1
|
Quan DH, Nagalingam G, Luck I, Proschogo N, Pillalamarri V, Addlagatta A, Martinez E, Sintchenko V, Rutledge PJ, Triccas JA. Bengamides display potent activity against drug-resistant Mycobacterium tuberculosis. Sci Rep 2019; 9:14396. [PMID: 31591407 PMCID: PMC6779907 DOI: 10.1038/s41598-019-50748-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Accepted: 09/18/2019] [Indexed: 01/08/2023] Open
Abstract
Mycobacterium tuberculosis infects over 10 million people annually and kills more people each year than any other human pathogen. The current tuberculosis (TB) vaccine is only partially effective in preventing infection, while current TB treatment is problematic in terms of length, complexity and patient compliance. There is an urgent need for new drugs to combat the burden of TB disease and the natural environment has re-emerged as a rich source of bioactive molecules for development of lead compounds. In this study, one species of marine sponge from the Tedania genus was found to yield samples with exceptionally potent activity against M. tuberculosis. Bioassay-guided fractionation identified bengamide B as the active component, which displayed activity in the nanomolar range against both drug-sensitive and drug-resistant M. tuberculosis. The active compound inhibited in vitro activity of M. tuberculosis MetAP1c protein, suggesting the potent inhibitory action may be due to interference with methionine aminopeptidase activity. Tedania-derived bengamide B was non-toxic against human cell lines, synergised with rifampicin for in vitro inhibition of bacterial growth and reduced intracellular replication of M. tuberculosis. Thus, bengamides isolated from Tedania sp. show significant potential as a new class of compounds for the treatment of drug-resistant M. tuberculosis.
Collapse
Affiliation(s)
- Diana H Quan
- Discipline of Infectious Diseases and Immunology, Faculty of Medicine and Health, The University of Sydney, Camperdown, NSW, Australia.,Tuberculosis Research Program, Centenary Institute, Sydney, NSW, Australia
| | - Gayathri Nagalingam
- Discipline of Infectious Diseases and Immunology, Faculty of Medicine and Health, The University of Sydney, Camperdown, NSW, Australia.,Tuberculosis Research Program, Centenary Institute, Sydney, NSW, Australia
| | - Ian Luck
- School of Chemistry, Faculty of Science, The University of Sydney, Camperdown, NSW, Australia
| | - Nicholas Proschogo
- School of Chemistry, Faculty of Science, The University of Sydney, Camperdown, NSW, Australia
| | | | - Anthony Addlagatta
- Centre for Chemical Biology, Indian Institute of Chemical Technology, Secunderabad, India
| | - Elena Martinez
- Centre for Infectious Diseases and Microbiology, The Westmead Institute, Westmead, NSW, Australia.,Marie Bashir Institute for Infectious Diseases and Biosecurity, The University of Sydney, Camperdown, NSW, Australia
| | - Vitali Sintchenko
- Centre for Infectious Diseases and Microbiology, The Westmead Institute, Westmead, NSW, Australia.,Marie Bashir Institute for Infectious Diseases and Biosecurity, The University of Sydney, Camperdown, NSW, Australia
| | - Peter J Rutledge
- School of Chemistry, Faculty of Science, The University of Sydney, Camperdown, NSW, Australia
| | - James A Triccas
- Discipline of Infectious Diseases and Immunology, Faculty of Medicine and Health, The University of Sydney, Camperdown, NSW, Australia. .,Charles Perkins Centre, The University of Sydney, Camperdown, NSW, Australia. .,Marie Bashir Institute for Infectious Diseases and Biosecurity, The University of Sydney, Camperdown, NSW, Australia.
| |
Collapse
|