1
|
Kramer A, Seifert J, Abele-Horn M, Arvand M, Biever P, Blacky A, Buerke M, Ciesek S, Chaberny I, Deja M, Engelhart S, Eschberger D, Gruber B, Hedtmann A, Heider J, Hoyme UB, Jäkel C, Kalbe P, Luckhaupt H, Novotny A, Papan C, Piechota H, Pitten FA, Reinecke V, Schilling D, Schulz-Schaeffer W, Sunderdiek U. S2k-Guideline hand antisepsis and hand hygiene. GMS HYGIENE AND INFECTION CONTROL 2024; 19:Doc42. [PMID: 39391860 PMCID: PMC11465089 DOI: 10.3205/dgkh000497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 10/12/2024]
Abstract
The consensus-based guideline "hand antisepsis and hand hygiene" for Germany has the following sections: Prevention of nosocomial infections by hygienic hand antisepsis, prevention of surgical site infections by surgical hand antisepsis, infection prevention in the community by hand antisepsis in epidemic or pandemic situations, hand washing, selection of alcohol-based hand rubs and wash lotions, medical gloves and protective gloves, preconditions for hand hygiene, skin protection and skin care, quality assurance of the implementation of hand hygiene measures and legal aspects. The guideline was developed by the German Society for Hospital Hygiene in cooperation with 22 professional societies, 2 professional organizations, the German Care Council, the Federal Working Group for Self-Help of People with Disabilities and Chronic Illness and their Family Members, the General Accident Insurance Institution Austria and the German-speaking Interest Group of Infection Prevention Experts and Hospital Hygiene Consultants.
Collapse
Affiliation(s)
- Axel Kramer
- Institute of Hygiene and Environmental Medicine, University Medicine Greifswald, Greifswald, Germany
| | | | | | - Mardjan Arvand
- Robert Koch Institute, Department Infectious Diseases, Unit Hospital Hygiene, Infection Prevention and Control, Berlin, Germany
| | - Paul Biever
- German Society for Internal Intensive Care and Emergency Medicine, Berlin, Germany
| | | | | | | | - Iris Chaberny
- German Society for Hygiene and Microbiology, Münster, Germany
| | - Maria Deja
- German Society of Anaesthesiology and Intensive Care Medicine, München, Germany
| | - Steffen Engelhart
- Society of Hygiene, Environmental and Public Health Sciences, Freiburg, Germany
| | - Dieter Eschberger
- Vienna Regional Office of the Austrian Workers' Compensation Insurance, Vienna, Austria
| | | | - Achim Hedtmann
- Professional Association of Orthopaedic and Trauma Specialists (BVOU), German Society for Orthopaedics and Trauma, Berlin, Germany
| | - Julia Heider
- German Society for Oral, Maxillofacial and Facial Surgery, Hofheim am Taunus, Germany
| | - Udo B. Hoyme
- Working Group for Infections and Infectious Immunology in the German Society for Gynecology and Obstetrics, Freiburg, Germany
| | - Christian Jäkel
- Dr. Jäkel, Medical Law, Pharmaceuticals Law, Medical Devices Law, Luebben, Germany
| | - Peter Kalbe
- Professional Association of German Surgery, Berlin, Germany
| | - Horst Luckhaupt
- German Society of Oto-Rhino-Laryngology, Head and Neck Surgery, Bonn, Germany
| | | | - Cihan Papan
- German Society for Pediatric Infectious Diseases, Berlin, Germany
| | | | | | - Veronika Reinecke
- German-speaking Interest Group of Experts for Infection Prevention and Consultants for Hospital Hygiene, Zurich, Switzerland
| | - Dieter Schilling
- German Society for Digestive and Metabolic Diseases, Berlin, Germany
| | - Walter Schulz-Schaeffer
- Department of Neuropathology, Medical Faculty of the Saarland University, Homburg/Saar, Germany
| | - Ulrich Sunderdiek
- German X-ray Society and German Society for Interventional Radiology and Minimally Invasive Therapy, Berlin. Germany
| |
Collapse
|
2
|
Hygiene requirements for cleaning and disinfection of surfaces: recommendation of the Commission for Hospital Hygiene and Infection Prevention (KRINKO) at the Robert Koch Institute. GMS HYGIENE AND INFECTION CONTROL 2024; 19:Doc13. [PMID: 38655122 PMCID: PMC11035912 DOI: 10.3205/dgkh000468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Subscribe] [Scholar Register] [Indexed: 04/26/2024]
Abstract
This recommendation of the Commission for Hospital Hygiene and Infection Prevention (KRINKO) addresses not only hospitals, but also outpatient health care facilities and compiles current evidence. The following criteria are the basis for the indications for cleaning and disinfection: Infectious bioburden and tenacity of potential pathogens on surfaces and their transmission routes, influence of disinfecting surface cleaning on the rate of nosocomial infections, interruption of cross infections due to multidrug-resistant organisms, and outbreak control by disinfecting cleaning within bundles. The criteria for the selection of disinfectants are determined by the requirements for effectiveness, the efficacy spectrum, the compatibility for humans and the environment, as well as the risk potential for the development of tolerance and resistance. Detailed instructions on the organization and implementation of cleaning and disinfection measures, including structural and equipment requirements, serve as the basis for their implementation. Since the agents for surface disinfection and disinfecting surface cleaning have been classified as biocides in Europe since 2013, the regulatory consequences are explained. As possible addition to surface disinfection, probiotic cleaning, is pointed out. In an informative appendix (only in German), the pathogen characteristics for their acquisition of surfaces, such as tenacity, infectious dose and biofilm formation, and the toxicological and ecotoxicological characteristics of microbicidal agents as the basis for their selection are explained, and methods for the evaluation of the resulting quality of cleaning or disinfecting surface cleaning are presented.
Collapse
|
3
|
Khalil AM, Esaki M, Okuya K, Ozawa M. Stability of the Virucidal Activity of Commercial Disinfectants against Avian Influenza Viruses under Different Environmental Conditions. Pathogens 2023; 12:1382. [PMID: 38133267 PMCID: PMC10745779 DOI: 10.3390/pathogens12121382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 11/23/2023] [Accepted: 11/23/2023] [Indexed: 12/23/2023] Open
Abstract
Highly pathogenic avian influenza viruses (HPAIVs) have caused outbreaks in both domestic and wild birds during the winter seasons in several countries in the Northern Hemisphere, most likely because virus-infected wild ducks overwinter and serve as the primary source of infection for other birds in these countries. Several chemical disinfectants are available to deactivate these viruses outside a living organism. However, their virucidal activity is known to be compromised by various factors, including temperature and contamination with organic matter. Hence, the effectiveness of virucidal activity under winter field conditions is crucial for managing HPAIV outbreaks. To investigate the impact of the winter field conditions on the virucidal activity of disinfectants against AIVs, we assessed the stability of the virucidal activity of seven representative disinfectants that are commercially available for poultry farms in Japan against both LPAIVs and HPAIVs under cold and/or organic contamination conditions. Of the seven disinfectants examined, the ortho-dichlorobenzene/cresol-based disinfectant exhibited the most consistent virucidal activity under winter field conditions, regardless of the virus pathogenicity or subtype tested.
Collapse
Affiliation(s)
- Ahmed Magdy Khalil
- Department of Pathogenetic and Preventive Veterinary Science, Joint Faculty of Veterinary Medicine, Kagoshima University, Kagoshima 890-0065, Japan; (A.M.K.); (M.E.); (K.O.)
- United Graduate School of Veterinary Science, Yamaguchi University, Yamaguchi 753-8515, Japan
- Department of Zoonotic Diseases, Faculty of Veterinary Medicine, Zagazig University, Zagazig 44511, Egypt
| | - Mana Esaki
- Department of Pathogenetic and Preventive Veterinary Science, Joint Faculty of Veterinary Medicine, Kagoshima University, Kagoshima 890-0065, Japan; (A.M.K.); (M.E.); (K.O.)
- Joint Graduate School of Veterinary Medicine, Kagoshima University, Kagoshima 890-0065, Japan
| | - Kosuke Okuya
- Department of Pathogenetic and Preventive Veterinary Science, Joint Faculty of Veterinary Medicine, Kagoshima University, Kagoshima 890-0065, Japan; (A.M.K.); (M.E.); (K.O.)
- Joint Graduate School of Veterinary Medicine, Kagoshima University, Kagoshima 890-0065, Japan
- Transboundary Animal Diseases Research Center, Joint Faculty of Veterinary Medicine, Kagoshima University, Kagoshima 890-0065, Japan
| | - Makoto Ozawa
- Department of Pathogenetic and Preventive Veterinary Science, Joint Faculty of Veterinary Medicine, Kagoshima University, Kagoshima 890-0065, Japan; (A.M.K.); (M.E.); (K.O.)
- United Graduate School of Veterinary Science, Yamaguchi University, Yamaguchi 753-8515, Japan
- Joint Graduate School of Veterinary Medicine, Kagoshima University, Kagoshima 890-0065, Japan
- Transboundary Animal Diseases Research Center, Joint Faculty of Veterinary Medicine, Kagoshima University, Kagoshima 890-0065, Japan
- Kagoshima Crane Conservation Committee, Izumi 899-0208, Japan
| |
Collapse
|
4
|
Eggers M, Schwebke I, Blümel J, Brandt F, Fickenscher H, Gebel J, Hübner N, Müller JA, Rabenau HF, Rapp I, Reiche S, Steinmann E, Steinmann J, Zwicker P, Suchomel M. Suitable Disinfectants with Proven Efficacy for Genetically Modified Viruses and Viral Vectors. Viruses 2023; 15:2179. [PMID: 38005856 PMCID: PMC10675031 DOI: 10.3390/v15112179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 10/20/2023] [Accepted: 10/23/2023] [Indexed: 11/26/2023] Open
Abstract
Viral disinfection is important for medical facilities, the food industry, and the veterinary field, especially in terms of controlling virus outbreaks. Therefore, standardized methods and activity levels are available for these areas. Usually, disinfectants used in these areas are characterized by their activity against test organisms (i.e., viruses, bacteria, and/or yeasts). This activity is usually determined using a suspension test in which the test organism is incubated with the respective disinfectant in solution to assess its bactericidal, yeasticidal, or virucidal activity. In addition, carrier methods that more closely reflect real-world applications have been developed, in which microorganisms are applied to the surface of a carrier (e.g., stainless steel frosted glass, or polyvinyl chloride (PVC)) and then dried. However, to date, no standardized methods have become available for addressing genetically modified vectors or disinfection-resistant oncolytic viruses such as the H1-parvovirus. Particularly, such non-enveloped viruses, which are highly resistant to disinfectants, are not taken into account in European standards. This article proposes a new activity claim known as "virucidal activity PLUS", summarizes the available methods for evaluating the virucidal activity of chemical disinfectants against genetically modified organisms (GMOs) using current European standards, including the activity against highly resistant parvoviridae such as the adeno-associated virus (AAV), and provides guidance on the selection of disinfectants for pharmaceutical manufacturers, laboratories, and clinical users.
Collapse
Affiliation(s)
- Maren Eggers
- Laboratory Prof. Dr. G. Enders MVZ GbR, Rosenbergstr. 85, 70193 Stuttgart, Germany
- Expert Committee on Virus Disinfection of the German Association for the Control of Viral Diseases (DVV) e.V. and the Society for Virology (GfV) e.V., 69126 Heidelberg, Germany;
| | - Ingeborg Schwebke
- Expert Committee on Virus Disinfection of the German Association for the Control of Viral Diseases (DVV) e.V. and the Society for Virology (GfV) e.V., 69126 Heidelberg, Germany;
| | - Johannes Blümel
- Paul-Ehrlich-Institute, Department of Virology, Paul-Ehrlich-Straße 51-56, 63225 Langen, Germany;
| | - Franziska Brandt
- Federal Institute for Drugs and Medical Devices, Kurt-Georg-Kiesinger-Allee 3, 53175 Bonn, Germany;
| | - Helmut Fickenscher
- Institute for Infection Medicine, Christian-Albrechts-University Kiel, University Clinic Schleswig-Holstein, Bruinswiker Straße 4, 24105 Kiel, Germany;
| | - Jürgen Gebel
- VAH c/o Institute for Hygiene and Public Health, Venusberg-Campus 1, 53127 Bonn, Germany;
| | - Nils Hübner
- Institute of Hygiene and Environmental Medicine, University Medicine Greifswald, W. Rathenaustr. 49, 17475 Greifswald, Germany; (N.H.); (P.Z.)
| | - Janis A. Müller
- Institute of Virology, Hans-Meerwein Straße 2, 35043 Marburg, Germany;
| | - Holger F. Rabenau
- Institute for Medical Virology, University Hospital, Goethe University Frankfurt am Main, 60596 Frankfurt, Germany;
| | - Ingrid Rapp
- Boehringer Ingelheim Therapeutics GmbH, Beim Braunland 1, 88416 Ochsenhausen, Germany;
| | - Sven Reiche
- Friedrich-Loeffler-Institute, Federal Research Institute for Animal Health, Department of Experimental Animal Facilities and Biorisk Management, Suedufer 10, 17493 Greifswald-Insel Riems, Germany;
| | - Eike Steinmann
- Department for Molecular & Medical Virology, Ruhr University Bochum, 44801 Bochum, Germany;
| | - Jochen Steinmann
- Dr. Bill + Partner GmbH Institute for Hygiene and Microbiology, Norderoog 2, 28259 Bremen, Germany;
| | - Paula Zwicker
- Institute of Hygiene and Environmental Medicine, University Medicine Greifswald, W. Rathenaustr. 49, 17475 Greifswald, Germany; (N.H.); (P.Z.)
| | - Miranda Suchomel
- Institute of Hygiene and Applied Immunology, Medical University of Vienna, Kinderspitalgasse 15, 1090 Vienna, Austria;
- Austrian Society for Hygiene, Microbiology and Preventive Medicine (ÖGHMP) c/o MAW, Freyung 6/3, 1010 Vienna, Austria
| |
Collapse
|
5
|
Rheinbaben F, Köhnlein J, Schmidt N, Hildebrandt C, Werner S. To reduce cytotoxicity when testing the virucidal activity of chemical disinfectants and biocides: The "T-25 method" as an alternative to "large-volume-plating". Heliyon 2023; 9:e20728. [PMID: 37876415 PMCID: PMC10590779 DOI: 10.1016/j.heliyon.2023.e20728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 09/28/2023] [Accepted: 10/04/2023] [Indexed: 10/26/2023] Open
Abstract
When testing the virucidal activity of biocides, the non-inactivated residual virus is titrated on cell cultures by the end point dilution method on 96-well tissue culture plates. However, residues of the biocide to be tested also come into contact with the cell cultures in varying concentrations and thus can lead to cytotoxic effects even at high levels of dilution. In the European standards for testing biocides, in particular disinfectants, methods such as Large-Volume-Plating (LVP) method and, in some guidelines, gel filtration procedures are described for reducing cytotoxic effects in the case of highly cytotoxic products, if the classical dilution method proves to be impractical. In order to enable the testing of highly cytotoxic biocides for their activity against viruses, an alternative method for reducing cytotoxicity is introduced, which is based on a procedure of isolating infectious viruses from cytotoxic patients' materials such as stool and can be applied when the other methods fail.
Collapse
Affiliation(s)
| | | | | | | | - S. Werner
- HygCen Germany GmbH, Schwerin, Germany
| |
Collapse
|
6
|
Jonsdottir HR, Zysset D, Lenz N, Siegrist D, Ruedin Y, Ryter S, Züst R, Geissmann Y, Ackermann-Gäumann R, Engler OB, Weber B. Virucidal activity of three standard chemical disinfectants against Ebola virus suspended in tripartite soil and whole blood. Sci Rep 2023; 13:15718. [PMID: 37735604 PMCID: PMC10514052 DOI: 10.1038/s41598-023-42376-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Accepted: 09/09/2023] [Indexed: 09/23/2023] Open
Abstract
Proper disinfection and inactivation of highly pathogenic viruses is an essential component of public health and prevention. Depending on environment, surfaces, and type of contaminant, various methods of disinfection must be both efficient and available. To test both established and novel chemical disinfectants against risk group 4 viruses in our maximum containment facility, we developed a standardized protocol and assessed the chemical inactivation of the two Ebola virus variants Mayinga and Makona suspended in two different biological soil loads. Standard chemical disinfectants ethanol and sodium hypochlorite completely inactivate both Ebola variants after 30 s in suspension at 70% and 0.5% v/v, respectively, concentrations recommended for disinfection by the World Health Organization. Additionally, peracetic acid is also inactivating at 0.2% v/v under the same conditions. Continued vigilance and optimization of current disinfection protocols is extremely important due to the continuous presence of Ebola virus on the African continent and increased zoonotic spillover of novel viral pathogens. Furthermore, to facilitate general pandemic preparedness, the establishment and sharing of standardized protocols is very important as it allows for rapid testing and evaluation of novel pathogens and chemical disinfectants.
Collapse
Affiliation(s)
- Hulda R Jonsdottir
- Spiez Laboratory, Federal Office for Civil Protection, Spiez, Switzerland.
- Department of Rheumatology, Immunology, and Allergology, Inselspital University Hospital, Bern, Switzerland.
- Department of BioMedical Research, University of Bern, Bern, Switzerland.
| | - Daniel Zysset
- Spiez Laboratory, Federal Office for Civil Protection, Spiez, Switzerland.
| | - Nicole Lenz
- Spiez Laboratory, Federal Office for Civil Protection, Spiez, Switzerland
- Institute of Microbiology, Lausanne University Hospital, University of Lausanne, 1011, Lausanne, Switzerland
- Agroscope, Federal Office for Agriculture, Bern, Switzerland
| | - Denise Siegrist
- Spiez Laboratory, Federal Office for Civil Protection, Spiez, Switzerland
| | - Yelena Ruedin
- Spiez Laboratory, Federal Office for Civil Protection, Spiez, Switzerland
| | - Sarah Ryter
- Spiez Laboratory, Federal Office for Civil Protection, Spiez, Switzerland
- Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
| | - Roland Züst
- Spiez Laboratory, Federal Office for Civil Protection, Spiez, Switzerland
| | - Yannick Geissmann
- Spiez Laboratory, Federal Office for Civil Protection, Spiez, Switzerland
| | - Rahel Ackermann-Gäumann
- Spiez Laboratory, Federal Office for Civil Protection, Spiez, Switzerland
- ADMED Microbiologie, La Chaux-de-Fonds, Switzerland
| | - Olivier B Engler
- Spiez Laboratory, Federal Office for Civil Protection, Spiez, Switzerland
| | - Benjamin Weber
- Spiez Laboratory, Federal Office for Civil Protection, Spiez, Switzerland
| |
Collapse
|
7
|
Ruhlandt M, Becker B, Paulmann D, Dotzauer A, Arndt A, Todt D, Steinmann E, Steinmann J, Brill FH. Impact of concentration, temperature and pH on the virucidal activity of alcohols against human adenovirus. Am J Infect Control 2023; 51:1011-1016. [PMID: 36736900 DOI: 10.1016/j.ajic.2023.01.014] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 01/16/2023] [Accepted: 01/16/2023] [Indexed: 02/04/2023]
Abstract
BACKGROUND Adenoviruses belong to the stable nonenveloped viruses playing an important role in healthcare-associated infections mainly causing respiratory infections and epidemic keratoconjunctivitis. Hand disinfection with alcoholic preparations is therefore one of the most important measures to prevent such viral infections in hospitals and other medical settings. METHODS The inactivation of adenovirus type 5 by ethanol, 1- and 2-propanol, and 2 commercially available hand disinfectants was examined at different concentrations, temperatures, and pH-values. RESULTS For ethanol and 1-propanol the maximum virus-inactivating properties after 30 seconds exposure were found at a concentration of 60%-70% and 50%-60%, respectively, whereas with 2-propanol no activity was observed. The virucidal activity of all alcohols and the 2 hand disinfectants examined was increased when raising the temperature from 20°C to 25°C. By increasing the pH value to 9, a strong improvement of the activity of ethanol, 1-propanol and 1 hand disinfectant was observed, whereas pH lowering resulted in decrease of activity. CONCLUSIONS These results demonstrate the importance of physical parameters in the inactivation of adenoviruses by alcohols and will help to improve measures to reduce adenovirus transmission in healthcare settings.
Collapse
Affiliation(s)
- Marina Ruhlandt
- Dr Brill and Partner GmbH, Institute for Hygiene and Microbiology, Bremen, Germany
| | - Britta Becker
- Dr Brill and Partner GmbH, Institute for Hygiene and Microbiology, Bremen, Germany
| | - Dajana Paulmann
- Dr Brill and Partner GmbH, Institute for Hygiene and Microbiology, Bremen, Germany
| | - Andreas Dotzauer
- Laboratorium für Virusforschung, University Bremen/UFT, Bremen, Germany
| | | | - Daniel Todt
- Department for Molecular and Medical Virology, Ruhr University Bochum, Bochum, Germany; European Virus Bioinformatics Center (EVBC), Jena, Germany
| | - Eike Steinmann
- Department for Molecular and Medical Virology, Ruhr University Bochum, Bochum, Germany
| | - Jochen Steinmann
- Dr Brill and Partner GmbH, Institute for Hygiene and Microbiology, Bremen, Germany
| | - Florian Hh Brill
- Dr Brill and Partner GmbH, Institute for Hygiene and Microbiology, Bremen, Germany.
| |
Collapse
|
8
|
Frehtman V, Wohlfarth D, Müller M, Krebs O, Leuchs B. Stability and safety key factors of the oncolytic protoparvovirus H-1 from manufacturing to human application. Appl Microbiol Biotechnol 2023:10.1007/s00253-023-12521-4. [PMID: 37209160 DOI: 10.1007/s00253-023-12521-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 03/30/2023] [Accepted: 04/04/2023] [Indexed: 05/22/2023]
Abstract
The oncolytic rodent protoparvovirus H-1PV has been successfully used in phase I/II clinical trials to treat recurrent glioblastoma multiforme and pancreatic cancer. The present work focuses on the stability and environmental safety of the H-1PV drug product from production up to its use in patients. We identified hold-steps in manufacturing for up to 3 months and showed 7-years stability for the optimal product formulation. Stress testing via UV, temperature, and pH also determined that the drug product is stable. De- and rehydration for lyophilization simulation are possible without infectious virus loss. Furthermore, we prove in-use stability for 4 days at room temperature and show no virus adsorption to injection devices, guaranteeing the correct administration dose. Iodixanol in the formulation, resulting in high viscosity, protects H-1PV against UV and some disinfectants. Nonetheless, H-1PV is depleted with rapid heat deactivation, autoclavation, and nanofiltration. Assessment of chemical disinfectants that are currently recommended by the Robert Koch-Institute demonstrated that ethanol-based hand disinfectants are not effective; however, aldehyde-based disinfectants for surfaces and instruments demonstrate sufficient H-1PV deactivation in aqueous formulations by 4 to 6 log10. With these results, we could establish a specific hygiene plan for all involved facilities from manufacturing to patient application. Overall, using 48% Iodixanol in Visipaque/Ringer as a drug formulation stabilizes H-1PV infectivity over years and protects against virus loss from short-term UV, low pH, and temperature exposure. KEY POINTS: • Optimal formulation of drug product protects the H-1PV protoparvovirus against UV, temperatures up to 50 °C, and low pH (> 1.25), stabilizing the virus during manufacturing, storage, transport, and application. • H-1PV is stable during in-use and does not adsorb to injection devices during patient administration. • Hygiene plan for H-1PV with physicochemical methods has been established.
Collapse
Affiliation(s)
- Veronika Frehtman
- German Cancer Research Center, Tumor Virology, Im Neuenheimer Feld 280, 69120, Heidelberg, Germany
| | - Daniel Wohlfarth
- German Cancer Research Center, Tumor Virology, Im Neuenheimer Feld 280, 69120, Heidelberg, Germany
| | - Marcus Müller
- German Cancer Research Center, Tumor Virology, Im Neuenheimer Feld 280, 69120, Heidelberg, Germany
| | - Ottheinz Krebs
- German Cancer Research Center, Tumor Virology, Im Neuenheimer Feld 280, 69120, Heidelberg, Germany
| | - Barbara Leuchs
- German Cancer Research Center, Tumor Virology, Im Neuenheimer Feld 280, 69120, Heidelberg, Germany.
| |
Collapse
|
9
|
Keck H, Eschbaumer M, Beer M, Hoffmann B. Comparison of Biosafety and Diagnostic Utility of Biosample Collection Cards. Viruses 2022; 14:2392. [PMID: 36366491 PMCID: PMC9697902 DOI: 10.3390/v14112392] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 10/26/2022] [Accepted: 10/27/2022] [Indexed: 01/31/2023] Open
Abstract
Six different biosample collection cards, often collectively referred to as FTA (Flinders Technology Associates) cards, were compared for their ability to inactivate viruses and stabilize viral nucleic acid for molecular testing. The cards were tested with bluetongue virus, foot-and-mouth disease virus (FMDV), small ruminant morbillivirus (peste des petits ruminants virus), and lumpy skin disease virus (LSDV), encompassing non-enveloped and enveloped representatives of viruses with double-stranded and single-stranded RNA genomes, as well as an enveloped DNA virus. The cards were loaded with virus-containing cell culture supernatant and tested after one day, one week, and one month. The inactivation of the RNA viruses was successful for the majority of the cards and filters. Most of them completely inactivated the viruses within one day or one week at the latest, but the inactivation of LSDV presented a greater challenge. Three of the six cards inactivated LSDV within one day, but the others did not achieve this even after an incubation period of 30 days. Differences between the cards were also evident in the stabilization of nucleic acid. The amount of detectable viral genome on the cards remained approximately constant for all viruses and cards over an incubation period of one month. With some cards, however, a bigger loss of detectable nucleic acid compared with a directly extracted sample was observed. Using FMDV, it was confirmed that the material applied to the cards was sufficiently conserved to allow detailed molecular characterization by sequencing. Furthermore, it was possible to successfully recover infectious FMDV by chemical transfection from some cards, confirming the preservation of full-length RNAs.
Collapse
Affiliation(s)
| | | | | | - Bernd Hoffmann
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Suedufer 10, 17493 Greifswald-Insel Riems, Germany
| |
Collapse
|
10
|
Hessling M, Gierke AM, Sicks B, Fehler N, Vatter P. Sensitivity of influenza virus to ultraviolet irradiation. GMS HYGIENE AND INFECTION CONTROL 2022; 17:Doc20. [PMID: 36531786 PMCID: PMC9727784 DOI: 10.3205/dgkh000423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
BACKGROUND The measures implemented against the coronavirus pandemic also led to a sharp decline in influenza infections in the 2020/2021 flu season. In the meantime, however, the number of influenza infections has risen again; it is known from history that influenza viruses can also trigger severe pandemics. Therefore, we investigated the efficacy of ultraviolet radiation in the spectral range of 200-400 nm for inactivating influenza viruses. MATERIALS AND METHODS The scientific literature was searched for published ultraviolet (UV) irradiation experiments with influenza viruses and the results were standardized by determining the lg-reduction dose. The results were then sorted and analyzed by virus type and wavelength as far as possible. RESULTS The scope of the published data sets was limited and revealed large variations with regard to the lg-reduction dose. Only for experiments with influenza viruses in liquid media in the UVC spectral range around 260 nm - the emission range of commonly-used mercury vapor lamps - was there sufficient data to compare virus types. No significant difference between the virus (sub-) types was observed. The lg-reduction dose in this spectral range is 1.75 mJ/cm2 (median). It was also shown that influenza viruses are particularly sensitive in the far-UVC spectral range (200-230 nm). CONCLUSION UVC, including far-UVC, is suited for influenza virus inactivation as long as the viruses are in UVC-transparent materials. A large difference in the UV sensitivity of different influenza viruses from the last approx. 100 years could not be detected. Thus, it is reasonable to assume that future influenza viruses will also be similarly UV-sensitive or that UV can also inactivate new influenza viruses.
Collapse
Affiliation(s)
- Martin Hessling
- Institute of Medical Engineering and Mechatronics, Ulm University of Applied Sciences, Ulm, Germany
| | - Anna-Maria Gierke
- Institute of Medical Engineering and Mechatronics, Ulm University of Applied Sciences, Ulm, Germany
| | - Ben Sicks
- Institute of Medical Engineering and Mechatronics, Ulm University of Applied Sciences, Ulm, Germany
| | - Nicole Fehler
- Institute of Medical Engineering and Mechatronics, Ulm University of Applied Sciences, Ulm, Germany
| | - Petra Vatter
- Institute of Medical Engineering and Mechatronics, Ulm University of Applied Sciences, Ulm, Germany
| |
Collapse
|
11
|
Heat Inactivation of Influenza Viruses—Analysis of Published Data and Estimations for Required Decimal Reduction Times for Different Temperatures and Media. MICROBIOLOGY RESEARCH 2022. [DOI: 10.3390/microbiolres13040060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
(1) Background: Influenza is a viral infection that has claimed many millions of lives over the past 100 years, and there is always a risk that a new influenza virus will emerge and cause another pandemic. One way to reduce such a potential new influenza virus will be heat inactivation. The question in this study is how much the heat sensitivities of previous influenza viruses differ. If they are very similar, it is expected that a new influenza virus can be inactivated with the same heat parameters as previous influenza viruses. (2) Methods: Through a literature search, published heat inactivation results are compiled and analyzed using Arrhenius models and regression equations for decimal reduction times for different temperatures and media determined. (3) Results: There are about 50 studies on heat inactivation of human and avian influenza viruses so far, showing large differences in heat sensitivity of influenza viruses in different media. However, within a single medium the differences between viruses are rather small. (4) Conclusions: At a temperature of 60 °C, previous influenza viruses can be reduced by 4 or more orders of magnitude within approximately 30 min in almost all media, and this is likely to be true for a potential new influenza virus. Further studies, especially on human influenza viruses, would be desirable.
Collapse
|
12
|
Anforderungen an die Hygiene bei der Reinigung und Desinfektion von Flächen. Bundesgesundheitsblatt Gesundheitsforschung Gesundheitsschutz 2022; 65:1074-1115. [PMID: 36173419 PMCID: PMC9521013 DOI: 10.1007/s00103-022-03576-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
|
13
|
Steinmann J, Eggers M, Rapp I, Todt D, Steinmann E, Brill FH, Schwebke I. Evaluation of the substitution of poliomyelitis virus for testing virucidal activities of instrument and surface disinfection. J Hosp Infect 2022; 122:60-63. [PMID: 35033614 DOI: 10.1016/j.jhin.2021.12.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Revised: 12/14/2021] [Accepted: 12/22/2021] [Indexed: 10/19/2022]
Abstract
The Global Polio Eradication initiative has the goal to eradicate poliomyelitis worldwide. This means that poliomyelitisvirus type 1 strain LSc 2ab (PV-1) can no longer be used for the evaluation of virucidal activity of chemical disinfectants. In this study, we evaluated murine parvovirus ATCC VR 1346 (minute virus of mice, MVM) as suitable surrogate for PV-1 when testing virucidal activity of biocides in instrument and surface disinfectants. Suspension testing in different laboratories with two commercially available active biocidal substances based on glutaraldehyde (GDA 0.01 % to 0.25 %) and peracetic acid (PAA 0.005 % to 0.1%) with an exposure time of 30 minutes was performed. Both pathogens showed comparable susceptibility and dose-dependent reduction of virus titers following German and European Guidelines.
Collapse
Affiliation(s)
- Jochen Steinmann
- Dr. Brill and Partner GmbH, Institute for Hygiene and Microbiology, Bremen, Germany.
| | | | - Ingrid Rapp
- Boehringer Ingelheim Therapeutics GmbH, Ochsenhausen, Germany
| | - Daniel Todt
- Department for Molecular and Medical Virology, Ruhr University Bochum, Germany; European Virus Bioinformatics Center (EVBC), Jena, Germany
| | - Eike Steinmann
- Department for Molecular and Medical Virology, Ruhr University Bochum, Germany
| | - Florian Hh Brill
- Dr. Brill and Partner GmbH, Institute for Hygiene and Microbiology, Bremen, Germany
| | - Ingeborg Schwebke
- Deutsche Vereinigung zur Bekämpfung der Viruskrankheiten, Berlin, Germany
| |
Collapse
|
14
|
Hufbauer M, Wieland U, Gebel J, Steinmann J, Akgül B, Eggers M. Inactivation of Polyomavirus SV40 as Surrogate for Human Papillomaviruses by Chemical Disinfectants. Viruses 2021; 13:v13112207. [PMID: 34835013 PMCID: PMC8619696 DOI: 10.3390/v13112207] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 10/27/2021] [Accepted: 10/29/2021] [Indexed: 12/13/2022] Open
Abstract
Human papillomaviruses (HPV) are non-enveloped DNA viruses infecting cutaneous and mucosal squamous epithelia. Sexually transmitted HPV-types that are carcinogenic to humans such as HPV16 can induce cervical and other anogenital cancers. Virus transmission through fomites such as inadequately disinfected gynecological equipment is a further potential transmission route. Since HPV cannot be easily grown in cell culture, polyomavirus SV40 has been used as a surrogate virus when testing the virucidal activity of chemical disinfectants. So far, studies that have compared the virucidal activity of different disinfectants against HPV and SV40 are lacking. Here, we evaluated the susceptibility of HPV16 pseudovirus and SV40 to seven active biocidal substances using quantitative suspension tests. Ethanol, glutaraldehyde (GTA), dodecyldipropylentriamin (DPTA), and ortho-phthalaldehydes (OPA) were able to reduce the infectivity of HPV16 pseudovirus >99.99% after 5 min. In contrast, isopropanol, peracetic acid (PAA), and quaternary ammonium compounds with alkylamines (QAC) only led to a slight or no reduction in infectivity. Concerning SV40, only GTA (60 min contact time), PAA, and OPA had virus-inactivating effects. In conclusion, the virucidal activity of three out of seven disinfectants tested was different for HPV16 pseudovirus and SV40. In this study, SV40 was shown to be a reliable surrogate virus for HPV when testing isopropanol-, GTA-, QAC-, and OPA-based disinfectants.
Collapse
Affiliation(s)
- Martin Hufbauer
- Institute of Virology, National Reference Center for Papilloma- and Polyomaviruses, University of Cologne, Faculty of Medicine and University Hospital of Cologne, 50935 Cologne, Germany; (U.W.); (B.A.)
- Correspondence:
| | - Ulrike Wieland
- Institute of Virology, National Reference Center for Papilloma- and Polyomaviruses, University of Cologne, Faculty of Medicine and University Hospital of Cologne, 50935 Cologne, Germany; (U.W.); (B.A.)
| | - Jürgen Gebel
- Institute for Hygiene and Public Health, University Hospital Bonn, 53127 Bonn, Germany;
| | - Jochen Steinmann
- Dr. Brill + Partner GmbH Institute for Hygiene and Microbiology, 28259 Bremen, Germany;
| | - Baki Akgül
- Institute of Virology, National Reference Center for Papilloma- and Polyomaviruses, University of Cologne, Faculty of Medicine and University Hospital of Cologne, 50935 Cologne, Germany; (U.W.); (B.A.)
| | - Maren Eggers
- Labor Prof. Dr. G. Enders MVZ GbR, 70193 Stuttgart, Germany;
| |
Collapse
|
15
|
Grossegesse M, Leupold P, Doellinger J, Schaade L, Nitsche A. Inactivation of Coronaviruses during Sample Preparation for Proteomics Experiments. J Proteome Res 2021; 20:4598-4602. [PMID: 34432478 PMCID: PMC8406924 DOI: 10.1021/acs.jproteome.1c00320] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Indexed: 12/24/2022]
Abstract
Mass spectrometry-based proteomics is applied in SARS-CoV-2 research and is, moreover, being discussed as a novel method for SARS-CoV-2 diagnostics. However, the safe inactivation of coronaviruses by proteomics lysis buffers has not been systematically analyzed yet. Hence, for safety reasons a heating step prior to sample preparation is often performed. This step could be omitted once the safe inactivation with the typical buffers is proven. Here we test five different proteomics lysis buffers-4% SDS, 1% SDC, TFA, 6 M GdmCl, and 8 M urea-for their inactivation capacity of coronaviruses. Two representative human coronaviruses, namely HCoV-229E and HCoV-OC43, were used as surrogate for SARS-CoV-2. Lysis was performed at room temperature and at 95 °C for 5 min. Inactivation was confirmed by the absence of a cytopathic effect in MRC-5 cells, and equivocal results were further confirmed by serial passaging and quantitative real-time PCR. While at room temperature SDS, SDC, and TFA inactivated both coronaviruses, and GdmCl and urea resulted in partially incomplete inactivation. This demonstrates that care should be taken when choosing lysis buffers for proteomics analysis of coronaviruses, because some buffers do not ensure inactivation and, hence, biosafety during the further sample preparation.
Collapse
Affiliation(s)
- Marica Grossegesse
- Robert
Koch Institute, Centre for Biological
Threats and Special Pathogens, ZBS 1: Highly Pathogenic Viruses, Seestr. 10, 13353, Berlin, Germany
| | - Paula Leupold
- Robert
Koch Institute, Centre for Biological
Threats and Special Pathogens, ZBS 1: Highly Pathogenic Viruses, Seestr. 10, 13353, Berlin, Germany
| | - Joerg Doellinger
- Robert
Koch Institute, Centre for Biological
Threats and Special Pathogens, ZBS 1: Highly Pathogenic Viruses, Seestr. 10, 13353, Berlin, Germany
- Robert
Koch Institute, Centre for Biological
Threats and Special Pathogens, ZBS 6: Proteomics and Spectroscopy, Seestr. 10, 13353, Berlin, Germany
| | - Lars Schaade
- Robert
Koch Institute, Centre for Biological Threats and Special Pathogens, Seestr. 10, 13353, Berlin, Germany
| | - Andreas Nitsche
- Robert
Koch Institute, Centre for Biological
Threats and Special Pathogens, ZBS 1: Highly Pathogenic Viruses, Seestr. 10, 13353, Berlin, Germany
| |
Collapse
|
16
|
Steinmann J, Burkard T, Becker B, Paulmann D, Todt D, Bischoff B, Steinmann E, Brill FHH. Virucidal efficacy of an ozone-generating system for automated room disinfection. J Hosp Infect 2021; 116:16-20. [PMID: 34144097 DOI: 10.1016/j.jhin.2021.06.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Revised: 06/08/2021] [Accepted: 06/09/2021] [Indexed: 10/21/2022]
Abstract
Besides conventional prevention measures, no-touch technologies based on gaseous systems have been introduced in hospital hygiene for room disinfection. The whole-room disinfectant device Sterisafe Pro, which creates ozone as a biocidal agent, was tested for its virucidal efficacy based on Association Française de Normalisation Standard NF T 72-281:2014. All test virus titres were reduced after 150 and 300 min of decontamination, with mean reduction factors ranging from 2.63 (murine norovirus) to 3.94 (simian virus 40). These results will help to establish realistic conditions for virus inactivation, and assessment of the efficacy of ozone technology against non-enveloped and enveloped viruses.
Collapse
Affiliation(s)
- J Steinmann
- Dr. Brill + Partner GmbH Institute for Hygiene and Microbiology, Bremen, Germany
| | - T Burkard
- Ruhr University Bochum, Faculty of Medicine, Department for Molecular and Medical Virology, Bochum, Germany
| | - B Becker
- Dr. Brill + Partner GmbH Institute for Hygiene and Microbiology, Bremen, Germany
| | - D Paulmann
- Dr. Brill + Partner GmbH Institute for Hygiene and Microbiology, Bremen, Germany
| | - D Todt
- Ruhr University Bochum, Faculty of Medicine, Department for Molecular and Medical Virology, Bochum, Germany; European Virus Bioinformatics Centre, Jena, Germany
| | - B Bischoff
- Dr. Brill + Partner GmbH Institute for Hygiene and Microbiology, Bremen, Germany
| | - E Steinmann
- Ruhr University Bochum, Faculty of Medicine, Department for Molecular and Medical Virology, Bochum, Germany
| | - F H H Brill
- Dr. Brill + Partner GmbH Institute for Hygiene and Microbiology, Bremen, Germany.
| |
Collapse
|
17
|
Steinhauer K, Meister TL, Todt D, Krawczyk A, Paßvogel L, Becker B, Paulmann D, Bischoff B, Eggers M, Pfaender S, Brill FHH, Steinmann E. Virucidal efficacy of different formulations for hand and surface disinfection targeting SARS CoV-2. J Hosp Infect 2021; 112:27-30. [PMID: 33771601 PMCID: PMC7986349 DOI: 10.1016/j.jhin.2021.03.015] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Revised: 02/19/2021] [Accepted: 03/01/2021] [Indexed: 12/20/2022]
Abstract
In the ongoing SARS CoV-2 pandemic, effective disinfection measures are needed, and guidance based on the methodological framework of the European Committee for Standardization (CEN) may enable the choice of effective disinfectants on an immediate basis. This study aimed to elucidate whether disinfectants claiming ‘virucidal activity against enveloped viruses’ as specified in the European Standard EN 14476 as well as in the German Association for the Control of Viral Diseases/Robert Koch Institute (DVV/RKI) guideline are effectively inactivating SARS-CoV-2. Two commercially available formulations for surface disinfection and one formulation for hand disinfection were studied regarding their virucidal activity. Based on the data of this study the enveloped SARS-CoV-2 is at least equally susceptible compared to the standard test virus vaccinia used in the EN 14476 and DVV/RKI guidelines. Thus, chemical disinfectants claiming ‘virucidal activity against enveloped viruses’ based on the EN 14476 and DVV/RKI guidelines will be an effective choice to target enveloped SARS-CoV-2 as a preventive measure.
Collapse
Affiliation(s)
- K Steinhauer
- Department Research & Scientific Services, Schülke & Mayr GmbH, Norderstedt, Germany; Faculty of Mechanical Engineering, Kiel University of Applied Sciences, Kiel, Germany.
| | - T L Meister
- Department of Molecular and Medical Virology, Ruhr University Bochum, Bochum, Germany
| | - D Todt
- Department of Molecular and Medical Virology, Ruhr University Bochum, Bochum, Germany; European Virus Bioinformatics Center, Jena, Germany
| | - A Krawczyk
- Department of Infectious Diseases, West German Centre of Infectious Diseases, University Hospital Essen, University of Duisburg-Essen, Essen, Germany; Institute for Virology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - L Paßvogel
- Department Research & Scientific Services, Schülke & Mayr GmbH, Norderstedt, Germany
| | - B Becker
- Dr. Brill + Partner GmbH Institut for Hygiene and Microbiology, Hamburg, Germany
| | - D Paulmann
- Dr. Brill + Partner GmbH Institut for Hygiene and Microbiology, Hamburg, Germany
| | - B Bischoff
- Dr. Brill + Partner GmbH Institut for Hygiene and Microbiology, Hamburg, Germany
| | - M Eggers
- Labor Prof. Gisela Enders MVZ GbR, Stuttgart, Germany
| | - S Pfaender
- Department of Molecular and Medical Virology, Ruhr University Bochum, Bochum, Germany
| | - F H H Brill
- Dr. Brill + Partner GmbH Institut for Hygiene and Microbiology, Hamburg, Germany
| | - E Steinmann
- Department of Molecular and Medical Virology, Ruhr University Bochum, Bochum, Germany
| |
Collapse
|
18
|
Dannhorn A, Ling S, Powell S, McCall E, Maglennon G, Jones GN, Pierce AJ, Strittmatter N, Hamm G, Barry ST, Bunch J, Goodwin RJA, Takats Z. Evaluation of UV-C Decontamination of Clinical Tissue Sections for Spatially Resolved Analysis by Mass Spectrometry Imaging (MSI). Anal Chem 2021; 93:2767-2775. [PMID: 33474935 DOI: 10.1021/acs.analchem.0c03430] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Clinical tissue specimens are often unscreened, and preparation of tissue sections for analysis by mass spectrometry imaging (MSI) can cause aerosolization of particles potentially carrying an infectious load. We here present a decontamination approach based on ultraviolet-C (UV-C) light to inactivate clinically relevant pathogens such as herpesviridae, papovaviridae human immunodeficiency virus, or SARS-CoV-2, which may be present in human tissue samples while preserving the biodistributions of analytes within the tissue. High doses of UV-C required for high-level disinfection were found to cause oxidation and photodegradation of endogenous species. Lower UV-C doses maintaining inactivation of clinically relevant pathogens to a level of increased operator safety were found to be less destructive to the tissue metabolome and xenobiotics. These doses caused less alterations of the tissue metabolome and allowed elucidation of the biodistribution of the endogenous metabolites. Additionally, we were able to determine the spatially integrated abundances of the ATR inhibitor ceralasertib from decontaminated human biopsies using desorption electrospray ionization-MSI (DESI-MSI).
Collapse
Affiliation(s)
- Andreas Dannhorn
- Department of Metabolism, Digestion and Reproduction, Faculty of Medicine, Imperial College London, 605 SAF Building, South Kensington Campus, London CB4 0FZ, U.K.,Imaging and Data Analytics, Clinical Pharmacology and Safety Sciences, R&D, AstraZeneca, Cambridge SW7 2AZ, U.K
| | - Stephanie Ling
- Imaging and Data Analytics, Clinical Pharmacology and Safety Sciences, R&D, AstraZeneca, Cambridge SW7 2AZ, U.K
| | - Steven Powell
- Safety, Health and Environment (SHE), Cambridge Operations, BioPharmaceuticals R&D, AstraZeneca, Cambridge CB4 0FZ, U.K
| | - Eileen McCall
- Safety, Health and Environment (SHE), Cambridge Operations, BioPharmaceuticals R&D, AstraZeneca, Cambridge CB4 0FZ, U.K
| | - Gareth Maglennon
- Oncology Safety, Clinical Pharmacology and Safety Sciences, R&D, AstraZeneca, Cambridge CB22 3AT, U.K
| | - Gemma N Jones
- Translational Medicine, Oncology R&D, AstraZeneca, Cambridge SG8 6EH, U.K
| | - Andrew J Pierce
- Translational Medicine, Oncology R&D, AstraZeneca, Cambridge SG8 6EH, U.K
| | - Nicole Strittmatter
- Imaging and Data Analytics, Clinical Pharmacology and Safety Sciences, R&D, AstraZeneca, Cambridge SW7 2AZ, U.K
| | - Gregory Hamm
- Imaging and Data Analytics, Clinical Pharmacology and Safety Sciences, R&D, AstraZeneca, Cambridge SW7 2AZ, U.K
| | - Simon T Barry
- Bioscience, Discovery, Oncology R&D, AstraZeneca, Cambridge CB2 0RE, U.K
| | - Josephine Bunch
- National Centre of Excellence in Mass Spectrometry Imaging (NiCE-MSI), National Physical Laboratory, Teddington TW11 0LW, U.K
| | - Richard J A Goodwin
- Imaging and Data Analytics, Clinical Pharmacology and Safety Sciences, R&D, AstraZeneca, Cambridge SW7 2AZ, U.K.,Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8QQ, U.K
| | - Zoltan Takats
- Department of Metabolism, Digestion and Reproduction, Faculty of Medicine, Imperial College London, 605 SAF Building, South Kensington Campus, London CB4 0FZ, U.K
| |
Collapse
|
19
|
Brill FHH, Becker B, Todt D, Steinmann E, Steinmann J, Paulmann D, Bischoff B, Steinmann J. Virucidal efficacy of glutaraldehyde for instrument disinfection. GMS HYGIENE AND INFECTION CONTROL 2020; 15:Doc34. [PMID: 33391969 PMCID: PMC7745644 DOI: 10.3205/dgkh000369] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
Abstract
Aim: Glutaraldehyde (GDA) is an active ingredient in many instrument disinfectants and is effective against a broad spectrum of microorganisms. In the past, the virus-inactivating properties of these products were mainly claimed based on quantitative suspension tests with different test viruses. Recently, however, a European Norm EN 17111:2018 has been published which allows examination of instrument disinfectants in a surface carrier test, simulating practical conditions. Therefore, it is of interest to evaluate GDA for the ability to inactivate the viruses used in this European Norm as test viruses. Methods: The virucidal efficacy of GDA as the active ingredient in instrument disinfectants was evaluated with 4 different test viruses in a method simulating practical conditions (EN 17111:2018). Results: With a fixed exposure time of five minutes at 20°C, 100 ppm GDA were necessary to inactivate vaccinia virus, classifying it as a limited spectrum virucidal activity for pre-cleaning products. For adenovirus, 125 ppm GDA were required, whereas for murine norovirus as a surrogate for human norovirus, 4,000 ppm GDA were required for a significant reduction of viral titres. Both non-enveloped viruses must be tested to prove virucidal activity in EN 17111:2018. But even 4,000 ppm were not enough to yield a 4 log10 reduction of the murine parvovirus at 20°C. This virus is only required as a test virus using this method if temperatures ≥40°C are used. Conclusion: GDA, as the active ingredient of many instrument disinfectants, shows virucidal efficacy at 20°C. The necessary concentrations are strongly dependent on the stability of the test viruses. Due to the high stability of murine norovirus, GDA levels of 4,000 ppm were required to inactivate this virus within the 5-minute exposure time.
Collapse
Affiliation(s)
- Florian H H Brill
- Dr. Brill + Partner GmbH Institute for Hygiene and Microbiology, Bremen, Germany
| | - Britta Becker
- Dr. Brill + Partner GmbH Institute for Hygiene and Microbiology, Bremen, Germany
| | - Daniel Todt
- Department for Molecular & Medical Virology, Ruhr-University Bochum, Bochum, Germany
| | - Eike Steinmann
- Department for Molecular & Medical Virology, Ruhr-University Bochum, Bochum, Germany
| | - Joerg Steinmann
- Institute of Clinical Hygiene, Medical Microbiology and Infectiology, Paracelsus Medical University, General Hospital Nürnberg, Nuremberg, Germany.,Institute of Medical Microbiology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Dajana Paulmann
- Dr. Brill + Partner GmbH Institute for Hygiene and Microbiology, Bremen, Germany
| | - Birte Bischoff
- Dr. Brill + Partner GmbH Institute for Hygiene and Microbiology, Bremen, Germany
| | - Jochen Steinmann
- Dr. Brill + Partner GmbH Institute for Hygiene and Microbiology, Bremen, Germany
| |
Collapse
|
20
|
Sauerbrei A. Bactericidal and virucidal activity of ethanol and povidone-iodine. Microbiologyopen 2020; 9:e1097. [PMID: 32567807 PMCID: PMC7520996 DOI: 10.1002/mbo3.1097] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Revised: 05/24/2020] [Accepted: 05/30/2020] [Indexed: 11/12/2022] Open
Abstract
Ethanol and povidone‐iodine (PVP‐I) are important microbicides that inactivate bacteria and viruses. The present study provides a review of literature data on the concentration‐dependent bactericidal and virucidal activity of ethanol and PVP‐I in vitro. A systematic search was performed using the meta‐database for biomedicine PubMed. Eventually, 74 studies with original data on the reduction of bacterial and viral infectivity using in vitro tests were analyzed. A safe bactericidal effect of ethanol can be expected at concentrations between 60% and 85%, and the exposure times vary between ≤0.5 and ≥5 min. Within an exposure of up to 5 min, 80%–90% ethanol also exerts virucidal/low‐level activity, which includes its action against enveloped viruses plus adeno‐, noro‐, and rotaviruses. For PVP‐I, the best bactericidal and virucidal/high‐level effect is present at a concentration range of approx. 0.08%–0.9% depending on the free iodine concentration. The maximum exposure times are 5 min for bacteria and 60 min for viruses. The available data may help optimize the significant inactivation of bacteria and viruses in various areas. However, as the conditions in application practice can vary, concrete recommendations for the application can only be derived to a limited extent.
Collapse
Affiliation(s)
- Andreas Sauerbrei
- Section Experimental Virology, Institute of Medical Microbiology, Jena University Hospital, Jena, Germany
| |
Collapse
|
21
|
Comment on the significance, application and determination of the large volume plating (LVP) : 2. Communication of the DVV/GfV Virus Disinfection Expert Committee on the DVV/RKI Guideline in the version of December 1st, 2014. Bundesgesundheitsblatt Gesundheitsforschung Gesundheitsschutz 2020; 63:657-659. [PMID: 32161981 DOI: 10.1007/s00103-020-03117-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
22
|
Pfaff F, Glück B, Hoyer T, Rohländer D, Sauerbrei A, Zell R. Tungsten carbide nanoparticles show a broad spectrum virucidal activity against enveloped and nonenveloped model viruses using a guideline-standardized in vitro test. Lett Appl Microbiol 2019; 69:302-309. [PMID: 31436888 DOI: 10.1111/lam.13208] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Revised: 08/15/2019] [Accepted: 08/15/2019] [Indexed: 12/12/2022]
Abstract
Five tungsten carbide nanoparticle preparations (denoted WC1-WC5) were investigated for broad spectrum virucidal activity against four recommended model viruses. These are modified vaccinia virus Ankara (MVA), human adenovirus type 5 (HAdV-5), poliovirus type 1 (PV-1) and murine norovirus (MNV). All virucidal tests were performed two to five times using the quantitative suspension test, which is a highly standardized test method to evaluate the virucidal efficacy of disinfectants in accordance with the European norm EN 14476+A1 and the German DVV/RKI guidelines. Quantitative detection of viruses was conducted by endpoint titration and quantitative real-time PCR. Results showed that three of the five tested compounds (WC1-WC3) were able to reduce the infectivity of all model viruses by at least four log10 of tissue culture infective dose 50% per ml after 15 min, whereas the other two compounds exhibited only limited efficacy (WC4) or showed cytotoxicity (WC5). Virucidal activity of nanoparticles increased with incubation time and a dose-effect curve showed dependence of virucidal activity with particle concentration. Whereas WC1-WC4 showed little cytotoxicity, WC5 which was doped with copper exhibited a significant cytotoxic effect. These findings propose tungsten carbide nanoparticles to be very promising in terms of new disinfection techniques. SIGNIFICANCE AND IMPACT OF THE STUDY: The present study investigates the virucidal activity of tungsten carbide nanoparticles using the quantitative suspension test in accordance with the European norm EN 14476+A1 and the German DVV/RKI guidelines. Due to highly standardized assay conditions, results of this test are considered very reliable for evaluation of the virucidal activity of disinfectants. Broad-spectrum activity and high efficacy of three different tungsten carbide nanoparticles preparations is concluded.
Collapse
Affiliation(s)
- F Pfaff
- Section of Experimental Virology, Institute for Medical Microbiology, Jena University Hospital, Friedrich Schiller University, Jena, Germany
| | - B Glück
- Section of Experimental Virology, Institute for Medical Microbiology, Jena University Hospital, Friedrich Schiller University, Jena, Germany
| | - T Hoyer
- Fraunhofer-Institute for Ceramic Technologies and Systems, IKTS Hermsdorf, Hermsdorf, Germany
| | - D Rohländer
- Fraunhofer-Institute for Ceramic Technologies and Systems, IKTS Hermsdorf, Hermsdorf, Germany
| | - A Sauerbrei
- Section of Experimental Virology, Institute for Medical Microbiology, Jena University Hospital, Friedrich Schiller University, Jena, Germany
| | - R Zell
- Section of Experimental Virology, Institute for Medical Microbiology, Jena University Hospital, Friedrich Schiller University, Jena, Germany
| |
Collapse
|
23
|
Becker B, Henningsen L, Paulmann D, Bischoff B, Todt D, Steinmann E, Steinmann J, Brill FHH, Steinmann J. Evaluation of the virucidal efficacy of disinfectant wipes with a test method simulating practical conditions. Antimicrob Resist Infect Control 2019; 8:121. [PMID: 31346462 PMCID: PMC6636036 DOI: 10.1186/s13756-019-0569-4] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Accepted: 07/04/2019] [Indexed: 01/17/2023] Open
Abstract
Background The use of disinfectant wipes in hospitals is increasing over the last years. These wipes should be able to inactivate microorganisms including viruses on environmental surfaces and to prevent their transfer to clean areas. The European norm (EN) 16615:2015 describes a wiping process over four fields starting on the contaminated field 1 followed by fields 2–4 and back to the starting point (4-field test). This test method exclusively describes killing and transfer of vegetative bacteria and fungi by disinfectant wipes without measuring virucidal activities. Therefore, it was the aim of this study to use the existing test methodology additionally to evaluate virus inactivation by wipes. Methods The 4-field test was performed with four commercially available disinfectant wipes including the examination of the active solutions of these wipes with a reference wipe. Murine norovirus (MNV) as surrogate of human noroviruses, adenovirus (AdV) type 5 and polyomavirus SV40 (SV40) were chosen as test viruses. Results The per acetic acid (PAA)-based wipe (wipe A) was able to inactivate all three test viruses resulting in a four log10 reduction on test field 1, whereas the quaternary ammonium compound (QAC)-based products (wipes B and C) failed to reach such reduction. Both QAC-based wipes were able to inactivate SV40 and only the active solution of wipe B was effective against MNV. Another wipe with 2-propanol as active ingredient (wipe D) was not able to show a sufficient efficacy against all three test viruses. There was a good agreement between the results of the wipes and the corresponding fluids showing no influence of the material of wipes. Tests with the 2-propanol-based wipe D showed a transfer of all test viruses to the non-contaminated test fields 2–4. SV40 was additionally transferred by the QAC-based wipe C with 0.78% active ingredients to these additional fields. In all other cases no virus transfer to test fields 2–4 was observed. Finally, no virus could be detected in the PAA-based wipe A after usage in the 4-field test in contrast to the other wipes examined. Conclusions The successful performance of a 4-field test with viruses demonstrated that the existing wiping method with bacteria and fungi can be used in addition for measuring virucidal efficacy. The virus-inactivating properties of surface disinfectants could be evaluated therefore with a test simulating practical conditions with mechanical action resulting in more reliable data than the existing quantitative suspension tests and/or a carrier test without any mechanical action.
Collapse
Affiliation(s)
- Britta Becker
- Dr. Brill + Partner GmbH Institute for Hygiene and Microbiology, Norderoog 2, 28259 Bremen, Germany
| | - Lars Henningsen
- Dr. Brill + Partner GmbH Institute for Hygiene and Microbiology, Norderoog 2, 28259 Bremen, Germany
| | - Dajana Paulmann
- Dr. Brill + Partner GmbH Institute for Hygiene and Microbiology, Norderoog 2, 28259 Bremen, Germany
| | - Birte Bischoff
- Dr. Brill + Partner GmbH Institute for Hygiene and Microbiology, Norderoog 2, 28259 Bremen, Germany
| | - Daniel Todt
- 2Faculty of Medicine, Department for Molecular and Medical Virology, Ruhr University Bochum, Bochum, Germany
| | - Eike Steinmann
- 2Faculty of Medicine, Department for Molecular and Medical Virology, Ruhr University Bochum, Bochum, Germany
| | - Joerg Steinmann
- Institute of Hospital Hygiene, Medical Microbiology and Clinical Infectiology, Paracelsus Medical University, Nuremberg, Germany
| | - Florian H H Brill
- Dr. Brill + Partner GmbH Institute for Hygiene and Microbiology, Norderoog 2, 28259 Bremen, Germany
| | - Jochen Steinmann
- Dr. Brill + Partner GmbH Institute for Hygiene and Microbiology, Norderoog 2, 28259 Bremen, Germany
| |
Collapse
|
24
|
Vorwort zur Liste der vom Robert Koch-Institut geprüften und anerkannten Desinfektionsmittel und -verfahren. Bundesgesundheitsblatt Gesundheitsforschung Gesundheitsschutz 2017; 60:1270-1273. [PMID: 29085970 DOI: 10.1007/s00103-017-2633-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
25
|
Schwebke I, Eggers M, Gebel J, Geisel B, Glebe D, Rapp I, Steinmann J, Rabenau F. Prüfung und Deklaration der Wirksamkeit von Desinfektionsmitteln gegen Viren zur Anwendung im human-medizinischen Bereich. Bundesgesundheitsblatt Gesundheitsforschung Gesundheitsschutz 2017; 60:353-363. [PMID: 28220216 PMCID: PMC7079851 DOI: 10.1007/s00103-016-2509-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- I Schwebke
- Fachgebiet 14, Robert Koch-Institut, Nordufer 20, 13353, Berlin, Deutschland.
| | | | | | | | | | | | | | - F Rabenau
- Institut für Med. Virologie,, Universitätsklinikum Frankfurt, Paul-Ehrlich-Str. 40, 60596, Frankfurt/Main, Deutschland.
| |
Collapse
|
26
|
Rabenau HF, Schwebke I, Blümel J, Eggers M, Rapp I, Steinmann J, Willkommen H. [Not Available]. Bundesgesundheitsblatt Gesundheitsforschung Gesundheitsschutz 2016; 59:540-2. [PMID: 27007924 DOI: 10.1007/s00103-016-2325-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Affiliation(s)
- H F Rabenau
- Institut für Med. Virologie, Universitätsklinikum Frankfurt, Paul-Ehrlich-Str. 40, 60596, Frankfurt/Main, Deutschland.
| | - I Schwebke
- Robert Koch-Institut, Berlin, Deutschland
| | - J Blümel
- Paul-Ehrlich-Institut, Langen, Deutschland
| | - M Eggers
- Labor Prof. G. Enders & Partner, Stuttgart, Deutschland
| | - I Rapp
- Labor Dr. Merk & Kollegen, Ochsenhausen, Deutschland
| | - J Steinmann
- Dr. Brill + Dr. Steinmann Institut für Hygiene und Mikrobiologie, GmbH, Bremen, Deutschland
| | | |
Collapse
|
27
|
Ionidis G, Hübscher J, Jack T, Becker B, Bischoff B, Todt D, Hodasa V, Brill FHH, Steinmann E, Steinmann J. Development and virucidal activity of a novel alcohol-based hand disinfectant supplemented with urea and citric acid. BMC Infect Dis 2016; 16:77. [PMID: 26864562 PMCID: PMC4750209 DOI: 10.1186/s12879-016-1410-9] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2015] [Accepted: 02/02/2016] [Indexed: 11/16/2022] Open
Abstract
Background Hand disinfectants are important for the prevention of virus transmission in the health care system and environment. The development of broad antiviral spectrum hand disinfectants with activity against enveloped and non-enveloped viruses is limited due to a small number of permissible active ingredients able to inactivate viruses. Methods A new hand disinfectant was developed based upon 69.39 % w/w ethanol and 3.69 % w/w 2-propanol. Different amounts of citric acid and urea were added in order to create a virucidal claim against poliovirus (PV), adenovirus type 5 (AdV) and polyomavirus SV40 (SV40) as non-enveloped test viruses in the presence of fetal calf serum (FCS) as soil load. The exposure time was fixed to 60 s. Results With the addition of 2.0 % citric acid and 2.0 % urea an activity against the three test viruses was achieved demonstrating a four log10 reduction of viral titers. Furthermore, this formulation was able to inactivate PV, AdV, SV40 and murine norovirus (MNV) in quantitative suspension assays according to German and European Guidelines within 60 s creating a virucidal claim. For inactivation of vaccinia virus and bovine viral diarrhea virus 15 s exposure time were needed to demonstrate a 4 log10 reduction resulting in a claim against enveloped viruses. Additionally, it is the first hand disinfectant passing a carrier test with AdV and MNV. Conclusions In conclusion, this new formulation with a low alcohol content, citric acid and urea is capable of inactivating all enveloped and non-enveloped viruses as indicated in current guidelines and thereby contributing as valuable addition to the hand disinfection portfolio.
Collapse
Affiliation(s)
- Georgios Ionidis
- Oro Clean Chemie AG, Allmendstrasse 21, 8320, Fehraltorf, Switzerland.
| | - Judith Hübscher
- Oro Clean Chemie AG, Allmendstrasse 21, 8320, Fehraltorf, Switzerland.
| | - Thomas Jack
- Oro Clean Chemie AG, Allmendstrasse 21, 8320, Fehraltorf, Switzerland.
| | - Britta Becker
- Dr. Brill + Partner GmbH, Institute for Hygiene and Microbiology, Norderoog 2, 28259, Bremen, Germany.
| | - Birte Bischoff
- Dr. Brill + Partner GmbH, Institute for Hygiene and Microbiology, Norderoog 2, 28259, Bremen, Germany.
| | - Daniel Todt
- Institute for Experimental Virology, TWINCORE Centre for Experimental and Clinical Infection Research; a joint venture between the Medical School Hannover (MHH) and the Helmholtz Centre for Infection Research (HZI), Feodor-Lynen-Str. 7, 30625, Hannover, Germany.
| | - Veronika Hodasa
- Dr. Brill + Partner GmbH, Institute for Hygiene and Microbiology, Norderoog 2, 28259, Bremen, Germany.
| | - Florian H H Brill
- Dr. Brill + Partner GmbH, Institute for Hygiene and Microbiology, Norderoog 2, 28259, Bremen, Germany.
| | - Eike Steinmann
- Institute for Experimental Virology, TWINCORE Centre for Experimental and Clinical Infection Research; a joint venture between the Medical School Hannover (MHH) and the Helmholtz Centre for Infection Research (HZI), Feodor-Lynen-Str. 7, 30625, Hannover, Germany.
| | - Jochen Steinmann
- Dr. Brill + Partner GmbH, Institute for Hygiene and Microbiology, Norderoog 2, 28259, Bremen, Germany.
| |
Collapse
|
28
|
Eggers M, Eickmann M, Kowalski K, Zorn J, Reimer K. Povidone-iodine hand wash and hand rub products demonstrated excellent in vitro virucidal efficacy against Ebola virus and modified vaccinia virus Ankara, the new European test virus for enveloped viruses. BMC Infect Dis 2015; 15:375. [PMID: 26381737 PMCID: PMC4574578 DOI: 10.1186/s12879-015-1111-9] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2015] [Accepted: 09/03/2015] [Indexed: 11/10/2022] Open
Abstract
Background The recent Ebola virus (EBOV) epidemic highlights the need for efficacious virucidal products to help prevent infection and limit the spread of Ebola virus disease. However, there is limited data on the efficacy of virucidal products against EBOV, because the virus has a high biosafety level and is only available in a few laboratories worldwide. The virucidal efficacy of antiseptics and disinfectants can be determined using the European Standard EN14476:2013/FprA1:2015. Modified vaccinia virus Ankara (MVA) was introduced in 2014 as a reference virus for the claim ‘virucidal active against enveloped viruses for hygienic hand rub and hand wash’. For EBOV, also an enveloped virus, the suitability of MVA as a surrogate needs to be proven. The aim of this study was to test the in vitro efficacy of four povidone iodine (PVP-I) formulations against EBOV: 4 % PVP-I skin cleanser; 7.5 % PVP-I surgical scrub; 10 % PVP-I solution; and 3.2 % PVP-I and 78 % alcohol solution. The formulations were tested with MVA to define the test conditions, and as a secondary objective the suitability of MVA as a surrogate for enveloped viruses like EBOV was assessed. Methods According to EN14476, a standard suspension test was used for MVA. Large-volume plating was used for EBOV to increase test sensitivity and exclude potential after-effects. All products were tested under clean (0.3 g/L BSA) and dirty (3.0 g/L BSA + 3.0 mL/L erythrocytes) conditions with MVA for 15, 30, and 60 s. The concentration-contact time values obtained with MVA were verified for EBOV. Results Viral titres of MVA and EBOV were reduced by >99.99 % to >99.999 % under clean and dirty conditions after application of the test products for 15 seconds. Conclusions All products showed excellent virucidal efficacy against EBOV, demonstrating the important role PVP-I can play in helping to prevent and limit the spread of Ebola virus disease. The efficacy against both test viruses after 15 s is helpful information for the implementation of guidance for people potentially exposed to EBOV, and confirms the excellent virucidal efficacy of PVP-I against enveloped viruses. MVA was found to be a suitable surrogate for enveloped viruses like EBOV.
Collapse
Affiliation(s)
- Maren Eggers
- Labor Prof. Gisela Enders MVZ GbR and the Institute of Virology, Infectious Diseases and Epidemiology e.V., Stuttgart, Rosenbergstr. 85, 70193, Stuttgart, Germany.
| | - Markus Eickmann
- Institute for Virology, Philipps University of Marburg, Marburg, Germany.
| | - Katharina Kowalski
- Institute for Virology, Philipps University of Marburg, Marburg, Germany.
| | - Juergen Zorn
- Mundipharma Research GmbH & Co.KG, Höhenstrasse 10, 65549, Limburg, Lahn, Germany.
| | - Karen Reimer
- Mundipharma Research GmbH & Co.KG, Höhenstrasse 10, 65549, Limburg, Lahn, Germany. .,University Witten/Herdecke gGmbH, Witten, Germany.
| |
Collapse
|