1
|
Bonifacius A, Tischer-Zimmermann S, Santamorena MM, Mausberg P, Schenk J, Koch S, Barnstorf-Brandes J, Gödecke N, Martens J, Goudeva L, Verboom M, Wittig J, Maecker-Kolhoff B, Baurmann H, Clark C, Brauns O, Simon M, Lang P, Cornely OA, Hallek M, Blasczyk R, Seiferling D, Köhler P, Eiz-Vesper B. Rapid Manufacturing of Highly Cytotoxic Clinical-Grade SARS-CoV-2-specific T Cell Products Covering SARS-CoV-2 and Its Variants for Adoptive T Cell Therapy. Front Bioeng Biotechnol 2022; 10:867042. [PMID: 35480981 PMCID: PMC9036989 DOI: 10.3389/fbioe.2022.867042] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Accepted: 03/07/2022] [Indexed: 12/12/2022] Open
Abstract
Objectives: Evaluation of the feasibility of SARS-CoV-2-specific T cell manufacturing for adoptive T cell transfer in COVID-19 patients at risk to develop severe disease. Methods: Antiviral SARS-CoV-2-specific T cells were detected in blood of convalescent COVID-19 patients following stimulation with PepTivator SARS-CoV-2 Select using Interferon-gamma Enzyme-Linked Immunospot (IFN-γ ELISpot), SARS-CoV-2 T Cell Analysis Kit (Whole Blood) and Cytokine Secretion Assay (CSA) and were characterized with respect to memory phenotype, activation state and cytotoxic potential by multicolor flow cytometry, quantitative real-time PCR and multiplex analyses. Clinical-grade SARS-CoV-2-specific T cell products were generated by stimulation with MACS GMP PepTivator SARS-CoV-2 Select using CliniMACS Prodigy and CliniMACS Cytokine Capture System (IFN-gamma) (CCS). Functionality of enriched T cells was investigated in cytotoxicity assays and by multiplex analysis of secreted cytotoxic molecules upon target recognition. Results: Donor screening via IFN-γ ELISpot allows for pre-selection of potential donors for generation of SARS-CoV-2-specific T cells. Antiviral T cells reactive against PepTivator SARS-CoV-2 Select could be magnetically enriched from peripheral blood of convalescent COVID-19 patients by small-scale CSA resembling the clinical-grade CCS manufacturing process and showed an activated and cytotoxic T cell phenotype. Four clinical-grade SARS-CoV-2-specific T cell products were successfully generated with sufficient cell numbers and purities comparable to those observed in donor pretesting via CSA. The T cells in the generated products were shown to be capable to replicate, specifically recognize and kill target cells in vitro and secrete cytotoxic molecules upon target recognition. Cell viability, total CD3+ cell number, proliferative capacity and cytotoxic potential remained stable throughout storage of up to 72 h after end of leukapheresis. Conclusion: Clinical-grade SARS-CoV-2-specific T cells are functional, have proliferative capacity and target-specific cytotoxic potential. Their function and phenotype remain stable for several days after enrichment. The adoptive transfer of partially matched, viable human SARS-CoV-2-specific T lymphocytes collected from convalescent individuals may provide the opportunity to support the immune system of COVID-19 patients at risk for severe disease.
Collapse
Affiliation(s)
- Agnes Bonifacius
- Hannover Medical School, Institute of Transfusion Medicine and Transplant Engineering, Hannover, Germany
| | - Sabine Tischer-Zimmermann
- Hannover Medical School, Institute of Transfusion Medicine and Transplant Engineering, Hannover, Germany
| | - Maria Michela Santamorena
- Hannover Medical School, Institute of Transfusion Medicine and Transplant Engineering, Hannover, Germany
| | - Philip Mausberg
- Hannover Medical School, Institute of Transfusion Medicine and Transplant Engineering, Hannover, Germany
| | - Josephine Schenk
- Hannover Medical School, Institute of Transfusion Medicine and Transplant Engineering, Hannover, Germany
| | - Stephanie Koch
- Deutsche Gesellschaft für Gewebetransplantation, Hannover, Germany
| | - Johanna Barnstorf-Brandes
- Hannover Medical School, Institute of Transfusion Medicine and Transplant Engineering, Hannover, Germany
| | - Nina Gödecke
- Hannover Medical School, Institute of Transfusion Medicine and Transplant Engineering, Hannover, Germany
| | - Jörg Martens
- Hannover Medical School, Institute of Transfusion Medicine and Transplant Engineering, Hannover, Germany
| | - Lilia Goudeva
- Hannover Medical School, Institute of Transfusion Medicine and Transplant Engineering, Hannover, Germany
| | - Murielle Verboom
- Hannover Medical School, Institute of Transfusion Medicine and Transplant Engineering, Hannover, Germany
| | - Jana Wittig
- Department I of Internal Medicine, Faculty of Medicine and University Hospital Cologne, Center for Integrated Oncology Aachen Bonn Cologne Duesseldorf, University of Cologne, Cologne, Germany.,Faculty of Medicine and University Hospital Cologne, Translational Research, Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany
| | - Britta Maecker-Kolhoff
- Department of Pediatric Hematology and Oncology, Hannover Medical School, Hannover, Germany
| | | | - Caren Clark
- Miltenyi Biotec B.V. & Co. KG, Bergisch Gladbach, Germany
| | - Olaf Brauns
- Miltenyi Biotec B.V. & Co. KG, Bergisch Gladbach, Germany
| | - Martina Simon
- Miltenyi Biotec B.V. & Co. KG, Bergisch Gladbach, Germany
| | - Peter Lang
- Department of Pediatric Hematology and Oncology, University Children's Hospital, University of Tuebingen, Tuebingen, Germany
| | - Oliver A Cornely
- Department I of Internal Medicine, Faculty of Medicine and University Hospital Cologne, Center for Integrated Oncology Aachen Bonn Cologne Duesseldorf, University of Cologne, Cologne, Germany.,Faculty of Medicine and University Hospital Cologne, Translational Research, Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany.,Faculty of Medicine and University Hospital Cologne, Clinical Trials Centre Cologne (ZKS Köln), University of Cologne, Cologne, Germany.,German Centre for Infection Research (DZIF), Partner Site Bonn-Cologne, Cologne, Germany
| | - Michael Hallek
- Department I of Internal Medicine, Faculty of Medicine and University Hospital Cologne, Center for Integrated Oncology Aachen Bonn Cologne Duesseldorf, University of Cologne, Cologne, Germany
| | - Rainer Blasczyk
- Hannover Medical School, Institute of Transfusion Medicine and Transplant Engineering, Hannover, Germany
| | | | - Philipp Köhler
- Department I of Internal Medicine, Faculty of Medicine and University Hospital Cologne, Center for Integrated Oncology Aachen Bonn Cologne Duesseldorf, University of Cologne, Cologne, Germany.,Faculty of Medicine and University Hospital Cologne, Translational Research, Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany
| | - Britta Eiz-Vesper
- Hannover Medical School, Institute of Transfusion Medicine and Transplant Engineering, Hannover, Germany
| |
Collapse
|
2
|
Zhao Y, Zhou X. Engineering chimeric antigen receptor-natural killer cells for cancer immunotherapy. Immunotherapy 2020; 12:653-664. [DOI: 10.2217/imt-2019-0139] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Adoptive cell transfer has attracted considerable attention as a treatment for cancer. The success of chimeric antigen receptor (CAR)-engineered T (CAR-T) cells for the treatment of haematologic tumors has demonstrated the potential of CAR. In this review, we describe the current CAR-engineered natural killer (CAR-NK) cell construction strategies, including the design principles and structural characteristics of the extracellular, transmembrane and intracellular regions of the CAR structure. In addition, we review different cellular carriers used to develop CAR-NK cells, highlighting existing problems and challenges. We further discuss possible ways to optimize CAR from the perspective of the tumor microenvironment to harness the strength of CAR-NK cells and provided rationales to combine CAR-NK cells with other treatment regimens to enhance antitumor effects.
Collapse
Affiliation(s)
- Yu Zhao
- Department of Immunology, Nantong University, School of Medicine
| | - Xiaorong Zhou
- Department of Immunology, Nantong University, School of Medicine
| |
Collapse
|