1
|
Lee PL, Chen X, ElDib A, Galloway TJ, Hallman MA, Ma CC, Meyer JE, Shulman RM. CT-Guided Adaptive Radiotherapy for the Treatment of Technically Challenging Oligometastatic Disease: A Case Report. Cureus 2024; 16:e70765. [PMID: 39493113 PMCID: PMC11531304 DOI: 10.7759/cureus.70765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Accepted: 10/02/2024] [Indexed: 11/05/2024] Open
Abstract
There is a growing interest in the application of stereotactic body radiotherapy (SBRT) for the treatment of oligometastatic cancers. This increasing appeal of SBRT has highlighted the need for more sophisticated radiotherapy techniques that allow high doses of radiation to be delivered to multiple sites while limiting the exposure of neighboring healthy tissue. A major obstacle to achieving this aim has been the occurrence of interfraction target variability: the tendency of both the tumor and the surrounding tissue to undergo day-to-day non-synchronous shifts in position. Such changes in the conformation of the tumor field often compromise the effectiveness of conventional SBRT prescribed for a fixed target. We report a case of oligometastatic pelvic disease where the challenge of an unusually mobile tumor was overcome with the use of a novel technique employing cone beam CT (CBCT)-based online adaptive radiotherapy (OART). The Phase I "Adaptive Radiation for Abdominopelvic Metastases (ARAM)" clinical trial was designed to determine if OART can achieve dosing targets superior to those attained using conventional radiotherapy techniques. In this case, CT adaptive planning enabled the treatment of a pelvic target prescribed per protocol to 45Gy that would otherwise have not been amenable to treatment with conventional SBRT planning. Adaptive plans showed significant improvements in target coverage while respecting critical organ constraints, resulting in a total treatment V35Gy of 89.3% and V45Gy of 52.8%, whereas the scheduled plan would have achieved V35Gy of 67.4% and V45Gy of 13.6%. Treatment times were variable (38.1-96.7 mins), and correlated with the magnitude of daily translation which ranged from 4 to 7 cm of total linear translation. The patient tolerated treatment without any adverse events. These results demonstrate a novel application of CBCT-guided OART that allowed for the administration of ablative treatment to an unexpectedly mobile target unamenable to conventional SBRT. CBCT-guided OART currently requires increased treatment time, a need which might be reduced by optimization of daily contouring. The phase 1 clinical trial NCT05880667 is ongoing and may provide further evidence that CBCT-guided OART can meet the technical challenges posed by radiotherapy for oligometastatic abdominal and pelvic disease.
Collapse
Affiliation(s)
- Peter L Lee
- Department of Radiation Oncology, Fox Chase Cancer Center, Philadelphia, USA
| | - Xiaoming Chen
- Department of Radiation Oncology, Fox Chase Cancer Center, Philadelphia, USA
| | - Ahmed ElDib
- Department of Radiation Oncology, Fox Chase Cancer Center, Philadelphia, USA
| | - Thomas J Galloway
- Department of Radiation Oncology, Fox Chase Cancer Center, Philadelphia, USA
| | - Mark A Hallman
- Department of Radiation Oncology, Fox Chase Cancer Center, Philadelphia, USA
| | - Cm Charlie Ma
- Department of Radiation Oncology, Fox Chase Cancer Center, Philadelphia, USA
| | - Joshua E Meyer
- Department of Radiation Oncology, Fox Chase Cancer Center, Philadelphia, USA
| | - Rebecca M Shulman
- Department of Radiation Oncology, Fox Chase Cancer Center, Philadelphia, USA
| |
Collapse
|
2
|
de Mol van Otterloo S, Westerhoff J, Leer T, Rutgers R, Meijers L, Daamen L, Intven M, Verkooijen H. Patient expectation and experience of MR-guided radiotherapy using a 1.5T MR-Linac. Tech Innov Patient Support Radiat Oncol 2024; 29:100224. [PMID: 38162695 PMCID: PMC10755768 DOI: 10.1016/j.tipsro.2023.100224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 10/19/2023] [Accepted: 11/21/2023] [Indexed: 01/03/2024] Open
Abstract
Background and Purpose Online adaptive MR-guided radiotherapy (MRgRT) is a relatively new form of radiotherapy treatment, delivered using a MR-Linac. It is unknown what patients expect from this treatment and whether these expectations are met. This study evaluates whether patients' pre-treatment expectations of MRgRT are met and reports patients' on-table experience on a 1.5 T MR-Linac. Materials and methods All patients treated on the MR-Linac from November 2020 until April 2021, were eligible for inclusion. Patient expectation and experience were captured through questionnaires before, during, and three months after treatment. The on-table experience questionnaire included patient' physical and psychological coping. Patient-expected side effects, participation in daily and social activity, disease outcome and, disease related symptoms were compared to post-treatment experience. Results We included 113 patients who were primarily male (n = 100, 89 %), with a median age of 69 years (range 52-90). For on-table experience, ninety percent of patients (strongly) agreed to feeling calm during their treatment. Six and eight percent of patients found the treatment position or bed uncomfortable respectively. Twenty-eight percent of patients felt tingling sensations during treatment. After treatment, 79 % of patients' expectations were met. Most patients experienced an (better than) expected level of side effects (75 %), participation in daily- (83 %) and social activity (86 %) and symptoms (78 %). However, 33 % expected more treatment efficacy than experienced. Conclusion Treatment on the 1.5 T MR-Linac is well tolerated and meets patient expectations. Despite the fact that some patients expected greater treatment efficacy and the frequent occurrence of tingling sensations during treatment, most patient experiences were comparable or better than previously expected.
Collapse
Affiliation(s)
- S.R. de Mol van Otterloo
- Department of Radiation Oncology, University Medical Center Utrecht, Heidelberglaan 100, 3508 GA Utrecht, the Netherlands
| | - J.M. Westerhoff
- Department of Radiation Oncology, University Medical Center Utrecht, Heidelberglaan 100, 3508 GA Utrecht, the Netherlands
| | - T. Leer
- Department of Radiation Oncology, University Medical Center Utrecht, Heidelberglaan 100, 3508 GA Utrecht, the Netherlands
| | - R.H.A. Rutgers
- Department of Radiation Oncology, University Medical Center Utrecht, Heidelberglaan 100, 3508 GA Utrecht, the Netherlands
| | - L.T.C. Meijers
- Department of Radiation Oncology, University Medical Center Utrecht, Heidelberglaan 100, 3508 GA Utrecht, the Netherlands
| | - L.A. Daamen
- Department of Radiation Oncology, University Medical Center Utrecht, Heidelberglaan 100, 3508 GA Utrecht, the Netherlands
| | - M.P.W. Intven
- Department of Radiation Oncology, University Medical Center Utrecht, Heidelberglaan 100, 3508 GA Utrecht, the Netherlands
| | - H.M. Verkooijen
- Division of Imaging, University Medical Center Utrecht, Utrecht, the Netherlands
| |
Collapse
|
3
|
Mutsaers A, Li G, Fernandes J, Ali S, Barnes E, Chen H, Czarnota G, Karam I, Moore-Palhares D, Poon I, Soliman H, Vesprini D, Cheung P, Louie A. Uncovering the armpit of SBRT: An institutional experience with stereotactic radiation of axillary metastases. Clin Transl Radiat Oncol 2024; 45:100730. [PMID: 38317679 PMCID: PMC10839264 DOI: 10.1016/j.ctro.2024.100730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2023] [Revised: 01/15/2024] [Accepted: 01/16/2024] [Indexed: 02/07/2024] Open
Abstract
Purpose/objectives The growing use of stereotactic body radiotherapy (SBRT) in metastatic cancer has led to its use in varying anatomic locations. The objective of this study was to review our institutional SBRT experience for axillary metastases (AM), focusing on outcomes and process. Materials/methods Patients treated with SBRT to AM from 2014 to 2022 were reviewed. Cumulative incidence functions were used to estimate the incidence of local failure (LF), with death as competing risk. Kaplan-Meier method was used to estimate progression-free (PFS) and overall survival (OS). Univariate regression analysis examined predictors of LF. Results We analyzed 37 patients with 39 AM who received SBRT. Patients were predominantly female (60 %) and elderly (median age: 72). Median follow-up was 14.6 months. Common primary cancers included breast (43 %), skin (19 %), and lung (14 %). Treatment indication included oligoprogression (46 %), oligometastases (35 %) and symptomatic progression (19 %). A minority had prior overlapping radiation (18 %) or surgery (11 %). Most had prior systemic therapy (70 %).Significant heterogeneity in planning technique was identified; a minority of patient received 4-D CT scans (46 %), MR-simulation (21 %), or contrast (10 %). Median dose was 40 Gy (interquartile range (IQR): 35-40) in 5 fractions, (BED10 = 72 Gy). Seventeen cases (44 %) utilized a low-dose elective volume to cover remaining axilla.At first assessment, 87 % had partial or complete response, with a single progression. Of symptomatic patients (n = 14), 57 % had complete resolution and 21 % had improvement. One and 2-year LF rate were 16 % and 20 %, respectively. Univariable analysis showed increasing BED reduced risk of LF. Median OS was 21.0 months (95 % [Confidence Interval (CI)] 17.3-not reached) and median PFS was 7.0 months (95 % [CI] 4.3-11.3). Two grade 3 events were identified, and no grade 4/5. Conclusion Using SBRT for AM demonstrated low rates of toxicity and LF, and respectable symptom improvement. Variation in treatment delivery has prompted development of an institutional protocol to standardize technique and increase efficiency. Limited followup may limit detection of local failure and late toxicity.
Collapse
Affiliation(s)
- A. Mutsaers
- Department of Radiation Oncology, Odette Cancer Centre, Sunnybrook Hospital, University of Toronto, Canada
| | - G.J. Li
- Department of Radiation Oncology, Odette Cancer Centre, Sunnybrook Hospital, University of Toronto, Canada
| | - J.S. Fernandes
- Department of Radiation Oncology, Odette Cancer Centre, Sunnybrook Hospital, University of Toronto, Canada
| | - S. Ali
- Department of Radiation Therapy, Odette Cancer Centre, Sunnybrook Hospital, University of Toronto, Canada
| | - E.A. Barnes
- Department of Radiation Oncology, Odette Cancer Centre, Sunnybrook Hospital, University of Toronto, Canada
| | - H. Chen
- Department of Radiation Oncology, Odette Cancer Centre, Sunnybrook Hospital, University of Toronto, Canada
| | - G.J. Czarnota
- Department of Radiation Oncology, Odette Cancer Centre, Sunnybrook Hospital, University of Toronto, Canada
| | - I. Karam
- Department of Radiation Oncology, Odette Cancer Centre, Sunnybrook Hospital, University of Toronto, Canada
| | - D. Moore-Palhares
- Department of Radiation Oncology, Odette Cancer Centre, Sunnybrook Hospital, University of Toronto, Canada
| | - I. Poon
- Department of Radiation Oncology, Odette Cancer Centre, Sunnybrook Hospital, University of Toronto, Canada
| | - H. Soliman
- Department of Radiation Oncology, Odette Cancer Centre, Sunnybrook Hospital, University of Toronto, Canada
| | - D. Vesprini
- Department of Radiation Oncology, Odette Cancer Centre, Sunnybrook Hospital, University of Toronto, Canada
| | - P. Cheung
- Department of Radiation Oncology, Odette Cancer Centre, Sunnybrook Hospital, University of Toronto, Canada
| | - A.V. Louie
- Department of Radiation Oncology, Odette Cancer Centre, Sunnybrook Hospital, University of Toronto, Canada
| |
Collapse
|
4
|
Ugurluer G, Zoto Mustafayev T, Gungor G, Abacioglu U, Atalar B, Ozyar E. Online Adaptive Magnetic Resonance-guided Radiation Therapy for Gynaecological Cancers: Preliminary Results of Feasibility and Outcome. Clin Oncol (R Coll Radiol) 2024; 36:12-20. [PMID: 38016848 DOI: 10.1016/j.clon.2023.11.036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 07/17/2023] [Accepted: 11/17/2023] [Indexed: 11/30/2023]
Abstract
AIMS To present the preliminary results on the clinical utilisation of an online daily adaptive magnetic resonance-guided radiation therapy (MRgRT) for various gynaecological cancers. MATERIALS AND METHODS Twelve patients treated between September 2018 and June 2022 were included. Six patients (50%) were treated with pelvic radiation therapy followed by MRgRT boost as brachytherapy boost was ineligible or unavailable, three patients (25%) were treated with pelvic MRgRT followed by high dose rate brachytherapy, two patients (16.7%) were treated with only MRgRT, one patient (8.3%) was treated with linear accelerator-based radiation therapy followed by MRgRT boost for bulky iliac lymph nodes. RESULTS The median age was 56.5 years (range 31-86 years). Eight patients (66.7%) had a complete response, three patients (25%) had a partial response and one patient (8.3%) died due to acute renal failure. The mean follow-up time was 11.2 months (range 3.1-42.6 months). The estimated 1-year overall survival was 88.9%. The median treatment time was 47 days (range 10-87 days). During external beam radiation therapy, 10 (83.3%) patients had concomitant chemoradiotherapy. Pelvic external beam radiation therapy doses for all cohorts were 45-50.4 Gy with a fraction dose of 1.8 Gy. The median magnetic resonance-guided boost dose was 32 Gy (range 20-50 Gy) and fraction doses ranged between 4 and 10 Gy. Three patients were treated with intracavitary high dose rate brachytherapy (26-28 Gy in four to five fractions). None of the patients had grade >3 late genitourinary toxicities. CONCLUSION MRgRT is reliable and clinically feasible for treating patients with gynaecological cancers alone or in combination with brachytherapy with an acceptable toxicity and outcome. MRgRT boost could be an option when brachytherapy is not available or ineligible.
Collapse
Affiliation(s)
- G Ugurluer
- Department of Radiation Oncology, Acibadem MAA University School of Medicine, Istanbul, Turkey.
| | - T Zoto Mustafayev
- Department of Radiation Oncology, Acibadem Maslak Hospital, Istanbul, Turkey
| | - G Gungor
- Department of Radiation Oncology, Acibadem Maslak Hospital, Istanbul, Turkey
| | - U Abacioglu
- Department of Radiation Oncology, Acibadem MAA University School of Medicine, Istanbul, Turkey
| | - B Atalar
- Department of Radiation Oncology, Acibadem MAA University School of Medicine, Istanbul, Turkey
| | - E Ozyar
- Department of Radiation Oncology, Acibadem MAA University School of Medicine, Istanbul, Turkey
| |
Collapse
|
5
|
Snyder J, Smith B, St-Aubin J, Dunkerley D, Shepard A, Caster J, Hyer D. Intra-fraction motion of pelvic oligometastases and feasibility of PTV margin reduction using MRI guided adaptive radiotherapy. Front Oncol 2023; 13:1098593. [PMID: 37152034 PMCID: PMC10154517 DOI: 10.3389/fonc.2023.1098593] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Accepted: 04/07/2023] [Indexed: 05/09/2023] Open
Abstract
Purpose This study assesses the impact of intra-fraction motion and PTV margin size on target coverage for patients undergoing radiation treatment of pelvic oligometastases. Dosimetric sparing of the bowel as a function of the PTV margin is also evaluated. Materials and methods Seven patients with pelvic oligometastases previously treated on our MR-linac (35 Gy in 5 fractions) were included in this study. Retrospective adaptive plans were created for each fraction on the daily MRI datasets using PTV margins of 5 mm, 3 mm, and 2 mm. Dosimetric constraint violations and GTV coverage were measured as a function of PTV margin size. The impact of intra-fraction motion on GTV coverage was assessed by tracking the GTV position on the cine MR images acquired during treatment delivery and creating an intra-fraction dose distribution for each IMRT beam. The intra-fraction dose was accumulated for each fraction to determine the total dose delivered to the target for each PTV size. Results All OAR constraints were achieved in 85.7%, 94.3%, and 100.0% of fractions when using 5 mm, 3 mm, and 2 mm PTV margins while scaling to 95% PTV coverage. Compared to plans with a 5 mm PTV margin, there was a 27.4 ± 12.3% (4.0 ± 2.2 Gy) and an 18.5 ± 7.3% (2.7 ± 1.4 Gy) reduction in the bowel D0.5cc dose for 2 mm and 3 mm PTV margins, respectively. The target dose (GTV V35 Gy) was on average 100.0 ± 0.1% (99.6 - 100%), 99.6 ± 1.0% (97.2 - 100%), and 99.0 ± 1.4% (95.0 - 100%), among all fractions for the 5 mm, 3 mm, and 2 mm PTV margins on the adaptive plans when accounting for intra-fraction motion, respectively. Conclusion A 2 mm PTV margin achieved a minimum of 95% GTV coverage while reducing the dose to the bowel for all patients.
Collapse
|
6
|
Nicosia L, Trapani G, Rigo M, Giaj-Levra N, Mazzola R, Pastorello E, Ricchetti F, Cuccia F, Figlia V, Fiorini M, Alongi F. 1.5 T MR-Guided Daily Adapted SBRT on Lymph Node Oligometastases from Prostate Cancer. J Clin Med 2022; 11:jcm11226658. [PMID: 36431135 PMCID: PMC9697920 DOI: 10.3390/jcm11226658] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 11/07/2022] [Accepted: 11/08/2022] [Indexed: 11/11/2022] Open
Abstract
Introduction: The aim of our study was to evaluate the efficacy and toxicity of a daily adaptive MR-guided SBRT on 1.5 T MR-linac in patients affected by lymph node oligometastases from PCa. Materials and Methods: The present study is a prospective observational study conducted in a single institution (protocol n°: MRI/LINAC n. 23748). Patients with oligometastatic lymph nodes from PCa treated with daily adaptive MR-guided SBRT on 1.5 T MR-linac were included in the study. There was a minimum required follow-up of 3 months after SBRT. The primary end-point was local progression-free survival (LPFS). The secondary end-points were: nodal progression-free survival (NPFS), progression-free survival (PFS), and toxicity. Results: A total of 118 lymph node oligometastases from PCa were treated with daily adaptive 1.5 T MR-guided SBRT in 63 oligometastatic patients. Of the patients, 63.5% were oligorecurrent and 36.5% were oligoprogressive. The two-year LPFS was 90.7%. The median NPFS was 22.3 months and the 2-year NPFS was 46.5%. Receiving hormone therapy before SBRT was correlated with a lower NPFS at the multivariate analysis (1 y NPFS 87.1% versus 42.8%; p = 0.002-HR 0.199, 95% CI 0.073-0.549). Furthermore, the oligorecurrent state during ADT was correlated with a lower NPFS than was the oligoprogressive state. The median PFS was 10.3 months and the 2-year PFS was 32.4%. Patients treated with hormone therapy before SBRT had a significantly lower 1-year PFS the others (28% versus 70.4%; p = 0.01-HR 0.259, 95% CI 0.117-0.574). No acute and late toxicities occurred during treatment. Conclusions: The present study is the largest prospective study of 1.5 T lymph node SBRT on MR-linac in patients with PCa. Lymph node SBRT by 1.5 T MR-linac provides high local control rates with an excellent toxicity profile.
Collapse
Affiliation(s)
- Luca Nicosia
- Advanced Radiation Oncology Department, IRCCS Sacro Cuore Don Calabria Hospital, Cancer Care Center, 37024 Negrar di Valpolicella, Italy
- Correspondence: ; Tel.: +39-045-6014800; Fax: +39-045-60148071
| | - Giovanna Trapani
- Advanced Radiation Oncology Department, IRCCS Sacro Cuore Don Calabria Hospital, Cancer Care Center, 37024 Negrar di Valpolicella, Italy
| | - Michele Rigo
- Advanced Radiation Oncology Department, IRCCS Sacro Cuore Don Calabria Hospital, Cancer Care Center, 37024 Negrar di Valpolicella, Italy
| | - Niccolò Giaj-Levra
- Advanced Radiation Oncology Department, IRCCS Sacro Cuore Don Calabria Hospital, Cancer Care Center, 37024 Negrar di Valpolicella, Italy
| | - Rosario Mazzola
- Advanced Radiation Oncology Department, IRCCS Sacro Cuore Don Calabria Hospital, Cancer Care Center, 37024 Negrar di Valpolicella, Italy
| | - Edoardo Pastorello
- Advanced Radiation Oncology Department, IRCCS Sacro Cuore Don Calabria Hospital, Cancer Care Center, 37024 Negrar di Valpolicella, Italy
| | - Francesco Ricchetti
- Advanced Radiation Oncology Department, IRCCS Sacro Cuore Don Calabria Hospital, Cancer Care Center, 37024 Negrar di Valpolicella, Italy
| | - Francesco Cuccia
- Advanced Radiation Oncology Department, IRCCS Sacro Cuore Don Calabria Hospital, Cancer Care Center, 37024 Negrar di Valpolicella, Italy
| | - Vanessa Figlia
- Advanced Radiation Oncology Department, IRCCS Sacro Cuore Don Calabria Hospital, Cancer Care Center, 37024 Negrar di Valpolicella, Italy
| | - Matilde Fiorini
- Advanced Radiation Oncology Department, IRCCS Sacro Cuore Don Calabria Hospital, Cancer Care Center, 37024 Negrar di Valpolicella, Italy
- Clinical Research Unity, IRCCS Sacro Cuore Don Calabria Hospital, Cancer Care Center, 37024 Negrar di Valpolicella, Italy
| | - Filippo Alongi
- Advanced Radiation Oncology Department, IRCCS Sacro Cuore Don Calabria Hospital, Cancer Care Center, 37024 Negrar di Valpolicella, Italy
- University of Brescia, 25121 Brescia, Italy
| |
Collapse
|
7
|
Burkoň P, Trna J, Slávik M, Němeček R, Kazda T, Pospíšil P, Dastych M, Eid M, Novotný I, Procházka T, Vrzal M. Stereotactic Body Radiotherapy (SBRT) of Pancreatic Cancer-A Critical Review and Practical Consideration. Biomedicines 2022; 10:biomedicines10102480. [PMID: 36289742 PMCID: PMC9599229 DOI: 10.3390/biomedicines10102480] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 09/18/2022] [Accepted: 09/30/2022] [Indexed: 11/23/2022] Open
Abstract
Pancreatic cancer is the third leading cause of cancer death in the developed world and is predicted to become the second by 2030. A cure may be achieved only with surgical resection of an early diagnosed disease. Surgery for more advanced disease is challenging and can be contraindicated for many reasons. Neoadjuvant therapy may improve the probability of achieving R0 resection. It consists of systemic treatment followed by radiation therapy applied concurrently or sequentially with cytostatics. A novel approach to irradiation, stereotactic body radiotherapy (SBRT), has the potential to improve treatment results. SBRT can deliver higher doses of radiation to the tumor in only a few treatment fractions. It has attracted significant interest for pancreatic cancer patients, as it is completed quickly, requires less time away from full-dose chemotherapy, and is well-tolerated than conventional radiotherapy. In this review, we aim to provide the reader with a basic overview of current evidence for SBRT indications in the treatment of pancreatic tumors. In the second part of the review, we focus on practical information with respect to SBRT treatment plan preparation the performance of such therapy. Finally, we discuss future directions related to the use of magnetic resonance linear accelerators.
Collapse
Affiliation(s)
- Petr Burkoň
- Department of Radiation Oncology, Masaryk Memorial Cancer Institute, Zluty Kopec 7, 656 57 Brno, Czech Republic
- Faculty of Medicine, Masaryk University, Kamenice 753/5, 625 00 Brno, Czech Republic
| | - Jan Trna
- Faculty of Medicine, Masaryk University, Kamenice 753/5, 625 00 Brno, Czech Republic
- Department of Gastroenterology and Digestive Endoscopy, Masaryk Memorial Cancer Institute, Zluty Kopec 7, 656 53 Brno, Czech Republic
- Department of Comprehensive Cancer Care, Masaryk Memorial Cancer Institute, Zluty Kopec 7, 656 53 Brno, Czech Republic
- Correspondence: (J.T.); (M.S.)
| | - Marek Slávik
- Department of Radiation Oncology, Masaryk Memorial Cancer Institute, Zluty Kopec 7, 656 57 Brno, Czech Republic
- Faculty of Medicine, Masaryk University, Kamenice 753/5, 625 00 Brno, Czech Republic
- Correspondence: (J.T.); (M.S.)
| | - Radim Němeček
- Faculty of Medicine, Masaryk University, Kamenice 753/5, 625 00 Brno, Czech Republic
- Department of Comprehensive Cancer Care, Masaryk Memorial Cancer Institute, Zluty Kopec 7, 656 53 Brno, Czech Republic
| | - Tomáš Kazda
- Department of Radiation Oncology, Masaryk Memorial Cancer Institute, Zluty Kopec 7, 656 57 Brno, Czech Republic
- Faculty of Medicine, Masaryk University, Kamenice 753/5, 625 00 Brno, Czech Republic
| | - Petr Pospíšil
- Department of Radiation Oncology, Masaryk Memorial Cancer Institute, Zluty Kopec 7, 656 57 Brno, Czech Republic
- Faculty of Medicine, Masaryk University, Kamenice 753/5, 625 00 Brno, Czech Republic
| | - Milan Dastych
- Faculty of Medicine, Masaryk University, Kamenice 753/5, 625 00 Brno, Czech Republic
- Department of Gastroenterology, University Hospital Brno, Jihlavska 340/20, 625 00 Brno, Czech Republic
| | - Michal Eid
- Faculty of Medicine, Masaryk University, Kamenice 753/5, 625 00 Brno, Czech Republic
- Department of Hematology, Oncology and Internal Medicine, University Hospital Brno, Jihlavska 340/20, 625 00 Brno, Czech Republic
| | - Ivo Novotný
- Department of Gastroenterology and Digestive Endoscopy, Masaryk Memorial Cancer Institute, Zluty Kopec 7, 656 53 Brno, Czech Republic
| | - Tomáš Procházka
- Department of Radiation Oncology, Masaryk Memorial Cancer Institute, Zluty Kopec 7, 656 57 Brno, Czech Republic
- Faculty of Medicine, Masaryk University, Kamenice 753/5, 625 00 Brno, Czech Republic
| | - Miroslav Vrzal
- Department of Radiation Oncology, Masaryk Memorial Cancer Institute, Zluty Kopec 7, 656 57 Brno, Czech Republic
| |
Collapse
|
8
|
Yang DD, Brennan VS, Huynh E, Williams CL, Han Z, Ampofo N, Vastola ME, Sangal P, Singer L, Mak RH, Leeman JE, Cagney DN, Huynh MA. Stereotactic Magnetic Resonance Guided Adaptive Radiation Therapy (SMART) for Abdominopelvic Oligometastases. Int J Radiat Oncol Biol Phys 2022; 114:941-949. [DOI: 10.1016/j.ijrobp.2022.05.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 05/06/2022] [Accepted: 05/10/2022] [Indexed: 10/18/2022]
|
9
|
Regnery S, Buchele C, Piskorski L, Weykamp F, Held T, Eichkorn T, Rippke C, Katharina Renkamp C, Klüter S, Ristau J, König L, Koerber SA, Adeberg S, Debus J, Hörner-Rieber J. SMART ablation of lymphatic oligometastases in the pelvis and abdomen: Clinical and dosimetry outcomes. Radiother Oncol 2022; 168:106-112. [PMID: 35121031 DOI: 10.1016/j.radonc.2022.01.038] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Revised: 01/21/2022] [Accepted: 01/25/2022] [Indexed: 12/25/2022]
Abstract
PURPOSE To demonstrate dosimetry benefits and report clinical outcomes of stereotactic magnetic resonance (MR)-guided online adaptive radiotherapy (SMART) of abdominopelvic lymphatic oligometastases. PATIENTS & METHODS Prospective registry data of 26 patients with 31 oligoprogressive lymphatic metastases (1 - 2 lesions) who received SMART between April 2020 and April 2021 was analyzed. Prostate cancer was the most common histology (69%). Most patients (63%) had received previous abdominopelvic radiotherapy (RT). SMART was delivered in 3 - 7 fractions based on planning target volume (PTV) location and previous dose exposures. For SMART, the baseline plan was recalculated on daily 3D MR-imaging (predicted plan), and plan adaptation was mandatory in case of planning objective violations. RESULTS Plan adaptation was mostly performed due to violation of planning objectives in the predicted plan (134/140 fractions, 96%) and significantly improved plan dosimetry: 1) PTV coverage was increased (predicted: median 89%, adapted: median 95%, p < 0.001), 2) organs-at-risk (OAR) overdoses were reduced (predicted: 27/140 (19%), adapted: 1/140 (1%), p < 0.001) and 3) PTV overdoses were reduced (predicted: 21/140 (15%), adapted: 1/140 (1%), p < 0.001). After a median follow-up of 9.8 months, one patient had in-field tumor progression and twelve patients had out-field tumor progression (at 6 months: progression-free survival: 63% [46 - 88%], local control rate: 97% [90 - 100%]). Treatment was tolerated well and no grade ≥ 3 toxicity was reported. CONCLUSION SMART improves target volume coverage and yields superior OAR protection compared to non-adaptive radiotherapy, thus representing an innovative approach to challenging cases, such as repeated radiotherapy.
Collapse
Affiliation(s)
- Sebastian Regnery
- Department of Radiation Oncology, Heidelberg University Hospital, Im Neuenheimer Feld 400, 69120 Heidelberg, Germany; National Center for Radiation Oncology (NCRO), Heidelberg Institute for Radiation Oncology (HIRO), Im Neuenheimer Feld 400, 69120 Heidelberg, Germany; National Center for Tumor diseases (NCT), Heidelberg, Germany; Heidelberg Ion-Beam Therapy Center (HIT), Department of Radiation Oncology, Heidelberg University Hospital, Heidelberg, Germany; Clinical Cooperation Unit Radiation Oncology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Carolin Buchele
- Department of Radiation Oncology, Heidelberg University Hospital, Im Neuenheimer Feld 400, 69120 Heidelberg, Germany; National Center for Radiation Oncology (NCRO), Heidelberg Institute for Radiation Oncology (HIRO), Im Neuenheimer Feld 400, 69120 Heidelberg, Germany
| | - Lars Piskorski
- Department of Radiation Oncology, Heidelberg University Hospital, Im Neuenheimer Feld 400, 69120 Heidelberg, Germany; National Center for Radiation Oncology (NCRO), Heidelberg Institute for Radiation Oncology (HIRO), Im Neuenheimer Feld 400, 69120 Heidelberg, Germany
| | - Fabian Weykamp
- Department of Radiation Oncology, Heidelberg University Hospital, Im Neuenheimer Feld 400, 69120 Heidelberg, Germany; National Center for Radiation Oncology (NCRO), Heidelberg Institute for Radiation Oncology (HIRO), Im Neuenheimer Feld 400, 69120 Heidelberg, Germany; National Center for Tumor diseases (NCT), Heidelberg, Germany; Heidelberg Ion-Beam Therapy Center (HIT), Department of Radiation Oncology, Heidelberg University Hospital, Heidelberg, Germany
| | - Thomas Held
- Department of Radiation Oncology, Heidelberg University Hospital, Im Neuenheimer Feld 400, 69120 Heidelberg, Germany; National Center for Radiation Oncology (NCRO), Heidelberg Institute for Radiation Oncology (HIRO), Im Neuenheimer Feld 400, 69120 Heidelberg, Germany; National Center for Tumor diseases (NCT), Heidelberg, Germany; Heidelberg Ion-Beam Therapy Center (HIT), Department of Radiation Oncology, Heidelberg University Hospital, Heidelberg, Germany
| | - Tanja Eichkorn
- Department of Radiation Oncology, Heidelberg University Hospital, Im Neuenheimer Feld 400, 69120 Heidelberg, Germany; National Center for Radiation Oncology (NCRO), Heidelberg Institute for Radiation Oncology (HIRO), Im Neuenheimer Feld 400, 69120 Heidelberg, Germany; National Center for Tumor diseases (NCT), Heidelberg, Germany; Heidelberg Ion-Beam Therapy Center (HIT), Department of Radiation Oncology, Heidelberg University Hospital, Heidelberg, Germany
| | - Carolin Rippke
- Department of Radiation Oncology, Heidelberg University Hospital, Im Neuenheimer Feld 400, 69120 Heidelberg, Germany; National Center for Radiation Oncology (NCRO), Heidelberg Institute for Radiation Oncology (HIRO), Im Neuenheimer Feld 400, 69120 Heidelberg, Germany
| | - C Katharina Renkamp
- Department of Radiation Oncology, Heidelberg University Hospital, Im Neuenheimer Feld 400, 69120 Heidelberg, Germany; National Center for Radiation Oncology (NCRO), Heidelberg Institute for Radiation Oncology (HIRO), Im Neuenheimer Feld 400, 69120 Heidelberg, Germany
| | - Sebastian Klüter
- Department of Radiation Oncology, Heidelberg University Hospital, Im Neuenheimer Feld 400, 69120 Heidelberg, Germany; National Center for Radiation Oncology (NCRO), Heidelberg Institute for Radiation Oncology (HIRO), Im Neuenheimer Feld 400, 69120 Heidelberg, Germany
| | - Jonas Ristau
- Department of Radiation Oncology, Heidelberg University Hospital, Im Neuenheimer Feld 400, 69120 Heidelberg, Germany; National Center for Radiation Oncology (NCRO), Heidelberg Institute for Radiation Oncology (HIRO), Im Neuenheimer Feld 400, 69120 Heidelberg, Germany; National Center for Tumor diseases (NCT), Heidelberg, Germany; Heidelberg Ion-Beam Therapy Center (HIT), Department of Radiation Oncology, Heidelberg University Hospital, Heidelberg, Germany
| | - Laila König
- Department of Radiation Oncology, Heidelberg University Hospital, Im Neuenheimer Feld 400, 69120 Heidelberg, Germany; National Center for Radiation Oncology (NCRO), Heidelberg Institute for Radiation Oncology (HIRO), Im Neuenheimer Feld 400, 69120 Heidelberg, Germany; National Center for Tumor diseases (NCT), Heidelberg, Germany; Heidelberg Ion-Beam Therapy Center (HIT), Department of Radiation Oncology, Heidelberg University Hospital, Heidelberg, Germany
| | - Stefan A Koerber
- Department of Radiation Oncology, Heidelberg University Hospital, Im Neuenheimer Feld 400, 69120 Heidelberg, Germany; National Center for Radiation Oncology (NCRO), Heidelberg Institute for Radiation Oncology (HIRO), Im Neuenheimer Feld 400, 69120 Heidelberg, Germany; National Center for Tumor diseases (NCT), Heidelberg, Germany; Heidelberg Ion-Beam Therapy Center (HIT), Department of Radiation Oncology, Heidelberg University Hospital, Heidelberg, Germany; Clinical Cooperation Unit Radiation Oncology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Sebastian Adeberg
- Department of Radiation Oncology, Heidelberg University Hospital, Im Neuenheimer Feld 400, 69120 Heidelberg, Germany; National Center for Radiation Oncology (NCRO), Heidelberg Institute for Radiation Oncology (HIRO), Im Neuenheimer Feld 400, 69120 Heidelberg, Germany; National Center for Tumor diseases (NCT), Heidelberg, Germany; Heidelberg Ion-Beam Therapy Center (HIT), Department of Radiation Oncology, Heidelberg University Hospital, Heidelberg, Germany; Clinical Cooperation Unit Radiation Oncology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Jürgen Debus
- Department of Radiation Oncology, Heidelberg University Hospital, Im Neuenheimer Feld 400, 69120 Heidelberg, Germany; National Center for Radiation Oncology (NCRO), Heidelberg Institute for Radiation Oncology (HIRO), Im Neuenheimer Feld 400, 69120 Heidelberg, Germany; National Center for Tumor diseases (NCT), Heidelberg, Germany; Heidelberg Ion-Beam Therapy Center (HIT), Department of Radiation Oncology, Heidelberg University Hospital, Heidelberg, Germany; Clinical Cooperation Unit Radiation Oncology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Juliane Hörner-Rieber
- Department of Radiation Oncology, Heidelberg University Hospital, Im Neuenheimer Feld 400, 69120 Heidelberg, Germany; National Center for Radiation Oncology (NCRO), Heidelberg Institute for Radiation Oncology (HIRO), Im Neuenheimer Feld 400, 69120 Heidelberg, Germany; National Center for Tumor diseases (NCT), Heidelberg, Germany; Heidelberg Ion-Beam Therapy Center (HIT), Department of Radiation Oncology, Heidelberg University Hospital, Heidelberg, Germany; Clinical Cooperation Unit Radiation Oncology, German Cancer Research Center (DKFZ), Heidelberg, Germany.
| |
Collapse
|