatment rooms. Dose calculations were performed with a commercial RTPS and should enable individual dose optimization.
Collapse
Affiliation(s)
- Petra M Härtl
- Department of Radiotherapy, Regensburg University Medical Center, Regensburg, Germany
| | - Marius Treutwein
- Department of Radiotherapy, Regensburg University Medical Center, Regensburg, Germany.
| | - Matthias G Hautmann
- Department of Radiotherapy, Regensburg University Medical Center, Regensburg, Germany
| | - Manuel März
- Department of Radiotherapy, Regensburg University Medical Center, Regensburg, Germany
| | - Fabian Pohl
- Department of Radiotherapy, Regensburg University Medical Center, Regensburg, Germany
| | - Oliver Kölbl
- Department of Radiotherapy, Regensburg University Medical Center, Regensburg, Germany
| | - Barbara Dobler
- Department of Radiotherapy, Regensburg University Medical Center, Regensburg, Germany
| |
Collapse
|