1
|
Xu D, Shan Y, Liu Q, Liang P, Hao X, Zhang J, Yu Z, Li W, Gao F, Tao X, Gu Q, Ma Y, Chen W. Effectiveness of ulinastatin in critical care patients in real world: a retrospective multi-center study. Expert Rev Clin Pharmacol 2024:1-8. [PMID: 39351759 DOI: 10.1080/17512433.2024.2402433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Accepted: 09/05/2024] [Indexed: 10/04/2024]
Abstract
OBJECTIVES Ulinastatin has been applied in various diseases associated with inflammation, but its effectiveness lacks real-world evidence. We aimed to evaluate the effectiveness of ulinastatin based on a real-world database in the intensive care unit (ICU) patients. METHODS This was a retrospective cohort study. ICU patient data from multi-centers in China were collected. Propensity score matching (PSM) was applied. The effectiveness of ulinastatin was evaluated by mortality, length of stay in the ICU and mechanical ventilation duration. Kaplan-Meier method was used to estimate the hazard ratio and plot the survival curve. RESULTS A total of 2036 patients were analyzed after PSM. Mortality was significantly lower in the ulinastatin group than in the non-ulinastatin group (hazard ratio for death: 0.77; 95% confidence interval: 0.62-0.96; p = 0.018). Ulinastatin significantly reduced mortality at 28 days (10.0% vs. 13.6%), 60 days (13.9% vs. 18.2%) and 90 days (14.7% vs. 18.5%), length of stay in the ICU (median 8.0 d vs. 13.0 d), and mechanical ventilation duration (median 24.0 h vs. 25.0 h; p < 0.05). CONCLUSIONS Ulinastatin was beneficial for patients in the ICU, mainly by reducing mortality, length of ICU stay, and mechanical ventilation duration. This study provides evidence of the clinical effectiveness of ulinastatin.
Collapse
Affiliation(s)
- Deduo Xu
- Department of Pharmacy, Second Affiliated Hospital of Naval Medical University, Shanghai, China
| | - Yi Shan
- Department of Emergency and Critical Care Medicine, Second Affiliated Hospital of Naval Medical University, Shanghai, China
| | - Qinghua Liu
- Department of Pulmonary and Critical Care Medicine, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Pei Liang
- Department of Pharmacy, Nanjing Drum Tower Hospital, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Xin Hao
- Dalian Medicinovo Technology Co. Ltd, Beijing, China
| | - Jinyuan Zhang
- Beijing Medicinovo Technology Co. Ltd, Beijing, China
| | - Ze Yu
- Beijing Medicinovo Technology Co. Ltd, Beijing, China
| | - Wenfang Li
- Department of Emergency and Critical Care Medicine, Second Affiliated Hospital of Naval Medical University, Shanghai, China
| | - Fei Gao
- Beijing Medicinovo Technology Co. Ltd, Beijing, China
| | - Xia Tao
- Department of Pharmacy, Second Affiliated Hospital of Naval Medical University, Shanghai, China
| | - Qin Gu
- Department of Critical Care Medicine, Nanjing Drum Tower Hospital, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Yabin Ma
- Department of Pharmacy, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Wansheng Chen
- Department of Pharmacy, Second Affiliated Hospital of Naval Medical University, Shanghai, China
- The SATCM Key Laboratory for New Resources & Quality Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
2
|
J D Moreira N, Dos Santos F, Li JB, Aletti F, Irigoyen MCC, Kistler EB. Enteral administration of the protease inhibitor gabexate mesilate preserves vascular function in experimental trauma/hemorrhagic shock. Sci Rep 2023; 13:10148. [PMID: 37349360 PMCID: PMC10287748 DOI: 10.1038/s41598-023-36021-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Accepted: 05/27/2023] [Indexed: 06/24/2023] Open
Abstract
Preserving vascular function is crucial for preventing multiorgan failure and death in ischemic and low-pressure states such as trauma/hemorrhagic shock (T/HS). It has recently been reported that inhibiting circulating proteases released from the bowel to the circulation during T/HS may preserve vascular function and improve outcomes following T/HS. This study aimed to evaluate the role of the serine protease inhibitor gabexate mesilate (GM) in preserving vascular function during T/HS when given enterally. We studied the vascular reactivity of mesenteric arteries from male Wistar rats treated with enteral GM (10 mg/kg) (GM-treated, n = 6) or control (Shock-control, n = 6) following (T/HS) using pressure myography. Concentration-response curves of endothelial-dependent and endothelial-independent agonists (e.g., acetylcholine, sodium nitroprusside) ranging from 10-10 to 10-5 M were performed. In a second set of experiments, ex-vivo arteries from healthy rats were perfused with plasma from shocked animals from both groups and vascular performance was similarly measured. Arteries from the GM-treated group demonstrated a preserved concentration-response curve to the α1 adrenergic agonist phenylephrine compared to arteries from Shock-control animals (- logEC50: - 5.73 ± 0.25 vs. - 6.48 ± 0.2, Shock-control vs. GM-treated, p = 0.04). When perfused with plasma from GM-treated rats, healthy arteries exhibited an even greater constriction and sensitivity to phenylephrine (- logEC50: - 6.62 ± 0.21 vs. - 7.13 ± 0.21, Shock-control vs. GM-treated, p = 0.02). Enteral GM also preserved the endothelium-dependent vascular response to agonists following T/HS and limited syndecan-1 shedding as a marker of glycocalyx compromise (41.84 ± 9 vs. 17.63 ± 3.97 ng/mL, Shock-control vs. GM-treated, p = 0.02). Syndecan-1 cleavage was correlated with plasma trypsin-like activity (r2 = 0.9611). Enteral gabexate mesilate was able to maintain vascular function in experimental T/HS, which was reflected by improved hemodynamics (mean arterial pressure 50.39 ± 7.91 vs. 64.95 ± 3.43 mmHg, Shock-control vs. GM treated, p = 0.0001). Enteral serine protease inhibition may be a potential therapeutic intervention in the treatment of T/HS.
Collapse
Affiliation(s)
- Nathalia J D Moreira
- Instituto do Coração, Hospital das ClínicasFaculdade de Medicina, Universidade de São Paulo, São Paulo, Brazil.
| | - Fernando Dos Santos
- Department of Anesthesiology and Critical Care, University of California, San Diego, La Jolla, CA, USA
| | - Joyce B Li
- Department of Bioengineering, University of California, San Diego, La Jolla, CA, USA
| | - Federico Aletti
- Universidade Federal de São Paulo, São José dos Campos, Brazil
| | - Maria Claudia C Irigoyen
- Instituto do Coração, Hospital das ClínicasFaculdade de Medicina, Universidade de São Paulo, São Paulo, Brazil
| | - Erik B Kistler
- Department of Anesthesiology and Critical Care, University of California, San Diego, La Jolla, CA, USA
- Veterans Affairs San Diego Healthcare System, San Diego, CA, USA
| |
Collapse
|
3
|
Maegele M, Aletti F, Efron PA, Relja B, Orfanos SE. NEW INSIGHTS INTO THE PATHOPHYSIOLOGY OF TRAUMA AND HEMORRHAGE. Shock 2023; 59:6-9. [PMID: 36867756 DOI: 10.1097/shk.0000000000001954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/05/2023]
Abstract
ABSTRACT Circulatory shock from trauma and hemorrhage remains a clinical challenge with mortality still high within the first hours after impact. It represents a complex disease involving the impairment of a number of physiological systems and organs and the interaction of different pathological mechanisms. Multiple external and patient-specific factors may further modulate and complicate the clinical course. Recently, novel targets and models with complex multiscale interaction of data from different sources have been identified which offer new windows of opportunity. Future works needs to consider patient-specific conditions and outcomes to mount shock research onto the next higher level of precision and personalized medicine.
Collapse
Affiliation(s)
- Marc Maegele
- Department of Traumatology and Orthopedic Surgery, Cologne-Merheim Medical Center, Institute for Research in Operative Medicine, University Witten-Herdecke, Cologne, Germany
| | - Federico Aletti
- Instituto de Ciência e Tecnologia, Universidade Federal de São Paulo, São José dos Campos, Brazil
| | - Philip A Efron
- Department of Surgery, Division of Acute Care Surgery and Surgical Critical Care, Laboratory of Inflammation Biology and Surgical Science, UF Health Critical Care Organization, Florida
| | - Borna Relja
- Department of Radiology and Nuclear Medicine, Experimental Radiology, Otto-von-Guericke University, Magdeburg, Germany
| | - Stylianos E Orfanos
- 1st Department of Critical Care Medicine, National and Kapodistrian University of Athens, Medical School, Greece
| |
Collapse
|
4
|
Dos Santos F, Li JB, Juocys N, Mazor R, Beretta L, Coufal NG, Lam MTY, Odish MF, Irigoyen MC, O’Donoghue AJ, Aletti F, Kistler EB. Plasma enzymatic activity, proteomics and peptidomics in COVID-19-induced sepsis: A novel approach for the analysis of hemostasis. Front Mol Biosci 2023; 9:1051471. [PMID: 36710882 PMCID: PMC9874325 DOI: 10.3389/fmolb.2022.1051471] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Accepted: 12/20/2022] [Indexed: 01/13/2023] Open
Abstract
Introduction: Infection by SARS-CoV-2 and subsequent COVID-19 can cause viral sepsis. We investigated plasma protease activity patterns in COVID-19-induced sepsis with bacterial superinfection, as well as plasma proteomics and peptidomics in order to assess the possible implications of enhanced proteolysis on major protein systems (e.g., coagulation). Methods: Patients (=4) admitted to the intensive care units (ICUs) at the University of California, San Diego (UCSD) Medical Center with confirmed positive test for COVID-19 by real-time reverse transcription polymerase chain reaction (RT-PCR) were enrolled in a study approved by the UCSD Institutional Review Board (IRB# 190699, Protocol #20-0006). Informed consent was obtained for the collection of blood samples and de-identified use of the data. Blood samples were collected at multiple time points and analyzed to quantify a) the circulating proteome and peptidome by mass spectrometry; b) the aminopeptidase activity in plasma; and c) the endopeptidase activity in plasma using fluorogenic substrates that are cleaved by trypsin-like endopeptidases, specific clotting factors and plasmin. The one patient who died was diagnosed with bacterial superinfection on day 7 after beginning of the study. Results: Spikes in protease activity (factor VII, trypsin-like activity), and corresponding increases in the intensity of peptides derived by hydrolysis of plasma proteins, especially of fibrinogen degradation products and downregulation of endogenous protease inhibitors were detected on day 7 for the patient who died. The activity of the analyzed proteases was stable in survivors. Discussion: The combination of multiomics and enzymatic activity quantification enabled to i) hypothesize that elevated proteolysis occurs in COVID-19-induced septic shock with bacterial superinfection, and ii) provide additional insight into malfunctioning protease-mediated systems, such as hemostasis.
Collapse
Affiliation(s)
- Fernando Dos Santos
- Department of Anesthesiology, School of Medicine, University of California, San Diego, CA, United States
| | - Joyce B. Li
- Department of Bioengineering, University of California, San Diego, CA, United States
| | - Nathalia Juocys
- Department of Anesthesiology, School of Medicine, University of California, San Diego, CA, United States
- Instituto do Coração, Hospital das Clínicas, Faculdade de Medicina, Universidade de São Paulo (InCor-FMUSP), São Paulo, Brazil
| | - Rafi Mazor
- Department of Anesthesiology, School of Medicine, University of California, San Diego, CA, United States
| | - Laura Beretta
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, CA, United States
| | - Nicole G. Coufal
- Department of Pediatrics, School of Medicine, University of California, San Diego, CA, United States
| | - Michael T. Y. Lam
- Department of Medicine, School of Medicine, University of California, San Diego, CA, United States
| | - Mazen F. Odish
- Department of Medicine, School of Medicine, University of California, San Diego, CA, United States
| | - Maria Claudia Irigoyen
- Instituto do Coração, Hospital das Clínicas, Faculdade de Medicina, Universidade de São Paulo (InCor-FMUSP), São Paulo, Brazil
| | - Anthony J. O’Donoghue
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, CA, United States
| | - Federico Aletti
- Instituto de Ciência e Tecnologia, Universidade Federal de São Paulo, São Josê dos Campos, Brazil
| | - Erik B. Kistler
- Department of Anesthesiology, School of Medicine, University of California, San Diego, CA, United States
- Department of Anesthesiology and Critical Care, VA San Diego Healthcare System, San Diego, CA, United States
| |
Collapse
|
5
|
Dos Santos F, Li JB, Mazor R, Aletti F, Kistler EB. Efficacy of Tranexamic Acid in Blood Versus Crystalloid-Resuscitated Trauma/Hemorrhagic Shock. J Surg Res 2022; 279:89-96. [PMID: 35752157 DOI: 10.1016/j.jss.2022.05.028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 04/22/2022] [Accepted: 05/22/2022] [Indexed: 10/31/2022]
Abstract
INTRODUCTION Whole blood (WB) or blood products are not always immediately available for repletion of lost intravascular volume in trauma/hemorrhagic shock (T/HS), and thus, resuscitation with crystalloid solutions is often necessary. Recently, we have shown enteral tranexamic acid (TXA) to be effective as a mild protease inhibitor in blood-resuscitated T/HS by counteracting proteolytic activity in and leaking from the gut with resultant preservation of systemic vascular integrity. We hypothesized that enteral TXA would improve hemodynamic stability after T/HS in the absence of blood reperfusion. METHODS We directly compared resuscitation with enteral TXA versus intravenous (IV) TXA in conjunction with lactated Ringer's solution (LR) or WB reperfusion in an experimental T/HS model. Rats were subjected to laparotomy and exsanguinated to a mean arterial blood pressure of 35-40 mm Hg for 90 min, followed by LR or WB reperfusion and monitored for 120 min. TXA was administered via IV (10 mg/kg) or enteral infusion (150 mM) 20 min after establishment of hemorrhage for 150 min. RESULTS Animals resuscitated with LR were unable to restore or maintain a survivable mean arterial blood pressure (>65 mm Hg), regardless of TXA treatment route. In contrast, rats reperfused with WB and given TXA either enterally or IV displayed hemodynamic improvements superior to WB controls. CONCLUSIONS Results suggest that the beneficial hemodynamic responses to enteral or IV TXA after experimental T/HS depend upon reperfusion of WB or components present in WB as TXA, regardless of delivery mode, does not have appreciable hemodynamic effects when paired with LR reperfusion.
Collapse
Affiliation(s)
- Fernando Dos Santos
- Department of Anesthesiology & Critical Care, University of California, San Diego, La Jolla, California.
| | - Joyce B Li
- Department of Bioengineering, University of California, San Diego, La Jolla, California
| | - Rafi Mazor
- Department of Anesthesiology & Critical Care, University of California, San Diego, La Jolla, California
| | - Federico Aletti
- Department of Bioengineering, University of California, San Diego, La Jolla, California
| | - Erik B Kistler
- Department of Anesthesiology & Critical Care, University of California, San Diego, La Jolla, California; Department of Bioengineering, University of California, San Diego, La Jolla, California; Veterans Affairs San Diego Healthcare System, San Diego, California
| |
Collapse
|
6
|
Focus on biomarkers, confounders and new therapeutic approaches in trauma. Eur J Trauma Emerg Surg 2022; 48:1521-1523. [PMID: 35701902 PMCID: PMC9192362 DOI: 10.1007/s00068-022-01976-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|