1
|
Secerov-Ermenc A, Peterlin P, Anderluh F, But-Hadzic J, Jeromen-Peressutti A, Velenik V, Segedin B. Inter-observer variation in gross tumour volume delineation of oesophageal cancer on MR, CT and PET/CT. Radiol Oncol 2024; 58:580-587. [PMID: 39362222 PMCID: PMC11604261 DOI: 10.2478/raon-2024-0043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Accepted: 07/25/2024] [Indexed: 10/05/2024] Open
Abstract
BACKGROUND The aim of our study was to assess the inter-observer variability in delineation of the gross tumour volume (GTV) of oesophageal cancer on magnetic resonance (MR) in comparison to computed tomography (CT) and positron emission tomography and CT (PET/CT). PATIENTS AND METHODS Twenty-three consecutive patients with oesophageal cancer treated with chemo-radiotherapy were enrolled. All patients had PET/CT and MR imaging in treatment position. Five observers independently delineated the GTV on CT alone, MR alone, CT with co-registered MR, PET/CT alone and MR with co-registered PET/CT. Volumes of GTV were measured per patient and imaging modality. Inter-observer agreement, expressed in generalized conformity index (CIgen), volumetric conformity index (VCI), planar conformity index (PCI) and inter-delineation distance (IDD) were calculated per patient and imaging modality. Linear mixed models were used for statistical analysis. RESULTS GTV volume was significantly lower on MR (33.03 cm3) compared to CT (37.1 cm3; p = 0.002) and on PET/CT MR (35.2 cm3; p = 0.018) compared to PET/CT (39.1 cm3). The CIgen was lowest on CT (0.56) and highest on PET/CT MR (0.67). The difference in CIgen between MR (0.61) and CT was borderline significant (p = 0.048). The VCI was significantly higher on MR (0.71; p = 0.007) and on CT MR (0.71; p = 0.004) compared to CT (0.67). The PCI was significantly higher on CT MR (0.67; p = 0.031) compared to CT (0.64). The largest differences were observed in the cranio-caudal direction. CONCLUSIONS The highest inter-observer agreement was found for PET/CT MR and the lowest for CT. MR could reduce the difference in delineation between observers and provide additional information about the local extent of the tumour.
Collapse
Affiliation(s)
- Ajra Secerov-Ermenc
- Department of Radiation Oncology, Institute of Oncology Ljubljana, Ljubljana, Slovenia
- Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Primoz Peterlin
- Department of Radiation Oncology, Institute of Oncology Ljubljana, Ljubljana, Slovenia
| | - Franc Anderluh
- Department of Radiation Oncology, Institute of Oncology Ljubljana, Ljubljana, Slovenia
| | - Jasna But-Hadzic
- Department of Radiation Oncology, Institute of Oncology Ljubljana, Ljubljana, Slovenia
- Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | | | - Vaneja Velenik
- Department of Radiation Oncology, Institute of Oncology Ljubljana, Ljubljana, Slovenia
- Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Barbara Segedin
- Department of Radiation Oncology, Institute of Oncology Ljubljana, Ljubljana, Slovenia
- Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| |
Collapse
|
2
|
Zheng J, Zheng Z, Zhang T, Chen X, Pang Q, Wang P, Yan C, Zhang W. Optimization of radiation target volume for locally advanced esophageal cancer in the immunotherapy era. Expert Opin Biol Ther 2024; 24:1221-1232. [PMID: 39460561 DOI: 10.1080/14712598.2024.2423009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2024] [Revised: 10/19/2024] [Accepted: 10/25/2024] [Indexed: 10/28/2024]
Abstract
INTRODUCTION Locally advanced esophageal cancer (EC) has poor prognosis. Preliminary clinical studies have demonstrated the synergistic efficacy of radiotherapy combined with immunotherapy in EC. Adjusting the radiotherapy target volume to protect immune function favors immunotherapy. However, there is no clear consensus on the exact definition of the EC target volume. AREAS COVERED Preclinical studies have provided a wealth of information on immunotherapy combined with different radiotherapy modalities, and several clinical studies have evaluated the impact of immunotherapy combined with radiotherapy on locally advanced EC. Here, we illustrate the rational target volume delineation for radiotherapy in terms of patient prognosis, pattern of radiotherapy failure, treatment-related toxicities, tumor-draining lymph nodes, and systemic immunity and summarize the clinical trials of radiotherapy combined with immunotherapy in EC. EXPERT OPINION We recommend applying involved-field irradiation (IFI) instead of elective nodal irradiation (ENI) for irradiated fields when immunotherapy is combined with chemoradiotherapy (CRT) for locally advanced EC. We expect that this target design will be evaluated in clinical trials to further explore more precise diagnostic modalities, long-term toxic responses, and quality of survival, and stratification factors for personalized treatment, and to provide more treatment benefits for patients.
Collapse
Affiliation(s)
- Jian Zheng
- Department of Radiation Oncology, Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin, China
| | - Zhunhao Zheng
- Department of Radiation Oncology, Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin, China
| | - Tian Zhang
- Department of Radiation Oncology, Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin, China
| | - Xi Chen
- Department of Radiation Oncology, Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin, China
| | - Qingsong Pang
- Department of Radiation Oncology, Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin, China
| | - Ping Wang
- Department of Radiation Oncology, Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin, China
| | - Cihui Yan
- Department of Immunology, Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Immunology and Biotherapy, Tianjin's Clinical Research Center for Cancer, Tianjin, China
| | - Wencheng Zhang
- Department of Radiation Oncology, Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin, China
| |
Collapse
|
3
|
Cai ZM, Li ZZ, Zhong NN, Cao LM, Xiao Y, Li JQ, Huo FY, Liu B, Xu C, Zhao Y, Rao L, Bu LL. Revolutionizing lymph node metastasis imaging: the role of drug delivery systems and future perspectives. J Nanobiotechnology 2024; 22:135. [PMID: 38553735 PMCID: PMC10979629 DOI: 10.1186/s12951-024-02408-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Accepted: 03/18/2024] [Indexed: 04/02/2024] Open
Abstract
The deployment of imaging examinations has evolved into a robust approach for the diagnosis of lymph node metastasis (LNM). The advancement of technology, coupled with the introduction of innovative imaging drugs, has led to the incorporation of an increasingly diverse array of imaging techniques into clinical practice. Nonetheless, conventional methods of administering imaging agents persist in presenting certain drawbacks and side effects. The employment of controlled drug delivery systems (DDSs) as a conduit for transporting imaging agents offers a promising solution to ameliorate these limitations intrinsic to metastatic lymph node (LN) imaging, thereby augmenting diagnostic precision. Within the scope of this review, we elucidate the historical context of LN imaging and encapsulate the frequently employed DDSs in conjunction with a variety of imaging techniques, specifically for metastatic LN imaging. Moreover, we engage in a discourse on the conceptualization and practical application of fusing diagnosis and treatment by employing DDSs. Finally, we venture into prospective applications of DDSs in the realm of LNM imaging and share our perspective on the potential trajectory of DDS development.
Collapse
Affiliation(s)
- Ze-Min Cai
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, 430072, China
| | - Zi-Zhan Li
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, 430072, China
| | - Nian-Nian Zhong
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, 430072, China
| | - Lei-Ming Cao
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, 430072, China
| | - Yao Xiao
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, 430072, China
| | - Jia-Qi Li
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, 430072, China
| | - Fang-Yi Huo
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, 430072, China
| | - Bing Liu
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, 430072, China
- Department of Oral & Maxillofacial Head Neck Oncology, School & Hospital of Stomatology, Wuhan University, Wuhan, 430079, Hubei, China
| | - Chun Xu
- School of Dentistry, The University of Queensland, Brisbane, QLD, 4066, Australia
| | - Yi Zhao
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, 430072, China
- Department of Prosthodontics, School and Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Lang Rao
- Institute of Biomedical Health Technology and Engineering, Shenzhen Bay Laboratory, Shenzhen, 518132, China.
| | - Lin-Lin Bu
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, 430072, China.
- Department of Oral & Maxillofacial Head Neck Oncology, School & Hospital of Stomatology, Wuhan University, Wuhan, 430079, Hubei, China.
| |
Collapse
|
4
|
Abstract
Computed tomography (CT), MR imaging, and PET with fluorodeoxyglucose F18/CT are commonly used for radiation therapy planning; however, issues including precise nodal staging on CT or false positive results on PET/CT limit their usability. Clinical trials using fibroblast activation protein ligands for additional imaging have provided promising results regarding staging and target volume delineation-particularly suitable for sarcoma, some gastrointestinal tumors, head and neck tumors, and lung and pancreatic cancer. Although further prospective trials are necessary to identify clinical settings for its application in radiation oncology, fibroblast activation protein inhibitor PET/CT indisputably represents an excellent opportunity for assisting radiotherapy planning.
Collapse
Affiliation(s)
- Stefan A Koerber
- Department of Radiation Oncology, Heidelberg University Hospital, Heidelberg, Germany; Clinical Cooperation Unit Radiation Oncology, German Cancer Research Center, Heidelberg, Germany; Department of Radiation Oncology, Barmherzige Brueder Hospital Regensburgh, Regensburg, Germany.
| |
Collapse
|
5
|
Secerov Ermenc A, Segedin B. The Role of MRI and PET/CT in Radiotherapy Target Volume Determination in Gastrointestinal Cancers-Review of the Literature. Cancers (Basel) 2023; 15:cancers15112967. [PMID: 37296929 DOI: 10.3390/cancers15112967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 05/22/2023] [Accepted: 05/25/2023] [Indexed: 06/12/2023] Open
Abstract
Positron emission tomography with computed tomography (PET/CT) and magnetic resonance imaging (MRI) could improve accuracy in target volume determination for gastrointestinal cancers. A systematic search of the PubMed database was performed, focusing on studies published within the last 20 years. Articles were considered eligible for the review if they included patients with anal canal, esophageal, rectal or pancreatic cancer, as well as PET/CT or MRI for radiotherapy treatment planning, and if they reported interobserver variability or changes in treatment planning volume due to different imaging modalities or correlation between the imaging modality and histopathologic specimen. The search of the literature retrieved 1396 articles. We retrieved six articles from an additional search of the reference lists of related articles. Forty-one studies were included in the final review. PET/CT seems indispensable for target volume determination of pathological lymph nodes in esophageal and anal canal cancer. MRI seems appropriate for the delineation of primary tumors in the pelvis as rectal and anal canal cancer. Delineation of the target volumes for radiotherapy of pancreatic cancer remains challenging, and additional studies are needed.
Collapse
Affiliation(s)
- Ajra Secerov Ermenc
- Department of Radiation Oncology, Institute of Oncology Ljubljana, 1000 Ljubljana, Slovenia
- Faculty of Medicine, University of Ljubljana, 1000 Ljubljana, Slovenia
| | - Barbara Segedin
- Department of Radiation Oncology, Institute of Oncology Ljubljana, 1000 Ljubljana, Slovenia
- Faculty of Medicine, University of Ljubljana, 1000 Ljubljana, Slovenia
| |
Collapse
|
6
|
Schweizer C, Fietkau R, Putz F. [Profound survival benefit with concurrent chemotherapy: insights from a Chinese phase III trial in older patients with esophageal cancer]. Strahlenther Onkol 2022; 198:500-502. [PMID: 35286400 PMCID: PMC9038893 DOI: 10.1007/s00066-022-01921-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/23/2022] [Indexed: 11/25/2022]
Affiliation(s)
- Claudia Schweizer
- Strahlenklinik, Friedrich-Alexander-Universität Erlangen-Nürnberg, Universitätsstr. 27, 91054, Erlangen, Deutschland
| | - Rainer Fietkau
- Strahlenklinik, Friedrich-Alexander-Universität Erlangen-Nürnberg, Universitätsstr. 27, 91054, Erlangen, Deutschland
| | - Florian Putz
- Strahlenklinik, Friedrich-Alexander-Universität Erlangen-Nürnberg, Universitätsstr. 27, 91054, Erlangen, Deutschland.
| |
Collapse
|
7
|
Franzese C, Badalamenti M, Comito T, Franceschini D, Clerici E, Navarria P, Loi M, D'agostino G, Baldaccini D, Chiola I, Reggiori G, Mancosu P, Tomatis S, Scorsetti M. Assessing the role of Stereotactic Body Radiation Therapy in a large cohort of patients with lymph node oligometastases: Does it affect systemic treatment’s intensification? Radiother Oncol 2020; 150:184-190. [DOI: 10.1016/j.radonc.2020.06.029] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Revised: 06/12/2020] [Accepted: 06/18/2020] [Indexed: 02/07/2023]
|