1
|
Seok JH, Ahn SH, Ahn WS, Choi DH, Shin SS, Choi W, Jung IH, Lee R, Kim JS. Comparison of skin dose in IMRT and VMAT with TrueBeam and Halcyon linear accelerator for whole breast irradiation. Phys Eng Sci Med 2024; 47:443-451. [PMID: 38224383 PMCID: PMC11166860 DOI: 10.1007/s13246-023-01373-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Accepted: 12/18/2023] [Indexed: 01/16/2024]
Abstract
With the increasing use of flattening filter free (FFF) beams, it is important to evaluate the impact on the skin dose and target coverage of breast cancer treatments. This study aimed to compare skin doses of treatments using FFF and flattening filter (FF) beams for breast cancer. The study established treatment plans for left breast of an anthropomorphic phantom using Halcyon's 6-MV FFF beam and TrueBeam's 6-MV FF beam. Volumetric modulated arc therapy (VMAT) with varying numbers of arcs and intensity modulated radiation therapy (IMRT) were employed, and skin doses were measured at five points using Gafchromic EBT3 film. Each measurement was repeated three times, and averaged to reduce uncertainty. All plans were compared in terms of plan quality to ensure homogeneous target coverage. The study found that when using VMAT with two, four, and six arcs, in-field doses were 19%, 15%, and 6% higher, respectively, when using Halcyon compared to TrueBeam. Additionally, when using two arcs for VMAT, in-field doses were 10% and 15% higher compared to four and six arcs when using Halcyon. Finally, in-field dose from Halcyon using IMRT was about 1% higher than when using TrueBeam. Our research confirmed that when treating breast cancer with FFF beams, skin dose is higher than with traditional FF beams. Moreover, number of arcs used in VMAT treatment with FFF beams affects skin dose to the patient. To maintain a skin dose similar to that of FF beams when using Halcyon, it may be worth considering increasing the number of arcs.
Collapse
Affiliation(s)
- Jae Hyun Seok
- Department of Integrative Medicine, Yonsei University College of Medicine, Seoul, Korea
- Medical Physics and Biomedical Engineering Lab (MPBEL), Yonsei University College of Medicine, Seoul, Korea
| | - So Hyun Ahn
- Ewha Medical Research Institute, Ewha Womans University College of Medicine, Seoul, Korea.
- Ewha Medical Artifical Intelligence Research Institute, Ewha Womans University College of Medicine, Seoul, Korea.
| | - Woo Sang Ahn
- Department of Radiation Oncology, Gangneung Asan Hospital, University of Ulsan College of Medicine, Gangneung, Korea.
| | - Dong Hyeok Choi
- Medical Physics and Biomedical Engineering Lab (MPBEL), Yonsei University College of Medicine, Seoul, Korea
- Department of Medicine, Yonsei University College of Medicine, Seoul, Korea
| | - Seong Soo Shin
- Department of Radiation Oncology, Gangneung Asan Hospital, University of Ulsan College of Medicine, Gangneung, Korea
| | - Wonsik Choi
- Department of Radiation Oncology, Gangneung Asan Hospital, University of Ulsan College of Medicine, Gangneung, Korea
| | - In-Hye Jung
- Department of Radiation Oncology, Gangneung Asan Hospital, University of Ulsan College of Medicine, Gangneung, Korea
| | - Rena Lee
- Department of Biomedical Engineering, Ewha Womans University, Seoul, Korea
- Ewha Medical Artifical Intelligence Research Institute, Ewha Womans University College of Medicine, Seoul, Korea
| | - Jin Sung Kim
- Medical Physics and Biomedical Engineering Lab (MPBEL), Yonsei University College of Medicine, Seoul, Korea
- Department of Radiation Oncology, Yonsei Cancer Center, Yonsei University College of Medicine, Seoul, Korea
| |
Collapse
|
2
|
Racka I, Majewska K, Winiecki J, Kiluk K. Hybrid planning techniques for early-stage left-sided breast cancer: dose distribution analysis and estimation of projected secondary cancer-relative risk. Acta Oncol 2023; 62:932-941. [PMID: 37516978 DOI: 10.1080/0284186x.2023.2238553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Accepted: 06/30/2023] [Indexed: 08/01/2023]
Abstract
PURPOSE The purpose of this study was to evaluate three techniques of irradiation of left-sided breast cancer patients, three-dimensional conformal radiotherapy (3D-CRT), hybrid Intensity-Modulated Radiotherapy (h-IMRT), and hybrid Volumetric-Modulated Arc Therapy (h-VMAT, h-ARC), in terms of dose distribution in the planning target volume (PTV) and organs at risk (OARs). The second aim was to estimate the projected relative risk of radiation-induced secondary cancers for hybrid techniques. MATERIALS AND METHODS Three treatment plans were prepared in 3D-CRT, h-IMRT, and h-VMAT techniques for each of the 40 patients, who underwent CT simulation in deep inspiration breath-hold (DIBH). For hybrid techniques, plans were created by combining 3D-CRT and dynamic fields with an 80%/20% dose ratio for 3D-CRT and IMRT or VMAT. Cumulative dose-volume histograms were used to compare dose distributions within the PTV and OARs (heart, left anterior descending coronary artery [LAD], left and right lung [LL, RL], right breast [RB]). Projected risk ratios for secondary cancers were estimated relative to 3D-CRT using the organ equivalent dose (OED) concept for the Schneider's linear exponential, plateau, and full mechanistic dose-response model. RESULTS All plans fulfilled the PTV criterium: V95%≥95%. Compared to 3D-CRT, both hybrid techniques showed significantly better target coverage (PTV: V95%>98%, p < 0.001), and the best conformality was achieved by h-ARC plans (CI: 1.18 ± 0.09, p < 0.001). Compared to 3D-CRT and h-ARC, h-IMRT increased the average sum of monitor units (MU) over 129.9% (p < 0.001). H-ARC increased the mean dose of contralateral organs and the LL V5Gy parameter (p < 0.001). Both hybrid techniques significantly reduced the Dmax of the heart by 5 Gy. Compared to h-IMRT, h-ARC increased secondary cancer projected relative risk ratios for LL, RL, and RB by 18, 152, and 81%, respectively. CONCLUSIONS The results confirmed that both hybrid techniques provide better target quality and OARs sparing than 3D-CRT. Hybrid VMAT delivers less MU compared to hybrid IMRT but may increase the risk of radiation-induced secondary malignancies.
Collapse
Affiliation(s)
- Iga Racka
- Medical Physics Department, Prof. Franciszek Łukaszczyk Memorial Oncology Center, Bydgoszcz, Poland
| | - Karolina Majewska
- Medical Physics Department, Prof. Franciszek Łukaszczyk Memorial Oncology Center, Bydgoszcz, Poland
| | - Janusz Winiecki
- Medical Physics Department, Prof. Franciszek Łukaszczyk Memorial Oncology Center, Bydgoszcz, Poland
- Clinic of Oncology and Brachytherapy, Collegium Medicum in Bydgoszcz, Nicholas Copernicus University, Torun, Poland
| | | |
Collapse
|
3
|
Synchronous bilateral breast carcinoma irradiation: A comparative investigation between flattened and unflattened beams. Appl Radiat Isot 2022; 181:110079. [DOI: 10.1016/j.apradiso.2021.110079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 12/18/2021] [Accepted: 12/21/2021] [Indexed: 12/24/2022]
|
4
|
Cilla S, Romano C, Macchia G, Boccardi M, De Vivo LP, Morabito VE, Buwenge M, Strigari L, Indovina L, Valentini V, Deodato F, Morganti AG. Automated hybrid volumetric modulated arc therapy (HVMAT) for whole-breast irradiation with simultaneous integrated boost to lumpectomy area : A treatment planning study. Strahlenther Onkol 2021; 198:254-267. [PMID: 34767044 DOI: 10.1007/s00066-021-01873-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Accepted: 10/17/2021] [Indexed: 10/19/2022]
Abstract
PURPOSE To develop an automated treatment planning approach for whole breast irradiation with simultaneous integrated boost using an automated hybrid VMAT class solution (HVMAT). MATERIALS AND METHODS Twenty-five consecutive patients with left breast cancer received 50 Gy (2 Gy/fraction) to the whole breast and an additional simultaneous 10 Gy (2.4 Gy/fraction) to the tumor cavity. Ipsilateral lung, heart, and contralateral breast were contoured as main organs-at-risk. HVMAT plans were inversely optimized by combining two open fields with a VMAT semi-arc beam. Open fields were setup to include the whole breast with a 2 cm flash region and to carry 80% of beams weight. HVMAT plans were compared with three tangential techniques: conventional wedged-field tangential plans (SWF), field-in-field forward planned tangential plans (FiF), and hybrid-IMRT plans (HMRT). Dosimetric differences among the plans were evaluated using Kruskal-Wallis one-way analysis of variance. Dose accuracy was validated using the PTW Octavius-4D phantom together with the 1500 2D-array. RESULTS No significant differences were found among the four techniques for both targets coverage. HVMAT plans showed consistently better PTVs dose contrast, conformity, and homogeneity (p < 0.001 for all metrics) and statistically significant reduction of high-dose breast irradiation. V55 and V60 decreased by 30.4, 26.1, and 20.8% (p < 0.05) and 12.3, 9.9, and 6.0% (p < 0.05) for SWF, FIF, and HMRT, respectively. Pretreatment dose verification reported a gamma pass-rate greater than the acceptance threshold of 95% for all HVMAT plans. In addition, HVMAT reduced the time for full planning optimization to about 20 min. CONCLUSIONS HVMAT plans resulted in superior target dose conformity and homogeneity compared to other tangential techniques. Due to fast planning time HVMAT can be applied for all patients, minimizing the impact on human or departmental resources.
Collapse
Affiliation(s)
- Savino Cilla
- Medical Physics Unit, Gemelli Molise Hospital, Università Cattolica del Sacro Cuore, Largo Gemelli 1, 86100, Campobasso, Italy.
| | - Carmela Romano
- Medical Physics Unit, Gemelli Molise Hospital, Università Cattolica del Sacro Cuore, Largo Gemelli 1, 86100, Campobasso, Italy
| | - Gabriella Macchia
- Radiation Oncology Unit, Gemelli Molise Hospital, Università Cattolica del Sacro Cuore, Campobasso, Italy
| | - Mariangela Boccardi
- Radiation Oncology Unit, Gemelli Molise Hospital, Università Cattolica del Sacro Cuore, Campobasso, Italy
| | - Livia P De Vivo
- Radiation Oncology Unit, Gemelli Molise Hospital, Università Cattolica del Sacro Cuore, Campobasso, Italy
| | - Vittoria E Morabito
- Medical Physics Unit, Gemelli Molise Hospital, Università Cattolica del Sacro Cuore, Largo Gemelli 1, 86100, Campobasso, Italy
| | - Milly Buwenge
- Radiation Oncology Department, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| | - Lidia Strigari
- Medical Physics Unit, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| | - Luca Indovina
- Radiation Oncology Department, Fondazione Policlinico Universitario A. Gemelli, Università Cattolica del Sacro Cuore, Roma, Italy
| | - Vincenzo Valentini
- Radiation Oncology Department, Fondazione Policlinico Universitario A. Gemelli, Università Cattolica del Sacro Cuore, Roma, Italy.,Istituto di Radiologia, Università Cattolica del Sacro Cuore, Roma, Italy
| | - Francesco Deodato
- Radiation Oncology Unit, Gemelli Molise Hospital, Università Cattolica del Sacro Cuore, Campobasso, Italy.,Istituto di Radiologia, Università Cattolica del Sacro Cuore, Roma, Italy
| | - Alessio G Morganti
- Radiation Oncology Department, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy.,DIMES, Alma Mater Studiorum, Bologna University, Bologna, Italy
| |
Collapse
|
5
|
Dosimetric evaluation of 3 and/or 4 field radiation therapy of breast cancers: clinical experience. JOURNAL OF RADIOTHERAPY IN PRACTICE 2020. [DOI: 10.1017/s1460396920000503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
AbstractBackground:Breast cancer is the most commonly diagnosed cancer among women and the second leading cause of cancer-related death in Canadian women. Surgery is often the first line of treatment for low-risk early stage patients, followed by adjuvant radiation therapy to reduce the risk of local recurrence and prevent metastasis after lumpectomy or mastectomy. For high-risk patients with node positive disease or are at greater risk of nodal metastasis, radiation therapy will involve treatment of the intact breast or chest-wall as well as the regional lymph nodes.Materials and methods:We retrospectively evaluated the treatment plans of 354 patients with breast cancer with nodes positive or were at high risk of nodal involvement treated at our cancer centre. All patients were treated with a prescription dose of 50 Gy in 25 fractions to the intact breast or chest-wall and 50 Gy in 25 fractions to the supraclavicular region and, based on patient suitability and tolerance, were treated either using the deep inspiration breath hold (DIBH) or free-breathing (FB) techniques.Results:Based on patient suitability and tolerance, 130 (36·7%) patients were treated with DIBH and 224 (63·3%) with FB techniques. There were 169 (47·7%) patients treated with intact breast, whereas 185 (52·3%) were treated for post-mastectomy chest-wall. The mean PTV_eval V92%, V95%, V100% and V105% for all patients are 99·4 ± 0·7, 97·6 ± 1·6, 74·8 ± 7·9 and 1·5 ± 3·2%, respectively. The mean ipsilateral lung V10Gy, V20Gy and V30Gy are 30·0 ± 5·3, 22·4 ± 4·7 and 18·4 ± 4·3% for intact breast and 30·9 ± 5·8, 23·5 ± 5·4 and 19·4 ± 5·0% for post-mastectomy patients with FB, respectively. The corresponding values for patients treated using DIBH are 26·3 ± 5·9, 18·9 ± 5·0 and 15·6 ± 4·7% for intact breast and 27·5 ± 6·5, 20·6 ± 5·7 and 17·1 ± 5·2% for post-mastectomy patients, respectively. The mean heart V10Gy, V20Gy, is 1·8 ± 1·7, 0·9 ± 1·0 for intact breast and 3·1 ± 2·2, 1·7 ± 1·6 for post-mastectomy patients with FB, respectively. The corresponding values with the DIBH are 0·5 ± 0·7, 0·1 ± 0·4 for intact breast and 1·1 ± 1·4, 0·4 ± 0·7 for post-mastectomy patients, respectively.Conclusion:The use of 3 and/or 4 field hybrid intensity-modulated radiation therapy technique for radiation therapy of high-risk node positive breast cancer patients provides an efficient and reliable method for achieving superior dose uniformity, conformity and homogeneity in the breast or post-mastectomy chest-wall volume with minimal doses to the organs at risk. The development and implementation of a consistent treatment plan acceptability criteria in radiotherapy programmes would establish an evaluation process to define a consistent, standardised and transparent treatment path for all patients that would reduce significant variations in the acceptability of treatment plans.
Collapse
|
6
|
Hybrid planning techniques for hypofractionated whole-breast irradiation using flattening filter-free beams. Strahlenther Onkol 2019; 196:376-385. [PMID: 31863154 DOI: 10.1007/s00066-019-01555-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Accepted: 11/21/2019] [Indexed: 12/25/2022]
Abstract
OBJECTIVE The aim of this study was to assess the feasibility of flattening filter-free (FFF) photon beams in hybrid intensity-modulated radiation therapy (H-IMRT) and hybrid volumetric modulated arc therapy (H-VMAT) for left-sided whole-breast radiation therapy with a boost volume (RT) using a hypofractionated dose regimen. PATIENTS AND METHODS RT plans of 25 patients with left-sided early-stage breast cancer were created with H‑IMRT and H‑VMAT techniques under breath-hold conditions using 6‑MV FFF beams. In hybrid techniques, three-dimensional conformal radiotherapy (3DCRT) plans were kept as base-dose plans for the VMAT and IMRT plans. In addition, H‑IMRT in step-and-shoot mode was also calculated to assess its achievability with FFF beams. RESULTS All hybrid plans achieved the expected target coverage. H‑VMAT showed better coverage and homogeneity index results for the boost target (p < 0.002), while H‑IMRT presented better results for the whole-breast target (p < 0.001). Mean doses to normal tissues were comparable between both plans, while H‑IMRT reduced the low-dose levels to heart and ipsilateral lung (p < 0.05). H‑VMAT revealed significantly better results with regard to monitor units (MU) and treatment time (p < 0.001). CONCLUSION The 6‑MV FFF beam technique is feasible for large-field 3DCRT-based hybrid planning in whole-breast and boost planning target volume irradiation. For breath-hold patients, the H‑VMAT plan is superior to H‑IMRT for hypofractionated dose regimens, with reduced MU and treatment delivery time.
Collapse
|
7
|
Cozzi L, Lohr F, Fogliata A, Franceschini D, De Rose F, Filippi AR, Guidi G, Vanoni V, Scorsetti M. Critical appraisal of the role of volumetric modulated arc therapy in the radiation therapy management of breast cancer. Radiat Oncol 2017; 12:200. [PMID: 29258539 PMCID: PMC5735809 DOI: 10.1186/s13014-017-0935-4] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2017] [Accepted: 12/05/2017] [Indexed: 02/06/2023] Open
Abstract
Background The aim of this review is the critical appraisal of the current use of volumetric modulated arc therapy for the radiation therapy management of breast cancer. Both clinical and treatment planning studies were investigated. Material and methods A Pubmed/MEDLINE search of the National Library of Medicine was performed to identify VMAT and breast related articles. After a first order rejection of the irrelevant findings, the remaining articles were grouped according to two main categories: clinical vs. planning studies and to some sub-categories (pointing to significant technical features). Main areas of application, dosimetric and clinical findings as well as areas of innovations were defined. Results A total of 131 articles were identified and of these, 67 passed a first order selection. Six studies reported clinical results while 61 treatment dealed with treatment planning investigations. Among the innovation lines, the use of high intensity photon beams (flattening filter free), altered fractionation schemes (simultaneous integrated boost, accelerated partial breast irradiation, single fraction), prone positioning and modification of standard VMAT (use of dynamic trajectories or hybrid VMAT methods) resulted among the main relevant fields of interest. Approximately 10% of the publications reported upon respiratory gating in conjunction with VMAT. Conclusions The role of VMAT in the radiation treatment of breast cancer seems to be consolidated in the in-silico arena while still limited evidence and only one phase II trial appeared in literature from the clinical viewpoint. More clinical reports are needed to fully proove the expected dosimetric benefits demonstrated in the planning investigations.
Collapse
Affiliation(s)
- Luca Cozzi
- Radiotherapy and Radiosurgery Department, Humanitas Research Hospital, Via Manzoni 56, 20089, Rozzano-Milan, Italy. .,Department of Biomedical Sciences, Humanitas University, Rozzano, Italy.
| | - Frank Lohr
- Radiation Oncology Department, Ospedaliero-Universitaria, Modena, Italy
| | - Antonella Fogliata
- Radiotherapy and Radiosurgery Department, Humanitas Research Hospital, Via Manzoni 56, 20089, Rozzano-Milan, Italy
| | - Davide Franceschini
- Radiotherapy and Radiosurgery Department, Humanitas Research Hospital, Via Manzoni 56, 20089, Rozzano-Milan, Italy
| | - Fiorenza De Rose
- Radiotherapy and Radiosurgery Department, Humanitas Research Hospital, Via Manzoni 56, 20089, Rozzano-Milan, Italy
| | - A R Filippi
- Department of Radiation Oncology, Osp. S. Luigi Gonzaga University Hospital, Torino, Italy
| | - Gabriele Guidi
- Medical Physics Department, Az. Ospedaliero-Universitaria, Modena, Italy
| | | | - Marta Scorsetti
- Radiotherapy and Radiosurgery Department, Humanitas Research Hospital, Via Manzoni 56, 20089, Rozzano-Milan, Italy.,Department of Biomedical Sciences, Humanitas University, Rozzano, Italy
| |
Collapse
|
8
|
Sakka M, Kunzelmann L, Metzger M, Grabenbauer GG. Cardiac dose-sparing effects of deep-inspiration breath-hold in left breast irradiation. Strahlenther Onkol 2017. [DOI: 10.1007/s00066-017-1167-0] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
9
|
Surface dose measurements in and out of field: Implications for breast radiotherapy with megavoltage photon beams. Z Med Phys 2017; 27:318-323. [PMID: 28595775 DOI: 10.1016/j.zemedi.2017.05.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2016] [Revised: 04/30/2017] [Accepted: 05/15/2017] [Indexed: 11/22/2022]
Abstract
This study examines the difference in surface dose between flat and flattening filter free (FFF) photon beams in the context of breast radiotherapy. The surface dose was measured for 6MV, 6MV FFF, 10MV, 10MV FFF and 18MV photon beams using a thin window ionisation chamber for various field sizes. Profiles were acquired to ascertain the change in surface dose off-axis. Out-of-field measurements were included in a clinically representative half beam block tangential breast field. In the field centres of FFF beams the surface dose was found to be increased for small fields and decreased for large fields compared to flat beams. For FFF beams, surface dose was found to decrease off-axis and resulted in lower surface dose out-of-field compared to flat beams.
Collapse
|
10
|
Rudat V, Nour A, Hammoud M, Abou Ghaida S. Better compliance with hypofractionation vs. conventional fractionation in adjuvant breast cancer radiotherapy : Results of a single, institutional, retrospective study. Strahlenther Onkol 2017; 193:375-384. [PMID: 28233048 PMCID: PMC5405099 DOI: 10.1007/s00066-017-1115-z] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2016] [Accepted: 02/07/2017] [Indexed: 11/25/2022]
Abstract
BACKGROUND The aim of the study was to identify factors significantly associated with the occurrence of unintended treatment interruptions in adjuvant breast cancer radiotherapy. PATIENTS AND METHODS Patients treated with postoperative radiotherapy of the breast or chest wall between March 2014 and August 2016 were evaluated. The radiotherapy regimens and techniques applied were either conventional fractionation (CF; 28 daily fractions of 1.8 Gy or 25 fractions of 2.0 Gy) or hypofractionation (HF; 15 daily fractions of 2.67 Gy) with inverse planned intensity-modulated radiotherapy (IMRT) or three-dimensional planned conformal radiotherapy (3DCRT). Logistic regression analysis was used to identify factors associated with noncompliance. Noncompliance was defined as the missing of at least one scheduled radiotherapy fraction. RESULTS In all, 19 of 140 (13.6%) patients treated with HF and 39 of 146 (26.7%) treated with CF experienced treatment interruptions. Of 23 factors tested, the fractionation regimen emerged as the only independent significant prognostic factor for noncompliance on multivariate analysis (CF; p = 0.007; odds ratio, 2.3; 95% confidence interval, 1.3-4.2). No statistically significant differences concerning the reasons for treatment interruptions could be detected between patients treated with CF or HF. CONCLUSION HF is significantly associated with a better patient compliance with the prescribed radiotherapy schedule compared with CF. The data suggest that this finding is basically related to the shorter overall treatment time of HF.
Collapse
Affiliation(s)
- Volker Rudat
- Department of Radiation Oncology, Saad Specialist Hospital, 31952 Al Khobar, Saudi Arabia
| | - Alaa Nour
- Department of Radiation Oncology, Saad Specialist Hospital, 31952 Al Khobar, Saudi Arabia
| | - Mohamed Hammoud
- Department of Radiation Oncology, Saad Specialist Hospital, 31952 Al Khobar, Saudi Arabia
| | - Salam Abou Ghaida
- Department of Radiation Oncology, Saad Specialist Hospital, 31952 Al Khobar, Saudi Arabia
| |
Collapse
|
11
|
Three-dimensional conformal versus intensity modulated radiotherapy in breast cancer treatment: is necessary a medical reversal? Radiol Med 2016; 122:146-153. [DOI: 10.1007/s11547-016-0700-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2016] [Accepted: 10/10/2016] [Indexed: 10/20/2022]
|