1
|
Bilski M, Mastroleo F, Kuncman Ł, Rogowski P, Durante S, Putzu C, Chyrek A, Marvaso G, Fionda B, Tagliaferii L, Fijuth J, Vavassori A, Tolakanahalli R, Jereczek-Fossa BA, Kotecha R. Interventional Stereotactic Radiotherapy (brachytherapy) for unresected brain metastases: Systematic review of outcome and toxicity. Crit Rev Oncol Hematol 2025:104777. [PMID: 40425133 DOI: 10.1016/j.critrevonc.2025.104777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2025] [Revised: 04/08/2025] [Accepted: 05/21/2025] [Indexed: 05/29/2025] Open
Abstract
BACKGROUND Stereotactic brachytherapy (SBT) is an underutilized treatment for brain metastases. This systematic review evaluates SBT's clinical outcomes, toxicity, and procedural characteristics for intact brain metastases in radiation-naive and radiation-recurrent patients. METHODS A systematic review was conducted following PRISMA guidelines and the PICOS framework. Studies published until June 30, 2024, were identified through searches of PubMed, Scopus, Web of Science, and Cochrane databases. Retrospective studies and prospective trials were included. Key extracted data included patient characteristics, treatment protocols, local control (LC), distant-intracranial control (DIC), overall survival (OS), and procedure-related toxicity. The risk of bias was assessed using the Newcastle-Ottawa Scale. RESULTS Eight retrospective single-center studies involving 427 patients and 456 metastases met inclusion criteria. Median patient age ranged from 47 to 60 years, with most having a Karnofsky Performance Status ≥70. SBT mostly demonstrated high 1-year LC rates (93.3%-100%) and a 1-year DIC from 52% to 90%. Median OS for radiation-naive patients ranged from 8-17 vs. 6-28.4 months for radio-recurrent patients, with RPA class 1 showing the best outcomes. Toxicity was minimal, with no reported fatal complications or significant late toxicity. Across all studies, I-125 seeds were utilized, with temporary implantation predominating, while permanent implantation involved higher doses, up to 150Gy, and extended treatment durations. Postoperative morbidity within 30 days ranged from 0% to 6.6% across different studies. No G3/G4 acute toxicities were reported. CONCLUSIONS SBT is a highly effective and safe option for treating intact brain metastases, particularly in patients with large or radiation-recurrent lesions.
Collapse
Affiliation(s)
- Mateusz Bilski
- Department of Brachytherapy, Saint John's Cancer Center, Lublin, Poland; Department of Radiotherapy, Medical University of Lublin, Lublin, Poland; Department of Radiotherapy, Saint John's Cancer Center, Lublin, Poland.
| | - Federico Mastroleo
- Division of Radiation Oncology, European Institute of Oncology IRCCS, 20141 Milan, Italy; Department of Oncology and Hemato-Oncology, University of Milan, Milan, Italy.
| | - Łukasz Kuncman
- Department of Radiotherapy, Medical University of Lodz, Poland; Department of External Beam Radiotherapy, Copernicus Memorial Hospital in Lodz Comprehensive Cancer Center and Traumatology, Poland.
| | - Paul Rogowski
- Department of Radiation Oncology, University Hospital, LMU Munich, Marchioninistr. 15, 81377, Munich, Germany.
| | - Stefano Durante
- Division of Radiation Oncology, European Institute of Oncology IRCCS, 20141 Milan, Italy; Department of Oncology and Hemato-Oncology, University of Milan, Milan, Italy.
| | - Costantino Putzu
- Division of Radiation Oncology, European Institute of Oncology IRCCS, 20141 Milan, Italy; Department of Oncology and Hemato-Oncology, University of Milan, Milan, Italy.
| | - Artur Chyrek
- Brachytherapy Department, Greater Poland Cancer Centre, Poznań, Poland; Electroradiology Department, Poznan University of Medical Science, Poznań, Poland.
| | - Giulia Marvaso
- Division of Radiation Oncology, European Institute of Oncology IRCCS, 20141 Milan, Italy; Department of Oncology and Hemato-Oncology, University of Milan, Milan, Italy.
| | - Bruno Fionda
- UOC Degenze di Radioterapia Oncologica, Dipartimento di Diagnostica per Immagini e Radioterapia Oncologica, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy.
| | - Luca Tagliaferii
- UOC Degenze di Radioterapia Oncologica, Dipartimento di Diagnostica per Immagini e Radioterapia Oncologica, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy; Università Cattolica del Sacro Cuore, Rome, Italy.
| | - Jacek Fijuth
- Department of Radiotherapy, Medical University of Lodz, Poland; Department of External Beam Radiotherapy, Copernicus Memorial Hospital in Lodz Comprehensive Cancer Center and Traumatology, Poland
| | - Andrea Vavassori
- Division of Radiation Oncology, European Institute of Oncology IRCCS, 20141 Milan, Italy; Department of Oncology and Hemato-Oncology, University of Milan, Milan, Italy.
| | - Ranjini Tolakanahalli
- Department of Radiation Oncology, Miami Cancer Institute, Baptist Health South Florida, Miami, FL.
| | - Barbara Alicja Jereczek-Fossa
- Division of Radiation Oncology, European Institute of Oncology IRCCS, 20141 Milan, Italy; Department of Oncology and Hemato-Oncology, University of Milan, Milan, Italy.
| | - Rupesh Kotecha
- Department of Radiation Oncology, Miami Cancer Institute, Baptist Health South Florida, Miami, FL
| |
Collapse
|
2
|
Kotecha R, La Rosa A, Brown PD, Vogelbaum MA, Navarria P, Bodensohn R, Niyazi M, Karschnia P, Minniti G. Multidisciplinary management strategies for recurrent brain metastasis after prior radiotherapy: An overview. Neuro Oncol 2025; 27:597-615. [PMID: 39495010 PMCID: PMC11889725 DOI: 10.1093/neuonc/noae220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2024] Open
Abstract
As cancer patients with intracranial metastatic disease experience increasingly prolonged survival, the diagnosis and management of recurrent brain metastasis pose significant challenges in clinical practice. Prior to deciding upon a management strategy, it is necessary to ascertain whether patients have recurrent/progressive disease vs adverse radiation effect, classify the recurrence as local or distant in the brain, evaluate the extent of intracranial disease (size, number and location of lesions, and brain metastasis velocity), the status of extracranial disease, and enumerate the interval from the last intracranially directed intervention to disease recurrence. A spectrum of salvage local treatment options includes surgery (resection and laser interstitial thermal therapy [LITT]) with or without adjuvant radiotherapy in the forms of external beam radiotherapy, intraoperative radiotherapy, or brachytherapy. Nonoperative salvage local treatments also range from single fraction and fractionated stereotactic radiosurgery (SRS/FSRS) to whole brain radiation therapy (WBRT). Optimal integration of systemic therapies, preferably with central nervous system (CNS) activity, may also require reinterrogation of brain metastasis tissue to identify actionable molecular alterations specific to intracranial progressive disease. Ultimately, the selection of the appropriate management approach necessitates a sophisticated understanding of patient, tumor, and prior treatment-related factors and is often multimodal; hence, interdisciplinary evaluation for such patients is indispensable.
Collapse
Affiliation(s)
- Rupesh Kotecha
- Department of Radiation Oncology, Miami Cancer Institute, Baptist Health South Florida, Miami, Florida, USA
- Department of Radiation Oncology, Herbert Wertheim College of Medicine, Florida International University, Miami, Florida, USA
- Department of Translational Medicine, Hebert Wertheim College of Medicine, Florida International University, Miami, Florida, USA
| | - Alonso La Rosa
- Department of Radiation Oncology, Miami Cancer Institute, Baptist Health South Florida, Miami, Florida, USA
- Department of Radiation Oncology, Hospital Universitario La Paz, Madrid, Spain
| | - Paul D Brown
- Department of Radiation Oncology, Mayo Clinic, Rochester, Minnesota, USA
| | | | - Pierina Navarria
- Radiotherapy and Radiosurgery Department, Humanitas Clinical and Research Hospital-IRCCS, Rozzano, Milan, Italy
| | - Raphael Bodensohn
- Department of Radiation Oncology, University Hospital Tübingen, Tübingen, Germany
- Center for Neuro-Oncology, Comprehensive Cancer Center Tübingen-Stuttgart, University Hospital Tübingen, Tübingen, Germany
| | - Maximilian Niyazi
- Department of Radiation Oncology, University Hospital Tübingen, Tübingen, Germany
- Center for Neuro-Oncology, Comprehensive Cancer Center Tübingen-Stuttgart, University Hospital Tübingen, Tübingen, Germany
- Department of Radiation Oncology, University Hospital, LMU Munich, Munich, Germany
| | - Philipp Karschnia
- Department of Neurosurgery, Friedrich-Alexander-University, Erlangen-Nuremberg, Germany
- Department of Neurosurgery, Ludwig-Maximilians-University, Munich, Germany
| | - Giuseppe Minniti
- Department of Radiological Sciences, Oncology, and Anatomical Pathology, Sapienza University of Rome, Rome, Italy
- IRCCS Neuromed, Pozzilli (IS), Italy
| |
Collapse
|
3
|
Leskinen S, Ben-Shalom N, Ellis J, Langer D, Boockvar JA, D’Amico RS, Wernicke AG. Brachytherapy in Brain Metastasis Treatment: A Scoping Review of Advances in Techniques and Clinical Outcomes. Cancers (Basel) 2024; 16:2723. [PMID: 39123451 PMCID: PMC11311698 DOI: 10.3390/cancers16152723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 07/29/2024] [Accepted: 07/30/2024] [Indexed: 08/12/2024] Open
Abstract
Brain metastases pose a significant therapeutic challenge in the field of oncology, necessitating treatments that effectively control disease progression while preserving neurological and cognitive functions. Among various interventions, brachytherapy, which involves the direct placement of radioactive sources into or near tumors or into the resected cavity, can play an important role in treatment. Current literature describes brachytherapy's capacity to deliver targeted, high-dose radiation while minimizing damage to adjacent healthy tissues-a crucial consideration in the choice of treatment modality. Furthermore, advancements in implantation techniques as well as in the development of different isotopes have expanded its efficacy and safety profile. This review delineates the contemporary applications of brachytherapy in managing brain metastases, examining its advantages, constraints, and associated clinical outcomes, and provides a comprehensive understanding of advances in the use of brachytherapy for brain metastasis treatment, with implications for improved patient outcomes and enhanced quality of life.
Collapse
Affiliation(s)
- Sandra Leskinen
- Downstate Medical Center, State University of New York, New York, NY 11203, USA;
| | - Netanel Ben-Shalom
- Department of Neurological Surgery, Zucker School of Medicine at Hofstra/Northwell, Lenox Hill Hospital, New York, NY 10075, USA
| | - Jason Ellis
- Department of Neurological Surgery, Zucker School of Medicine at Hofstra/Northwell, Lenox Hill Hospital, New York, NY 10075, USA
| | - David Langer
- Department of Neurological Surgery, Zucker School of Medicine at Hofstra/Northwell, Lenox Hill Hospital, New York, NY 10075, USA
| | - John A. Boockvar
- Department of Neurological Surgery, Zucker School of Medicine at Hofstra/Northwell, Lenox Hill Hospital, New York, NY 10075, USA
| | - Randy S. D’Amico
- Department of Neurological Surgery, Zucker School of Medicine at Hofstra/Northwell, Lenox Hill Hospital, New York, NY 10075, USA
| | - A. Gabriella Wernicke
- Department of Radiation Medicine, Zucker School of Medicine at Hofstra/Northwell, Lenox Hill Hospital, New York, NY 10075, USA
| |
Collapse
|
4
|
Hadi I, Reitz D, Bodensohn R, Roengvoraphoj O, Lietke S, Niyazi M, Tonn JC, Belka C, Thon N, Nachbichler SB. Radiation necrosis after a combination of external beam radiotherapy and iodine-125 brachytherapy in gliomas. Radiat Oncol 2021; 16:40. [PMID: 33622365 PMCID: PMC7903688 DOI: 10.1186/s13014-021-01762-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Accepted: 02/11/2021] [Indexed: 11/29/2022] Open
Abstract
PURPOSE Frequency and risk profile of radiation necrosis (RN) in patients with glioma undergoing either upfront stereotactic brachytherapy (SBT) and additional salvage external beam radiotherapy (EBRT) after tumor recurrence or vice versa remains unknown. METHODS Patients with glioma treated with low-activity temporary iodine-125 SBT at the University of Munich between 1999 and 2016 who had either additional upfront or salvage EBRT were included. Biologically effective doses (BED) were calculated. RN was diagnosed using stereotactic biopsy and/or metabolic imaging. The rate of RN was estimated with the Kaplan Meier method. Risk factors were obtained from logistic regression models. RESULTS Eighty-six patients (49 male, 37 female, median age 47 years) were included. 38 patients suffered from low-grade and 48 from high-grade glioma. Median follow-up was 15 months after second treatment. Fifty-eight patients received upfront EBRT (median total dose: 60 Gy), and 28 upfront SBT (median reference dose: 54 Gy, median dose rate: 10.0 cGy/h). Median time interval between treatments was 19 months. RN was diagnosed in 8/75 patients. The 1- and 2-year risk of RN was 5.1% and 11.7%, respectively. Tumor volume and irradiation time of SBT, number of implanted seeds, and salvage EBRT were risk factors for RN. Neither of the BED values nor the time interval between both treatments gained prognostic influence. CONCLUSION The combination of upfront EBRT and salvage SBT or vice versa is feasible for glioma patients. The risk of RN is mainly determined by the treatment volume but not by the interval between therapies.
Collapse
Affiliation(s)
- Indrawati Hadi
- Department of Radiation Oncology, University Hospital, LMU Munich, Marchioninistr. 15, 81377, Munich, Germany
| | - Daniel Reitz
- Department of Radiation Oncology, University Hospital, LMU Munich, Marchioninistr. 15, 81377, Munich, Germany
| | - Raphael Bodensohn
- Department of Radiation Oncology, University Hospital, LMU Munich, Marchioninistr. 15, 81377, Munich, Germany
| | - Olarn Roengvoraphoj
- Department of Radiation Oncology, University Hospital, LMU Munich, Marchioninistr. 15, 81377, Munich, Germany
| | - Stefanie Lietke
- Department of Neurosurgery, University Hospital, LMU Munich, Munich, Germany
| | - Maximilian Niyazi
- Department of Radiation Oncology, University Hospital, LMU Munich, Marchioninistr. 15, 81377, Munich, Germany
- German Cancer Consortium (DKTK), Munich, Germany
| | - Jörg-Christian Tonn
- Department of Neurosurgery, University Hospital, LMU Munich, Munich, Germany
| | - Claus Belka
- Department of Radiation Oncology, University Hospital, LMU Munich, Marchioninistr. 15, 81377, Munich, Germany
- German Cancer Consortium (DKTK), Munich, Germany
| | - Niklas Thon
- Department of Neurosurgery, University Hospital, LMU Munich, Munich, Germany
| | - Silke Birgit Nachbichler
- Department of Radiation Oncology, University Hospital, LMU Munich, Marchioninistr. 15, 81377, Munich, Germany.
| |
Collapse
|
5
|
Zuo F, Hu K, Kong J, Zhang Y, Wan J. Surgical Management of Brain Metastases in the Perirolandic Region. Front Oncol 2020; 10:572644. [PMID: 33194673 PMCID: PMC7649351 DOI: 10.3389/fonc.2020.572644] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Accepted: 10/06/2020] [Indexed: 01/22/2023] Open
Abstract
Brain metastases (BM) are the most frequent intracranial tumors, which may result in significant morbidity and mortality when the lesions involve the perirolandic region. Surgical intervention for BM in the perirolandic region is still under discussion even though prompt relief of mass effect and avoidance of necrosis together with brain edema may not be achieved by radiotherapy. More recently, several researchers attempt to evaluate the benefit of surgery for BM within this pivotal sensorimotor area. Nevertheless, data are sparse and optimal treatment paradigm is not yet widely described. Since the advance in intraoperative neuroimaging and neurophysiology, resection of BM in the perirolandic region has been proven to be safe and efficacious, sparing this eloquent area while retaining reasonably low morbidity rates. Although management of BM becomes much more tailored and multimodal, surgery remains the cornerstone and principles of resection as well as indications for surgery should be well defined. This is the first review concerning the characteristics of BM involving the perirolandic region and the current impact of surgical therapy for the lesions. Future perspectives of advanced neurosurgical techniques are also presented.
Collapse
Affiliation(s)
- Fuxing Zuo
- Department of Neurosurgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Ke Hu
- Department of Neurosurgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jianxin Kong
- Department of Neurosurgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Ye Zhang
- Department of Radiation Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jinghai Wan
- Department of Neurosurgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|
6
|
The role of brachytherapy in the management of brain metastases: a systematic review. J Contemp Brachytherapy 2020; 12:67-83. [PMID: 32190073 PMCID: PMC7073344 DOI: 10.5114/jcb.2020.93543] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Accepted: 02/17/2020] [Indexed: 11/17/2022] Open
Abstract
Purpose Brain metastases have a highly variable prognosis depending on the primary tumor and associated prognostic factors. Standard of care for patients with these tumors includes craniotomy, stereotactic radiosurgery (SRS), or whole brain radiotherapy (WBRT) for patients with brain metastases. Brachytherapy shows great promise as a therapy for brain metastases, but its role has not been sufficiently explored in the current literature. Material and methods The PubMed, Cochrane, and Scopus databases were searched using a combination of search terms and synonyms for brachytherapy, brain neoplasms, and brain metastases, for articles published between January 1st, 1990 and January 1st, 2018. Of the 596 articles initially identified, 37 met the inclusion criteria, of which 14 were review articles, while the remaining 23 papers with detailing individual studies were fully analyzed. Results Most data focused on 125I and suggested that it offers rates of local control and overall survival comparable to standard of care modalities such as SRS. However, radiation necrosis and regional recurrence were often high with this isotope. Studies using photon radiosurgery modality of brachytherapy have also been completed, resulting superior regional control as compared to SRS, but worse local control and higher rates of radiation necrosis than 125I. More recently, studies using the 131Cs for brachytherapy offered similar local control and survival benefits to 125I, with low rates of radiation necrosis. Conclusions For a variety of reasons including absence of physician expertise in brachytherapy, lack of published data on treatment outcomes, and rates of radiation necrosis, brachytherapy is not presently a part of standard paradigm for brain metastases. However, our review indicates brachytherapy as a modality that offers excellent local control and quality of life, and suggested that its use should be further studied.
Collapse
|
7
|
Hoffmann C, Distel L, Knippen S, Gryc T, Schmidt MA, Fietkau R, Putz F. Brain volume reduction after whole-brain radiotherapy: quantification and prognostic relevance. Neuro Oncol 2019; 20:268-278. [PMID: 29016812 DOI: 10.1093/neuonc/nox150] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Background Recent studies have questioned the value of adding whole-brain radiotherapy (WBRT) to stereotactic radiosurgery (SRS) for brain metastasis treatment. Neurotoxicity, including radiation-induced brain volume reduction, could be one reason why not all patients benefit from the addition of WBRT. In this study, we quantified brain volume reduction after WBRT and assessed its prognostic significance. Methods Brain volumes of 91 patients with cerebral metastases were measured during a 150-day period after commencing WBRT and were compared with their pretreatment volumes. The average daily relative change in brain volume of each patient, referred to as the "brain volume reduction rate," was calculated. Univariate and multivariate Cox regression analyses were performed to assess the prognostic significance of the brain volume reduction rate, as well as of 3 treatment-related and 9 pretreatment factors. A one-way analysis of variance was used to compare the brain volume reduction rate across recursive partitioning analysis (RPA) classes. Results On multivariate Cox regression analysis, the brain volume reduction rate was a significant predictor of overall survival after WBRT (P < 0.001), as well as the number of brain metastases (P = 0.002) and age (P = 0.008). Patients with a relatively favorable prognosis (RPA classes 1 and 2) experienced significantly less brain volume decrease after WBRT than patients with a poor prognosis (RPA class 3) (P = 0.001). There was no significant correlation between delivered radiation dose and brain volume reduction rate (P = 0.147). Conclusion In this retrospective study, a smaller decrease in brain volume after WBRT was an independent predictor of longer overall survival.
Collapse
Affiliation(s)
- Christian Hoffmann
- Department of Radiation Oncology, Friedrich-Alexander-University, Erlangen-Nürnberg, Germany
| | - Luitpold Distel
- Department of Radiation Oncology, Friedrich-Alexander-University, Erlangen-Nürnberg, Germany
| | - Stefan Knippen
- Department of Radiation Oncology, Friedrich-Alexander-University, Erlangen-Nürnberg, Germany
| | - Thomas Gryc
- Department of Radiation Oncology, Friedrich-Alexander-University, Erlangen-Nürnberg, Germany
| | | | - Rainer Fietkau
- Department of Radiation Oncology, Friedrich-Alexander-University, Erlangen-Nürnberg, Germany
| | - Florian Putz
- Department of Radiation Oncology, Friedrich-Alexander-University, Erlangen-Nürnberg, Germany
| |
Collapse
|
8
|
Romagna A, Alexander R, Schwartz C, Ladisich B, Hitzl W, Heidorn SC, Winkler PA, Muacevic A. CyberKnife Radiosurgery in Recurrent Brain Metastases: Do the Benefits Outweigh the Risks? Cureus 2018; 10:e3741. [PMID: 30800551 PMCID: PMC6384047 DOI: 10.7759/cureus.3741] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Introduction Local treatment concepts are in high demand in the salvage treatment of recurrent brain metastases. Still, their risks and benefits are scarcely characterized. In this study, we analyzed the outcome and risk-/benefit-ratio of salvage CyberKnife (Accuray Incorporated, Sunnyvale, California, US) radiosurgery in the treatment of recurrent brain metastases after whole brain radiotherapy (WBRT). Materials and methods Seventy-six patients with 166 recurrent brain metastases and a multimodal pretreatment were retrospectively investigated. All patients underwent salvage CyberKnife radiosurgery (single fraction, reference dose: 17-22 Gy). Study endpoints were post-recurrence survival (PRS) after salvage treatment as well as local and distant tumor control rates. Central nervous system (CNS) toxicity was assessed according to the toxicity criteria of the Radiation Therapy Oncology Group and the European Organization for Research and Treatment of Cancer (RTOG/EORTC)). Results The population was homogenous regarding its demographic parameters. All patients had a history of WBRT prior to salvage CyberKnife radiosurgery. PRS was 13.3 months (10.4 - 16.2 months), one-year local and distant tumor control rates were 87% (95% CI: 75-99) and 38% (95% CI: 23-52), respectively. Eighteen patients suffered from RTOG/EORTC grade I/II toxicity. No toxicity-related risk factors were identified. Discussion This study found indicative survival and tumor control rates as well as a favorable risk/benefit ratio regarding radiotoxicity in salvage CyberKnife radiosurgery. These results point to a proactive therapeutic strategy based on appropriate patient selection instead of therapeutic nihilism.
Collapse
Affiliation(s)
| | - Romagna Alexander
- Neurosurgery, Christian-Doppler-Medical Center, Paracelsus Private Medical University, Salzburg, AUT
| | - Christoph Schwartz
- Neurosurgery, Christian-Doppler-Medical Center, Paracelsus Private Medical University, Salzburg, AUT
| | - Barbara Ladisich
- Neurosurgery, Christian-Doppler-Medical Center, Paracelsus Private Medical University, Salzburg, AUT
| | - Wolfgang Hitzl
- Biostatistics, Christian-Doppler-Medical Center, Paracelsus Private Medical University, Salzburg, AUT
| | | | - Peter A Winkler
- Neurosurgery, Christian-Doppler-Medical Center, Paracelsus Private Medical University, Salzburg, AUT
| | | |
Collapse
|
9
|
Xia Y, Mashouf LA, Baker BR, Maxwell R, Bettegowda C, Redmond KJ, Kleinberg LR, Lim M. Outcomes of Metastatic Brain Lesions Treated with Radioactive Cs-131 Seeds after Surgery: Experience from One Institution. Cureus 2018; 10:e3075. [PMID: 30280070 PMCID: PMC6166914 DOI: 10.7759/cureus.3075] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Introduction Brain metastases are common in patients with advanced systemic cancer and often recur despite treatment with surgical resection and radiotherapy. Whole brain radiation therapy (WBRT) and stereotactic radiosurgery (SRS) have significantly improved local control rates but are limited by complications including neurocognitive deficits and radiation necrosis. These risks can be higher in the re-irradiation setting. Brachytherapy may be an alternative method of additional targeted adjuvant radiotherapy with acceptable rates of toxicity. Methods A retrospective chart review of all patients undergoing resection for metastatic brain lesions and permanent low-dose rate Cs-131 brachytherapy was performed for one institution over a 10-year period. All patients had previous radiation therapy already and, after surgery, were followed with imaging every three months. Patient demographics, disease characteristics, intracranial disease, peri- and post-operative complications, and outcomes were recorded. The primary outcome of interest was local tumor recurrence at the site of brachytherapy while secondary outcomes included distant disease progression (within the brain) and complications such as radiation necrosis. Results During the study period, nine cases of individual patients met inclusion criteria. The median preoperative lesion diameter was 3 cm (0.8–4.1). The median overall survival after surgery and brachytherapy was 10.3 months, after excluding two patients who were lost to follow-up. Six of nine patients had no local recurrence, while three patients had development or progression of distant lesions. No patients experienced acute or delayed complications. Conclusion Cs-131 brachytherapy is a promising alternative method for controlling brain metastases after previous radiation interventions and surgical resection. In this case series, there were no incidences of local tumor recurrence or complications such as radiation necrosis.
Collapse
Affiliation(s)
- Yuanxuan Xia
- Neurosurgery, The Johns Hopkins University School of Medicine, Baltimore, USA
| | - Leila A Mashouf
- Neurosurgery, The Johns Hopkins University School of Medicine, Baltimore, USA
| | - Brock R Baker
- Radiation Oncology, The Johns Hopkins University School of Medicine, Baltimore, USA
| | - Russell Maxwell
- Radiation Oncology, The Johns Hopkins University School of Medicine, Baltimore, USA
| | - Chetan Bettegowda
- Neurosurgery, Department of Neurosurgery/The Johns Hopkins University School of Medicine, Baltimore Maryland, Baltimore, USA
| | - Kristin J Redmond
- Radiation Oncology and Molecular Radiation Sciences, The Johns Hopkins University School of Medicine, Baltimore, USA
| | - Lawrence R Kleinberg
- Radiation Oncology, The Johns Hopkins University School of Medicine, Baltimore, USA
| | - Michael Lim
- Neurosurgery, The Johns Hopkins University School of Medicine, Baltimore, USA
| |
Collapse
|
10
|
Thon N, Kreth FW, Tonn JC. The role of surgery for brain metastases from solid tumors. HANDBOOK OF CLINICAL NEUROLOGY 2018; 149:113-121. [PMID: 29307348 DOI: 10.1016/b978-0-12-811161-1.00008-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
Surgery, stereotactic radiosurgery, radiotherapy, and chemotherapy including novel targeted therapy strategies and any combination thereof as well as supportive care are the key elements for treatment of brain metastases. Goals of microsurgery are to obtain tissue samples for histologic diagnosis (particularly in case of uncertainty about the unknown primary tumor but also in the context of future targeted therapies), to relieve burden from space-occupying effects, to improve local tumor control, and to prolong overall survival. Complete surgical resection improves local tumor control and may even affect overall survival. Stereotactic radiosurgery is an equal effective alternative for metastases up to 3 cm in diameter, especially in highly eloquent or deep seated location. Gross total resection (as defined by immediate postoperative MRI) does not necessarily have to be combined with whole brain radiotherapy (WBRT), at least for patients with good performance status and controlled systemic disease. Particularly in cases of incomplete resections, focal irradiation or radiosurgery of the resection cavity or tumor remnant rather than WBRT may be attempted.
Collapse
Affiliation(s)
- Niklas Thon
- Department of Neurosurgery, University of Munich LMU, Munich, Germany
| | | | | |
Collapse
|