1
|
Smart I, Goecke T, Ramm R, Petersen B, Lenz D, Haverich A, Niemann H, Hilfiker A. Dot blots of solubilized extracellular matrix allow quantification of human antibodies bound to epitopes present in decellularized porcine pulmonary heart valves. Xenotransplantation 2020; 28:e12646. [PMID: 32945050 DOI: 10.1111/xen.12646] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Revised: 08/13/2020] [Accepted: 09/02/2020] [Indexed: 01/01/2023]
Abstract
BACKGROUND The present study reports the development of a sensitive dot blot protocol for determining the level of preformed antibodies against porcine heart valve tissue derived from wild-type (WT) and α-Gal-KO (GGTA1-KO) pigs in human sera. METHODS The assay uses decellularized and solubilized heart valve tissue; antibody binding found in this dot blot assay could be correlated with antibody titers of preformed anti-α-Gal and anti-Neu5Gc antibodies detected by a sensitive ELISA. RESULTS The ultimate protocol had an inter-assay variance of 9.5% and an intra-assay variance of 9.2%, showing that the test is reliable and highly reproducible. With the aid of this dot blot assay, we found significant variation with regard to antibody contents among twelve human sera. Binding of preformed antibodies to WT tissue was significantly higher than to GGTA1-KO tissue. CONCLUSIONS The dot blot assay described herein could be a valuable tool to measure preformed antibody levels in human sera against unknown epitopes on decellularized tissue prior to implantation. Ultimately, this prescreening may allow a matching of the porcine xenograft with the respective human recipients in demand and thus may become an important tool for graft long-term survival similar to current allotransplantation settings.
Collapse
Affiliation(s)
- Isabel Smart
- Leibniz Research Laboratories for Biotechnology and Artificial Organs (LEBAO), Hannover Medical School, Hannover, Germany
| | - Tobias Goecke
- Leibniz Research Laboratories for Biotechnology and Artificial Organs (LEBAO), Hannover Medical School, Hannover, Germany
| | - Robert Ramm
- Leibniz Research Laboratories for Biotechnology and Artificial Organs (LEBAO), Hannover Medical School, Hannover, Germany
| | - Björn Petersen
- Department of Biotechnology, Institute of Farm Animal Genetics, Friedrich-Loeffler-Institute, Neustadt, Germany
| | - Doreen Lenz
- Leibniz Research Laboratories for Biotechnology and Artificial Organs (LEBAO), Hannover Medical School, Hannover, Germany
| | - Axel Haverich
- Leibniz Research Laboratories for Biotechnology and Artificial Organs (LEBAO), Hannover Medical School, Hannover, Germany.,Department of Cardiothoracic, Transplantation and Vascular Surgery, Hannover Medical School, Hannover, Germany
| | - Heiner Niemann
- Department of Gastroenterology, Hepatology & Endocrinology, Hannover Medical School, Hannover, Germany
| | - Andres Hilfiker
- Leibniz Research Laboratories for Biotechnology and Artificial Organs (LEBAO), Hannover Medical School, Hannover, Germany.,Department of Cardiothoracic, Transplantation and Vascular Surgery, Hannover Medical School, Hannover, Germany
| |
Collapse
|
2
|
Findeisen K, Morticelli L, Goecke T, Kolbeck L, Ramm R, Höffler HK, Brandes G, Korossis S, Haverich A, Hilfiker A. Toward acellular xenogeneic heart valve prostheses: Histological and biomechanical characterization of decellularized and enzymatically deglycosylated porcine pulmonary heart valve matrices. Xenotransplantation 2020; 27:e12617. [PMID: 32557876 DOI: 10.1111/xen.12617] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Revised: 05/07/2020] [Accepted: 05/15/2020] [Indexed: 12/20/2022]
Abstract
The use of decellularized xenogeneic heart valves might offer a solution to overcome the issue of human valve shortage. The aim of this study was to revise decellularization protocols in combination with enzymatic deglycosylation, in order to reduce the immunogenicity of porcine pulmonary heart valves, in means of cells, carbohydrates, and, primarily, Galα1-3Gal (α-Gal) epitope removal. In particular, the valves were decellularized with sodium dodecylsulfate/sodium deoxycholate (SDS/SD), Triton X-100 + SDS (Tx + SDS), or Trypsin + Triton X-100 (Tryp + Tx) followed by enzymatic digestion with PNGaseF, Endoglycosidase H, or O-glycosidase combined with Neuraminidase. Results showed that decellularization alone reduced carbohydrate structures only to a limited extent, and it did not result in an α-Gal free scaffold. Nevertheless, decellularization with Tryp + Tx represented the most effective decellularization protocol in means of carbohydrates reduction. Overall, carbohydrates and α-Gal removal could strongly be improved by applying PNGaseF, in particular in combination with Tryp + Tx treatment, contrary to Endoglycosidase H and O-glycosidase treatments. Furthermore, decellularization with PNGaseF did not affect biomechanical stability, in comparison with decellularization alone, as shown by burst pressure and uniaxial tensile tests. In conclusion, valves decellularized with Tryp + Tx and PNGaseF resulted in prostheses with potentially reduced immunogenicity and maintained mechanical stability.
Collapse
Affiliation(s)
- Katja Findeisen
- Leibniz Research Laboratories for Biotechnology and Artificial Organs (LEBAO), Hannover Medical School, Hannover, Germany
| | - Lucrezia Morticelli
- Leibniz Research Laboratories for Biotechnology and Artificial Organs (LEBAO), Hannover Medical School, Hannover, Germany
| | - Tobias Goecke
- Leibniz Research Laboratories for Biotechnology and Artificial Organs (LEBAO), Hannover Medical School, Hannover, Germany
| | - Louisa Kolbeck
- Leibniz Research Laboratories for Biotechnology and Artificial Organs (LEBAO), Hannover Medical School, Hannover, Germany
| | - Robert Ramm
- Leibniz Research Laboratories for Biotechnology and Artificial Organs (LEBAO), Hannover Medical School, Hannover, Germany
| | - Hans-Klaus Höffler
- Department of Cardiothoracic, Transplantation and Vascular Surgery, Hannover Medical School, Hannover, Germany
| | - Gudrun Brandes
- Institute for Cell Biology and Neuroanatomy, Hannover Medical School, Hannover, Germany
| | - Sotirios Korossis
- Department of Cardiothoracic, Transplantation and Vascular Surgery, Hannover Medical School, Hannover, Germany
| | - Axel Haverich
- Leibniz Research Laboratories for Biotechnology and Artificial Organs (LEBAO), Hannover Medical School, Hannover, Germany.,Department of Cardiothoracic, Transplantation and Vascular Surgery, Hannover Medical School, Hannover, Germany
| | - Andres Hilfiker
- Leibniz Research Laboratories for Biotechnology and Artificial Organs (LEBAO), Hannover Medical School, Hannover, Germany.,Department of Cardiothoracic, Transplantation and Vascular Surgery, Hannover Medical School, Hannover, Germany
| |
Collapse
|
3
|
Sugimura Y, Chekhoeva A, Oyama K, Nakanishi S, Toshmatova M, Miyahara S, Barth M, Assmann AK, Lichtenberg A, Assmann A, Akhyari P. Controlled autologous recellularization and inhibited degeneration of decellularized vascular implants by side-specific coating with stromal cell-derived factor 1α and fibronectin. ACTA ACUST UNITED AC 2020; 15:035013. [PMID: 31694001 DOI: 10.1088/1748-605x/ab54e3] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Optimized biocompatibility is crucial for the durability of cardiovascular implants. Previously, a combined coating with fibronectin (FN) and stromal cell-derived factor 1α (SDF1α) has been shown to accelerate the in vivo cellularization of synthetic vascular grafts and to reduce the calcification of biological pulmonary root grafts. In this study, we evaluate the effect of side-specific luminal SDF1α coating and adventitial FN coating on the in vivo cellularization and degeneration of decellularized rat aortic implants. Aortic arch vascular donor grafts were detergent-decellularized. The luminal graft surface was coated with SDF1α, while the adventitial surface was coated with FN. SDF1α-coated and uncoated grafts were infrarenally implanted (n = 20) in rats and followed up for up to eight weeks. Cellular intima population was accelerated by luminal SDF1α coating at two weeks (92.4 ± 2.95% versus 61.1 ± 6.51% in controls, p < 0.001). SDF1α coating inhibited neo-intimal hyperplasia, resulting in a significantly decreased intima-to-media ratio after eight weeks (0.62 ± 0.15 versus 1.35 ± 0.26 in controls, p < 0.05). Furthermore, at eight weeks, media calcification was significantly decreased in the SDF1α group as compared to the control group (area of calcification in proximal arch region 1092 ± 517 μm2 versus 11 814 ± 1883 μm2, p < 0.01). Luminal coating with SDF1α promotes early autologous intima recellularization in vivo and attenuates neo-intima hyperplasia as well as calcification of decellularized vascular grafts.
Collapse
Affiliation(s)
- Yukiharu Sugimura
- Department of Cardiovascular Surgery and Research Group for Experimental Surgery, Heinrich Heine University, Medical Faculty, Duesseldorf, Germany
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
4
|
Sugimura Y, Schmidt AK, Lichtenberg A, Assmann A, Akhyari P. * A Rat Model for the In Vivo Assessment of Biological and Tissue-Engineered Valvular and Vascular Grafts. Tissue Eng Part C Methods 2017; 23:982-994. [PMID: 28805140 DOI: 10.1089/ten.tec.2017.0215] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
The demand for an improvement of the biocompatibility and durability of vascular and valvular implants requires translational animal models to study the in vivo fate of cardiovascular grafts. In the present article, a review on the development and application of a microsurgical rat model of infrarenal implantation of aortic grafts and aortic valved conduits is provided. By refinement of surgical techniques and inclusion of hemodynamic considerations, a functional model has been created, which provides a modular platform for the in vivo assessment of biological and tissue-engineered grafts. Through optional addition of procalcific diets, disease-inducing agents, and genetic modifications, complex multimorbidity scenarios mimicking the clinical reality in cardiovascular patients can be simulated. Applying this model, crucial aspects of the biocompatibility, biofunctionality and degeneration of vascular and valvular implants in dependency on graft preparation, and modification as well as systemic antidegenerative treatment of the recipient have been and will be addressed.
Collapse
Affiliation(s)
- Yukiharu Sugimura
- 1 Department of Cardiovascular Surgery and Research Group for Experimental Surgery, Medical Faculty, Heinrich Heine University , Düsseldorf, Germany
| | - Anna Kathrin Schmidt
- 1 Department of Cardiovascular Surgery and Research Group for Experimental Surgery, Medical Faculty, Heinrich Heine University , Düsseldorf, Germany
| | - Artur Lichtenberg
- 1 Department of Cardiovascular Surgery and Research Group for Experimental Surgery, Medical Faculty, Heinrich Heine University , Düsseldorf, Germany
| | - Alexander Assmann
- 1 Department of Cardiovascular Surgery and Research Group for Experimental Surgery, Medical Faculty, Heinrich Heine University , Düsseldorf, Germany .,2 Biomaterials Innovation Research Center , Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Massachusetts
| | - Payam Akhyari
- 1 Department of Cardiovascular Surgery and Research Group for Experimental Surgery, Medical Faculty, Heinrich Heine University , Düsseldorf, Germany
| |
Collapse
|
5
|
Akhyari P. Kardiovaskuläres Tissue-Engineering. ZEITSCHRIFT FUR HERZ THORAX UND GEFASSCHIRURGIE 2016. [DOI: 10.1007/s00398-015-0035-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
6
|
Supremacy of modern morphometry in typing renal oncocytoma and malignant look-alikes. Histochem Cell Biol 2015; 144:147-56. [PMID: 25929744 DOI: 10.1007/s00418-015-1324-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/18/2015] [Indexed: 12/31/2022]
Abstract
In the era of tumour type-specific therapies, the correct typing of renal tumours is of prime importance. As immunotyping and genotyping approaches are laborious and fall short of standardization, we used whole-scale computer-assisted morphometry instead. Three different types of renal tumours with different prognoses and therapies, notoriously prone to mistyping, were analysed . The sample of 335 tumours included clear cell renal cell carcinoma, chromophobe renal cell carcinoma and renal oncocytoma. The sample was analysed using H&E stains of tissue microarrrays in combination with an image-scanning software. Nuclear and cytoplasmic features were registered with the aid of computer-assisted morphometry. Features included shape, texture, colour and colour intensity for different cell compartments, e.g. nuclei and cytoplasm. The software passed several training steps for final validation. Using morphometry, we were able to classify the three renal tumour types correctly, with a 100 % specificity compared to the WHO typing. Nuclear features dominated the typing of chromophobe renal cell carcinoma, whereas cytoplasmic features were the leading classificators for renal oncocytoma. The grading of clear cell renal cell carcinoma attained a specificity of 80 %. In conclusion, modern morphometry may serve as a tool for typing renal epithelial tumours and additionally draws the attention to future nuclear research in chromophobe renal cell carcinoma.
Collapse
|
7
|
Bayrak A, Prüger P, Stock UA, Seifert M. Absence of immune responses with xenogeneic collagen and elastin. Tissue Eng Part A 2013; 19:1592-600. [PMID: 23406399 DOI: 10.1089/ten.tea.2012.0394] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Novel tissue-engineering approaches for cardiovascular matrices based on xenogeneic extracellular matrix protein (ECMp) constituents require a detailed evaluation of their interaction with essential immune cell subsets playing a role in innate or adaptive immunity. Therefore, in this study, the effects of xenogeneic (porcine, bovine) collagen type I and elastin as the two main components of the heart valve ECM were analyzed in comparison to their human equivalents. First, their potential to induce maturation and cytokine secretion of human dendritic cells (DC) was tested by flow cytometry. Second, the influence on proliferation and cytokine release of purified human B and T cells was measured. We could demonstrate that xenogeneic collagen type I and elastin are not able to trigger the maturation of DC as verified by the lack of CD83 induction accompanied by a low tumor necrosis factor-α release. Moreover, both ECMp showed no effect on the proliferation and the interleukin-6 release of either unstimulated or prestimulated B cells. Additionally, anti-CD3-induced purified T cell proliferation and secretion of cytokines was not affected. All in vitro data verify the low immunogenicity of porcine and bovine collagen type I and elastin and favor their suitability for tissue-engineered scaffolds.
Collapse
Affiliation(s)
- Alexandra Bayrak
- Institute of Medical Immunology, Charité Universitätsmedizin Berlin, Berlin, Germany
| | | | | | | |
Collapse
|
8
|
van Wijk MJ, Hogema BM, Maas DW, Bokhorst AG. A Q Fever Outbreak in the Netherlands: Consequences for Tissue Banking. ACTA ACUST UNITED AC 2011; 38:357-364. [PMID: 22403519 DOI: 10.1159/000334599] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2011] [Accepted: 10/11/2011] [Indexed: 11/19/2022]
Abstract
BACKGROUND: Emerging infectious diseases can compromise the safety of tissues for transplantations. A recent outbreak of Q fever, a zoonosis caused by the bacterium Coxiella burnetii, in the Netherlands compelled the Dutch tissue banks to assess the risk of Q fever transmission through tissue transplantation in order to maintain optimal safety. MATHODS: This article describes the systematic approach that was followed in the Netherlands. This approach included a review of the literature, a qualitative risk assessment, expert opinion gathering and investigations for specific strategies that can help to maintain the balance between tissue safety and availability. RESULTS: This resulted in a specific donor selection policy and in development of further research to fill in gaps in knowledge about Q fever in tissue transplantation. CONCLUSION: The strategy described in this article may be useful for tissue bankers facing similar outbreaks of emerging infections or may be useful for development of future guidelines or assessment strategies for tissue banking.
Collapse
|