1
|
Sutovsky P, Zigo M, Tirpak F, Oko R. Paternal contributions to mammalian zygote - Beyond sperm-oocyte fusion. Curr Top Dev Biol 2025; 162:387-446. [PMID: 40180516 DOI: 10.1016/bs.ctdb.2025.02.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/05/2025]
Abstract
Contrary to a common misconception that the fertilizing spermatozoon acts solely as a vehicle for paternal genome delivery to the zygote, this chapter aims to illustrate how the male gamete makes other essential contributions , including the sperm borne-oocyte activation factors, centrosome components, and components of the sperm proteome and transcriptome that help to lay the foundation for pregnancy establishment and maintenance to term, and the newborn and adult health. Our inquiry starts immediately after sperm plasma membrane fusion with its oocyte counterpart, the oolemma. Parallel to and following sperm incorporation in the egg cytoplasm, some of the sperm structures (perinuclear theca) are dissolved and spent to induce development, others (nucleus, centriole) are transformed into zygotic structures enabling it, and yet others (mitochondrial and fibrous sheath, axonemal microtubules and outer dense fibers) are recycled as to not stand in its way. Noteworthy advances in this research include the identification of several sperm-borne oocyte activating factor candidates, the role of autophagy in the post-fertilization sperm mitochondrion degradation, new insight into zygotic centrosome origins and function, and the contributions of sperm-delivered RNA cargos to early embryo development. In concluding remarks, the unresolved issues, and clinical and biotechnological implications of sperm-vectored paternal inheritance are discussed.
Collapse
Affiliation(s)
- Peter Sutovsky
- Division of Animal Sciences, University of Missouri, Columbia, MO, United States; Department of Obstetrics, Gynecology and Women's Health, University of Missouri, Columbia, MO, United States.
| | - Michal Zigo
- Division of Animal Sciences, University of Missouri, Columbia, MO, United States
| | - Filip Tirpak
- Division of Animal Sciences, University of Missouri, Columbia, MO, United States
| | - Richard Oko
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, ON, Canada
| |
Collapse
|
2
|
Wu J, Chen Y, Lin Y, Lan F, Cui Z. Cancer-testis antigen lactate dehydrogenase C4 as a novel biomarker of male infertility and cancer. Front Oncol 2022; 12:936767. [PMID: 36408133 PMCID: PMC9667869 DOI: 10.3389/fonc.2022.936767] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Accepted: 08/25/2022] [Indexed: 01/24/2023] Open
Abstract
A unique lactate dehydrogenase (LDH) isoenzyme designated as lactate dehydrogenase C4 (LDH-C4) is found in mammalian mature testis and spermatozoa. Thus far, LDH-C4 has been well studied with regard to its gene and amino acid sequences, structure, biological properties, and peptide synthesis. Accumulating evidence has shown that LDH-C4 is closely related to spermatic energy metabolism and plays a critical role in sperm motility, capacitation, and fertilization. Defects in the catalytic activity of LDH-C4 are key to pathophysiological abnormalities underlying infertility. LDH-C4 was originally thought to be present only in mature testis and spermatozoa; however, recent studies have implicated LDH-C4 as a cancer-testis antigen (CTA), owing to its aberrant transcription in a broad spectrum of human neoplasms. This review highlights the recent findings on LDH-C4 with particular emphasis on its role in male infertility and tumors.
Collapse
Affiliation(s)
- Jing Wu
- Laboratory of Biochemistry and Molecular Biology Research, Fujian Key Laboratory of Advanced Technology for Cancer Screening and Early Diagnosis, Department of Clinical Laboratory, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou, China
| | - Yan Chen
- Laboratory of Biochemistry and Molecular Biology Research, Fujian Key Laboratory of Advanced Technology for Cancer Screening and Early Diagnosis, Department of Clinical Laboratory, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou, China
| | - Yingying Lin
- Laboratory of Biochemistry and Molecular Biology Research, Fujian Key Laboratory of Advanced Technology for Cancer Screening and Early Diagnosis, Department of Clinical Laboratory, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou, China,*Correspondence: Yingying Lin, ; Fenghua Lan, ; Zhaolei Cui,
| | - Fenghua Lan
- Fuzong Clinical College, Fujian Medical University, Fuzhou, China,*Correspondence: Yingying Lin, ; Fenghua Lan, ; Zhaolei Cui,
| | - Zhaolei Cui
- Laboratory of Biochemistry and Molecular Biology Research, Fujian Key Laboratory of Advanced Technology for Cancer Screening and Early Diagnosis, Department of Clinical Laboratory, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou, China,*Correspondence: Yingying Lin, ; Fenghua Lan, ; Zhaolei Cui,
| |
Collapse
|
3
|
Wieland J, Buchan S, Sen Gupta S, Mantzouratou A. Genomic instability and the link to infertility: A focus on microsatellites and genomic instability syndromes. Eur J Obstet Gynecol Reprod Biol 2022; 274:229-237. [PMID: 35671666 DOI: 10.1016/j.ejogrb.2022.06.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 05/25/2022] [Accepted: 06/01/2022] [Indexed: 12/01/2022]
Abstract
Infertility is associated to multiple types of different genomic instabilities and is a genetic feature of genomic instability syndromes. While the mismatch repair machinery contributes to the maintenance of genome integrity, surprisingly its potential role in infertility is overlooked. Defects in mismatch repair mechanisms contribute to microsatellite instability and genomic instability syndromes, due to the inability to repair newly replicated DNA. This article reviews the literature to date to elucidate the contribution of microsatellite instability to genomic instability syndromes and infertility. The key findings presented reveal microsatellite instability is poorly researched in genomic instability syndromes and infertility.
Collapse
Affiliation(s)
- Jack Wieland
- Department of Life and Environmental Sciences, Faculty of Science and Technology, Bournemouth University, Poole BH12 5BB, UK.
| | - Sarah Buchan
- Department of Life and Environmental Sciences, Faculty of Science and Technology, Bournemouth University, Poole BH12 5BB, UK.
| | - Sioban Sen Gupta
- Institute for Women's Health, 86-96 Chenies Mews, University College London, London WC1E 6HX, UK.
| | - Anna Mantzouratou
- Department of Life and Environmental Sciences, Faculty of Science and Technology, Bournemouth University, Poole BH12 5BB, UK.
| |
Collapse
|
4
|
Hernández-Silva G, Caballero-Campo P, Chirinos M. Sperm mRNAs as potential markers of male fertility. Reprod Biol 2022; 22:100636. [PMID: 35338912 DOI: 10.1016/j.repbio.2022.100636] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 02/17/2022] [Accepted: 03/11/2022] [Indexed: 12/26/2022]
Abstract
Advances in transcriptomic technologies are contributing to an increased understanding of the role of spermatozoal RNA in sperm physiology. Although sperm transcriptomic studies have delivered large amounts of valuable information, no new male fertility biomarkers have emerged from such studies to date. This review summarizes current knowledge about the potential relevance of certain mRNA as biomarkers, focusing on comparative studies of human spermatozoa transcriptomic profiles from fertile and pathological semen samples. Asthenozoospermia is the semen aberrant condition that has been most exhaustively investigated to date. We cross-analyzed findings from three different studies on the transcriptome of asthenozoospermic semen samples and identified 100 transcripts that were consistently differentially expressed and that consequently are candidates for characterizing the molecular source of this sperm anomaly. The potential use of sperm mRNAs as predictors of outcomes of assisted reproductive technologies (ART) is also reviewed. Improving the understanding of the human spermatozoa mRNA content is expected to improve the evaluation and diagnosis of infertile men, and ultimately facilitate the selection of the best treatment to overcome infertility.
Collapse
Affiliation(s)
- Gabriela Hernández-Silva
- Departamento de Biología de la Reproducción Dr. Carlos Gual Castro, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City 14080, Mexico
| | - Pedro Caballero-Campo
- Departamento de Biología de la Reproducción Dr. Carlos Gual Castro, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City 14080, Mexico
| | - Mayel Chirinos
- Departamento de Biología de la Reproducción Dr. Carlos Gual Castro, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City 14080, Mexico.
| |
Collapse
|
5
|
El Atab O, Ekim Kocabey A, Asojo OA, Schneiter R. Prostate secretory protein 94 (PSP94) inhibits sterol-binding and export by the mammalian CAP protein CRISP2 in a calcium-sensitive manner. J Biol Chem 2022; 298:101600. [PMID: 35063506 PMCID: PMC8857485 DOI: 10.1016/j.jbc.2022.101600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2021] [Revised: 01/07/2022] [Accepted: 01/08/2022] [Indexed: 11/30/2022] Open
Abstract
Members of the CAP protein superfamily are present in all kingdoms of life and have been implicated in many different processes, including pathogen defense, immune evasion, sperm maturation, and cancer progression. Most CAP proteins are secreted glycoproteins and share a unique conserved αβα sandwich fold. The precise mode of action of this class of proteins, however, has remained elusive. Saccharomyces cerevisiae has three CAP family members, termed pathogen related in yeast (Pry). We have previously shown that Pry1 and Pry2 export sterols in vivo and that they bind sterols in vitro. This sterol binding and export function of yeast Pry proteins is conserved in the mammalian CRISP proteins and other CAP superfamily members. CRISP3 is an abundant protein of the human seminal plasma and interacts with prostate secretory protein of 94 amino acids (PSP94), another major protein component in the seminal plasma. Here we examine whether the interaction between CRISP proteins and PSP94 affects the sterol binding function of CAP family members. We show that coexpression of PSP94 with CAP proteins in yeast abolished their sterol export function and the interaction between PSP94 and CAP proteins inhibits sterol binding in vitro. In addition, mutations that affect the formation of the PSP94–CRISP2 heteromeric complex restore sterol binding. Of interest, we found the interaction of PSP94 with CRISP2 is sensitive to high calcium concentrations. The observation that PSP94 modulates the sterol binding function of CRISP2 in a calcium-dependent manner has potential implications for the role of PSP94 and CRISP2 in prostate physiology and progression of prostate cancer.
Collapse
|
6
|
Sahoo B, Choudhary RK, Sharma P, Choudhary S, Gupta MK. Significance and Relevance of Spermatozoal RNAs to Male Fertility in Livestock. Front Genet 2021; 12:768196. [PMID: 34956322 PMCID: PMC8696160 DOI: 10.3389/fgene.2021.768196] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Accepted: 11/15/2021] [Indexed: 12/11/2022] Open
Abstract
Livestock production contributes to a significant part of the economy in developing countries. Although artificial insemination techniques brought substantial improvements in reproductive efficiency, male infertility remains a leading challenge in livestock. Current strategies for the diagnosis of male infertility largely depend on the evaluation of semen parameters and fail to diagnose idiopathic infertility in most cases. Recent evidences show that spermatozoa contains a suit of RNA population whose profile differs between fertile and infertile males. Studies have also demonstrated the crucial roles of spermatozoal RNA (spRNA) in spermatogenesis, fertilization, and early embryonic development. Thus, the spRNA profile may serve as unique molecular signatures of fertile sperm and may play pivotal roles in the diagnosis and treatment of male fertility. This manuscript provides an update on various spRNA populations, including protein-coding and non-coding RNAs, in livestock species and their potential role in semen quality, particularly sperm motility, freezability, and fertility. The contribution of seminal plasma to the spRNA population is also discussed. Furthermore, we discussed the significance of rare non-coding RNAs (ncRNAs) such as long ncRNAs (lncRNAs) and circular RNAs (circRNAs) in spermatogenic events.
Collapse
Affiliation(s)
- Bijayalaxmi Sahoo
- Department of Biotechnology and Medical Engineering, National Institute of Technology Rourkela, Rourkela, India
| | - Ratan K. Choudhary
- College of Animal Biotechnology, Guru Angad Dev Veterinary and Animal Sciences University, Ludhiana, India
| | - Paramajeet Sharma
- College of Animal Biotechnology, Guru Angad Dev Veterinary and Animal Sciences University, Ludhiana, India
| | - Shanti Choudhary
- College of Animal Biotechnology, Guru Angad Dev Veterinary and Animal Sciences University, Ludhiana, India
| | - Mukesh Kumar Gupta
- Department of Biotechnology and Medical Engineering, National Institute of Technology Rourkela, Rourkela, India
| |
Collapse
|
7
|
Mazaheri Moghaddam M, Mazaheri Moghaddam M, Amini M, Bahramzadeh B, Baghbanzadeh A, Biglari A, Sakhinia E. Evaluation of SEPT2 and SEPT4 transcript contents in spermatozoa from men with asthenozoospermia and teratozoospermia. Health Sci Rep 2021; 4:e436. [PMID: 34849407 PMCID: PMC8611181 DOI: 10.1002/hsr2.436] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 09/24/2021] [Accepted: 10/06/2021] [Indexed: 12/03/2022] Open
Abstract
BACKGROUND AND AIMS Motility and morphological defects of spermatozoa can cause male infertility. Sperm RNAs are related to sperm quality. They are considered to have clinical values as a biomarker for assessing sperm quality and fertility potential. The annulus, located in the mammalian sperm tail, is required for motility and terminal differentiation of the spermatozoa. SEPT2, 4, 6, 7, and 12 proteins are the main components of the annulus in the sperm tail. The study aimed to evaluate SEPT2 and SEPT4 mRNA contents in the spermatozoa of patients with asthenozoospermia and teratozoospermia. METHODS We evaluated transcript levels of SEPT2 and SEPT4 in the sperm samples of 20 asthenozoospermic, 20 teratozoospermic, and 20 normozoospermic samples using quantitative PCR. RESULTS The SEPT2 transcript level was significantly decreased in the asthenozoospermia samples compared with the normal group (P = .013). However, SEPT4 was not significantly different between these two groups. The transcript levels of SEPT2 and SEPT4 were not statistically different between teratozoospermic and normozoospermic groups. CONCLUSION In conclusion, downregulation of SEPT2 in patients with asthenozoospermia appears to be associated with poor sperm motility.
Collapse
Affiliation(s)
- Madiheh Mazaheri Moghaddam
- Department of Genetics and Molecular MedicineSchool of Medicine, Zanjan University of Medical Sciences (ZUMS)ZanjanIran
| | | | - Mohammad Amini
- Immunology Research CenterTabriz University of Medical SciencesTabrizIran
| | - Behzad Bahramzadeh
- Al‐Zahra Hospital, Women's Reproductive Health Research CenterTabriz University of Medical SciencesTabrizIran
| | - Amir Baghbanzadeh
- Immunology Research CenterTabriz University of Medical SciencesTabrizIran
| | - Alireza Biglari
- Department of Genetics and Molecular MedicineSchool of Medicine, Zanjan University of Medical Sciences (ZUMS)ZanjanIran
| | - Ebrahim Sakhinia
- Department of Medical Genetics, Faculty of MedicineTabriz University of Medical SciencesTabrizIran
| |
Collapse
|
8
|
Santiago J, Silva JV, Howl J, Santos MAS, Fardilha M. All you need to know about sperm RNAs. Hum Reprod Update 2021; 28:67-91. [PMID: 34624094 DOI: 10.1093/humupd/dmab034] [Citation(s) in RCA: 67] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Revised: 09/02/2021] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Spermatogenesis generates a small and highly specialised type of cell that is apparently incapable of transcription and translation. For many years, this dogma was supported by the assumption that (i) the compact sperm nucleus, resulting from the substitution of histones by protamine during spermatogenesis, renders the genome inaccessible to the transcriptional machinery; and (ii) the loss of most organelles, including endoplasmic reticulum and ribosomes, limits or prevents translational activity. Despite these observations, several types of coding and non-coding RNAs have been identified in human sperm. Their functional roles, particularly during fertilisation and embryonic development, are only now becoming apparent. OBJECTIVE AND RATIONALE This review aimed to summarise current knowledge of the origin, types and functional roles of sperm RNAs, and to evaluate the clinical benefits of employing these transcripts as biomarkers of male fertility and reproductive outcomes. The possible contribution of sperm RNAs to intergenerational or transgenerational phenotypic inheritance is also addressed. SEARCH METHODS A comprehensive literature search on PubMed was conducted using the search terms 'sperm' AND 'RNA'. Searches focussed upon articles written in English and published prior to August 2020. OUTCOMES The development of more sensitive and accurate RNA technologies, including RNA sequencing, has enabled the identification and characterisation of numerous transcripts in human sperm. Though a majority of these RNAs likely arise during spermatogenesis, other data support an epididymal origin of RNA transmitted to maturing sperm by extracellular vesicles. A minority may also be synthesised by de novo transcription in mature sperm, since a small portion of the sperm genome remains packed by histones. This complex RNA population has important roles in paternal chromatin packaging, sperm maturation and capacitation, fertilisation, early embryogenesis and developmental maintenance. In recent years, additional lines of evidence from animal models support a role for sperm RNAs in intergenerational or transgenerational inheritance, modulating both the genotype and phenotype of progeny. Importantly, several reports indicate that the sperm RNA content of fertile and infertile men differs considerably and is strongly modulated by the environment, lifestyle and pathological states. WIDER IMPLICATIONS Transcriptional profiling has considerable potential for the discovery of fertility biomarkers. Understanding the role of sperm transcripts and comparing the sperm RNA fingerprint of fertile and infertile men could help to elucidate the regulatory pathways contributing to male factor infertility. Such data might also provide a molecular explanation for several causes of idiopathic male fertility. Ultimately, transcriptional profiling may be employed to optimise ART procedures and overcome some of the underlying causes of male infertility, ensuring the birth of healthy children.
Collapse
Affiliation(s)
- Joana Santiago
- Department of Medical Sciences, Institute of Biomedicine (iBiMED), University of Aveiro, Aveiro, Portugal
| | - Joana V Silva
- Department of Medical Sciences, Institute of Biomedicine (iBiMED), University of Aveiro, Aveiro, Portugal.,i3S-Institute for Innovation and Health Research, University of Porto, Porto, Portugal.,Unit for Multidisciplinary Research in Biomedicine (UMIB), Laboratory of Cell Biology, Department of Microscopy, Institute of Biomedical Sciences Abel Salazar (ICBAS), University of Porto, Porto, Portugal
| | - John Howl
- Research Institute in Healthcare Science, University of Wolverhampton, Wolverhampton, UK
| | - Manuel A S Santos
- Department of Medical Sciences, Institute of Biomedicine (iBiMED), University of Aveiro, Aveiro, Portugal
| | - Margarida Fardilha
- Department of Medical Sciences, Institute of Biomedicine (iBiMED), University of Aveiro, Aveiro, Portugal
| |
Collapse
|
9
|
Johnston DS, Goldberg E. Preclinical contraceptive development for men and women. Biol Reprod 2021; 103:147-156. [PMID: 32561907 DOI: 10.1093/biolre/ioaa076] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Revised: 05/07/2020] [Accepted: 05/09/2020] [Indexed: 12/16/2022] Open
Abstract
This manuscript endeavors to present research considerations for the preclinical development of non-hormonal contraceptives. Topics include (1) how advances in genomics and bioinformatics impact the identification of novel targets for non-hormonal contraception, (2) the importance of target validation prior to investment in a contraceptive development campaign, (3) considerations on targeting gametogenesis vs gamete maturation/function, (4) how targets from the male reproductive system are expanding women's options for 'on demand' contraception, and (5) some emerging non-hormonal methods that are not based on a specific molecular target. Also presented are ideas for developing a pipeline of non-hypothalamic-pituitary-gonadal-acting contraceptives for men and women while balancing risk and innovation, and our perspective on the pros and cons of industry and academic environments on contraceptive development. Three product development programs are highlighted that are biologically interesting, innovative, and likely to influence the field of contraceptive development in years to come.
Collapse
Affiliation(s)
- Daniel S Johnston
- Contraception Research Branch, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
| | - Erwin Goldberg
- Department of Molecular Biosciences, Northwestern University, Evanston, IL, USA
| |
Collapse
|
10
|
Zhang M, Bromfield EG, Veenendaal T, Klumperman J, Helms JB, Gadella BM. Characterization of different oligomeric forms of CRISP2 in the perinuclear theca versus the fibrous tail structures of boar spermatozoa. Biol Reprod 2021; 105:1160-1170. [PMID: 34309660 DOI: 10.1093/biolre/ioab145] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Revised: 04/30/2021] [Accepted: 06/20/2021] [Indexed: 11/13/2022] Open
Abstract
Mammalian sperm carry a variety of highly condensed insoluble protein structures such as the perinuclear theca, the fibrous sheath and the outer dense fibers, which are essential to sperm function. We studied the role of cysteine rich secretory protein 2 (CRISP2); a known inducer of non-pathological protein amyloids, in pig sperm with a variety of techniques. CRISP2, which is synthesized during spermatogenesis, was localized by confocal immunofluorescent imaging in the tail and in the post-acrosomal region of the sperm head. High resolution localization by immunogold labeling electron microscopy (EM) of ultrathin cryosections revealed that CRISP2 was present in the perinuclear theca and neck region of the sperm head, as well as in the outer dense fibers and the fibrous sheath of the sperm tail. Interestingly, we found that under native, non-reducing conditions CRISP2 formed oligomers both in the tail and the head but with different molecular weights and different biochemical properties. The tail oligomers were insensitive to reducing conditions but nearly complete dissociated into monomers under 8 M urea treatment, while the head 250 kDa CRISP2 positive oligomer completely dissociated into CRISP2 monomers under reducing conditions. The head specific dissociation of CRISP2 oligomer is likely a result of the reduction of various sulfhydryl groups in the cysteine rich domain of this protein. The sperm head CRISP2 shared typical solubilization characteristics with other perinuclear theca proteins as was shown with sequential detergent and salt treatments. Thus, CRISP2 is likely to participate in the formation of functional protein complexes in both the sperm tail and sperm head, but with differing oligomeric organization and biochemical properties. Future studies will be devoted to the understand the role of CRISP2 in sperm protein complexes formation and how this contributes to the fertilization processes.
Collapse
Affiliation(s)
- M Zhang
- Department of Biomolecular Health Sciences, Faculty of Veterinary Medicine, Utrecht University, the Netherlands
| | - E G Bromfield
- Department of Biomolecular Health Sciences, Faculty of Veterinary Medicine, Utrecht University, the Netherlands.,Priority Research Centre for Reproductive Science, University of Newcastle, New South Wales, Australia
| | - T Veenendaal
- Section Cell Biology, Center for Molecular Medicine, University Medical Center Utrecht, Utrecht University, the Netherlands
| | - J Klumperman
- Section Cell Biology, Center for Molecular Medicine, University Medical Center Utrecht, Utrecht University, the Netherlands
| | - J B Helms
- Department of Biomolecular Health Sciences, Faculty of Veterinary Medicine, Utrecht University, the Netherlands
| | - B M Gadella
- Department of Biomolecular Health Sciences, Faculty of Veterinary Medicine, Utrecht University, the Netherlands.,Department of Farm Animal Health, Faculty of Veterinary Medicine, Utrecht University, Utrecht, the Netherlands
| |
Collapse
|
11
|
Use and Misuse of C q in qPCR Data Analysis and Reporting. Life (Basel) 2021; 11:life11060496. [PMID: 34072308 PMCID: PMC8229287 DOI: 10.3390/life11060496] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Revised: 05/26/2021] [Accepted: 05/27/2021] [Indexed: 02/06/2023] Open
Abstract
In the analysis of quantitative PCR (qPCR) data, the quantification cycle (Cq) indicates the position of the amplification curve with respect to the cycle axis. Because Cq is directly related to the starting concentration of the target, and the difference in Cq values is related to the starting concentration ratio, the only results of qPCR analysis reported are often Cq, ΔCq or ΔΔCq values. However, reporting of Cq values ignores the fact that Cq values may differ between runs and machines, and, therefore, cannot be compared between laboratories. Moreover, Cq values are highly dependent on the PCR efficiency, which differs between assays and may differ between samples. Interpreting reported Cq values, assuming a 100% efficient PCR, may lead to assumed gene expression ratios that are 100-fold off. This review describes how differences in quantification threshold setting, PCR efficiency, starting material, PCR artefacts, pipetting errors and sampling variation are at the origin of differences and variability in Cq values and discusses the limits to the interpretation of observed Cq values. These issues can be avoided by calculating efficiency-corrected starting concentrations per reaction. The reporting of gene expression ratios and fold difference between treatments can then easily be based on these starting concentrations.
Collapse
|
12
|
Corral-Vazquez C, Blanco J, Aiese Cigliano R, Sarrate Z, Rivera-Egea R, Vidal F, Garrido N, Daub C, Anton E. The RNA content of human sperm reflects prior events in spermatogenesis and potential post-fertilization effects. Mol Hum Reprod 2021; 27:6265603. [PMID: 33950245 DOI: 10.1093/molehr/gaab035] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 04/09/2021] [Indexed: 01/18/2023] Open
Abstract
Transcriptome analyses using high-throughput methodologies allow a deeper understanding of biological functions in different cell types/tissues. The present study provides an RNA-seq profiling of human sperm mRNAs and lncRNAs (messenger and long non-coding RNAs) in a well-characterized population of fertile individuals. Sperm RNA was extracted from twelve ejaculate samples under strict quality controls. Poly(A)-transcripts were sequenced and aligned to the human genome. mRNAs and lncRNAs were classified according to their mean expression values (FPKM: Fragments Per Kilobase of transcript per Million mapped reads) and integrity. Gene Ontology analysis of the Expressed and Highly Expressed mRNAs showed an involvement in diverse reproduction processes, while the Ubiquitously Expressed and Highly Stable mRNAs were mainly involved in spermatogenesis. Transcription factor enrichment analyses revealed that the Highly Expressed and Ubiquitously Expressed sperm mRNAs were primarily regulated by zinc-fingers and spermatogenesis-related proteins. Regarding the Expressed lncRNAs, only one-third of their potential targets corresponded to Expressed mRNAs and were enriched in cell-cycle regulation processes. The remaining two-thirds were absent in sperm and were enriched in embryogenesis-related processes. A significant amount of post-testicular sperm mRNAs and lncRNAs was also detected. Even though our study is solely directed to the poly-A fraction of sperm transcripts, results indicate that both sperm mRNAs and lncRNAs constitute a footprint of previous spermatogenesis events and are configured to affect the first stages of embryo development.
Collapse
Affiliation(s)
- C Corral-Vazquez
- Genetics of Male Fertility Group, Unitat de Biologia Cel·lular (Facultat de Biociències), Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Spain
| | - J Blanco
- Genetics of Male Fertility Group, Unitat de Biologia Cel·lular (Facultat de Biociències), Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Spain
| | | | - Z Sarrate
- Genetics of Male Fertility Group, Unitat de Biologia Cel·lular (Facultat de Biociències), Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Spain
| | - R Rivera-Egea
- IVIRMA Valencia, IVI Foundation, Laboratorio de Andrología, Valencia, Spain
| | - F Vidal
- Genetics of Male Fertility Group, Unitat de Biologia Cel·lular (Facultat de Biociències), Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Spain
| | - N Garrido
- IVI Foundation, Instituto de Investigación Sanitaria la Fe, Valencia, Spain
| | - C Daub
- Department of Biosciences and Nutrition, Karolinska Institutet, Huddinge, Sweden
| | - E Anton
- Genetics of Male Fertility Group, Unitat de Biologia Cel·lular (Facultat de Biociències), Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Spain
| |
Collapse
|
13
|
Long JA. The ‘omics’ revolution: Use of genomic, transcriptomic, proteomic and metabolomic tools to predict male reproductive traits that impact fertility in livestock and poultry. Anim Reprod Sci 2020; 220:106354. [DOI: 10.1016/j.anireprosci.2020.106354] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Revised: 03/20/2020] [Accepted: 03/21/2020] [Indexed: 12/17/2022]
|
14
|
Pang WK, Kang S, Ryu DY, Rahman MS, Park YJ, Pang MG. Optimization of sperm RNA processing for developmental research. Sci Rep 2020; 10:11606. [PMID: 32665575 PMCID: PMC7360572 DOI: 10.1038/s41598-020-68486-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Accepted: 06/22/2020] [Indexed: 12/11/2022] Open
Abstract
Recent studies have demonstrated the significance of sperm RNA function as a transporter of important information directing the course of life. To determine the message contained in sperm RNA, it is necessary to optimize transcriptomic research tools. The current study was performed to optimize the processing of sperm RNA from sample storage to quantitative real-time PCR and assess the corresponding method with to evaluate male fertility and its representative markers, equatorin (EQTN) and peroxiredoxin (PRDX). Following successive steps of the Minimum Information for Publication of Quantitative Real-Time PCR Experiments guidelines, several options were compared using boar spermatozoa. To evaluate the optimized procedures, the relationship between mRNA expression of EQTN and PRDX in spermatozoa and the fertility (litter size) of 20 individual boars was assessed. Unexpectedly, DNase treatment during RNA isolation had the deleterious effect by decreasing the RNA concentration by 56% and eliminating the correlation between EQTN and PRDX4 mRNA expression and male fertility. Moreover, when sperm RNA was processed using the corresponding method, the results showed the highest exon sequence expression, male fertility prediction power, and consistency. This optimized protocol for predicting male fertility can be used to study the transport of messages directing the life course from spermatozoon to offspring.
Collapse
Affiliation(s)
- Won-Ki Pang
- Department of Animal Science and Technology and BET Research Institute, Chung-Ang University, Anseong, Gyeonggi-do, 17546, Republic of Korea
| | - Saehan Kang
- Department of Animal Science and Technology and BET Research Institute, Chung-Ang University, Anseong, Gyeonggi-do, 17546, Republic of Korea
| | - Do-Yeal Ryu
- Department of Animal Science and Technology and BET Research Institute, Chung-Ang University, Anseong, Gyeonggi-do, 17546, Republic of Korea
| | - Md Saidur Rahman
- Department of Animal Science and Technology and BET Research Institute, Chung-Ang University, Anseong, Gyeonggi-do, 17546, Republic of Korea
| | - Yoo-Jin Park
- Department of Animal Science and Technology and BET Research Institute, Chung-Ang University, Anseong, Gyeonggi-do, 17546, Republic of Korea
| | - Myung-Geol Pang
- Department of Animal Science and Technology and BET Research Institute, Chung-Ang University, Anseong, Gyeonggi-do, 17546, Republic of Korea.
| |
Collapse
|
15
|
Xie J, Yu J, Fan Y, Zhao X, Su J, Meng Y, Wu Y, Uddin MB, Wang C, Wang Z. Low dose lead exposure at the onset of puberty disrupts spermatogenesis-related gene expression and causes abnormal spermatogenesis in mouse. Toxicol Appl Pharmacol 2020; 393:114942. [PMID: 32142724 DOI: 10.1016/j.taap.2020.114942] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Revised: 02/25/2020] [Accepted: 03/02/2020] [Indexed: 12/12/2022]
Abstract
Implications of lead (Pb) exposure in dysregulated spermatogenesis in sexually active individuals during adulthood is well established; however, the effect of Pb exposure on spermatogenesis in the early stages of puberty is not clear yet. Moreover, the mechanism of Pb mediated dysregulation of spermatogenesis in adults is also poorly understood. Exposure to environmental toxicants during puberty may cause serious consequences in adulthood causing developmental retardations, especially in the reproductive system. Here we investigated the effects of lead exposure on spermatogenesis at the onset of puberty and the underlying mechanisms of these effects. Male ICR mice were exposed to low (50 mg/L) and high (200 mg/L) doses of Pb through the drinking water for 90 days. At the end of this period, the blood Pb level of the low-dose and high-dose exposure groups were found 6.14 ± 0.34 μg/dL and 11.92 ± 2.92 μg/dL respectively which were in agreement with the US CDC-recommended (5 μg/dL) and Chinese CDC-recommended (10 μg/dL) reference blood Pb level for the children. Although no visible toxicity was observed in either group, Pb exposure caused considerable histopathological changes in testis and epididymis; increased sperm DNA fragmentation indices as well as disrupted sperm heads and head-neck conjunctions. Moreover, both low and high-dose Pb exposures caused aberrant expressions of several important spermatogenesis-related genes in epididymis and testis. These results suggest that although the blood Pb levels are close to the recommended-reference values, low dose Pb exposure at the onset of puberty can disrupt spermatogenesis-related gene expression and cause abnormal mouse spermatogenesis.
Collapse
Affiliation(s)
- Jie Xie
- Department of Preventive Medicine, School of Health Sciences, Wuhan University, Wuhan 430071, PR China
| | - Jun Yu
- Department of Preventive Medicine, School of Health Sciences, Wuhan University, Wuhan 430071, PR China
| | - Yongsheng Fan
- Department of Preventive Medicine, School of Health Sciences, Wuhan University, Wuhan 430071, PR China
| | - Xue Zhao
- Department of Preventive Medicine, School of Health Sciences, Wuhan University, Wuhan 430071, PR China
| | - Jianmei Su
- Department of Preventive Medicine, School of Health Sciences, Wuhan University, Wuhan 430071, PR China
| | - Yu Meng
- Department of Preventive Medicine, School of Health Sciences, Wuhan University, Wuhan 430071, PR China
| | - Yu Wu
- Department of Preventive Medicine, School of Health Sciences, Wuhan University, Wuhan 430071, PR China
| | - Mohammad Burhan Uddin
- Department of Toxicology and Cancer Biology, College of Medicine, University of Kentucky, Lexington, KY 40536, USA
| | - Chunhong Wang
- Department of Preventive Medicine, School of Health Sciences, Wuhan University, Wuhan 430071, PR China.
| | - Zhishan Wang
- Department of Toxicology and Cancer Biology, College of Medicine, University of Kentucky, Lexington, KY 40536, USA.
| |
Collapse
|
16
|
Archana SS, Selvaraju S, Binsila BK, Arangasamy A, Krawetz SA. Immune regulatory molecules as modifiers of semen and fertility: A review. Mol Reprod Dev 2019; 86:1485-1504. [DOI: 10.1002/mrd.23263] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2018] [Accepted: 08/22/2019] [Indexed: 12/16/2022]
Affiliation(s)
- S. Siddalingappa Archana
- Reproductive Physiology Laboratory, Animal Physiology DivisionICAR‐National Institute of Animal Nutrition and Physiology Bengaluru India
- Department of BiochemistryJain University Bengaluru India
| | - Sellappan Selvaraju
- Reproductive Physiology Laboratory, Animal Physiology DivisionICAR‐National Institute of Animal Nutrition and Physiology Bengaluru India
| | - B. Krishnan Binsila
- Reproductive Physiology Laboratory, Animal Physiology DivisionICAR‐National Institute of Animal Nutrition and Physiology Bengaluru India
| | - Arunachalam Arangasamy
- Reproductive Physiology Laboratory, Animal Physiology DivisionICAR‐National Institute of Animal Nutrition and Physiology Bengaluru India
| | - Stephen A. Krawetz
- Department of Obstetrics and GynecologyWayne State University School of Medicine Detroit Michigan
- Center for Molecular Medicine and GeneticsC.S. Mott Center for Human Growth and Development, Wayne State University School of Medicine Detroit Michigan
| |
Collapse
|
17
|
Abstract
Having been debated for many years, the presence and role of spermatozoal RNAs is resolving, and their contribution to development is now appreciated. Data from different species continue show that sperm contain a complex suite of coding and noncoding RNAs that play a role in an individual's life course. Mature sperm RNAs provide a retrospective of spermatogenesis, with their presence and abundance reflecting sperm maturation, fertility potential, and the paternal contribution to the developmental path the offspring may follow.Sperm RNAs delivered upon fertilization provide some of the initial contacts with the oocyte, directly confront the maternal with the paternal contribution as a prelude to genome consolidation. Following syngamy, early embryo development may in part be modulated by paternal RNAs that can include epidydimal passengers. This provides a direct path to relay an experience and then initiate a paternal response to the environment to the oocyte and beyond. Their epigenetic impact is likely felt prior to embryonic genome activation when the population of sperm delivered transcripts markedly changes. Here, we review the insights gained from sperm RNAs over the years, the subtypes, and the caveats of the RNAs described. We discuss the role of sperm RNAs in fertilization and embryo development, and their possible mechanism(s) influencing offspring phenotype. Approaches to meet the future challenges as the study of sperm RNAs continues, include, elucidating the potential mechanisms underlying how paternal allostatic load, the constant adaptation of health to external conditions, may be relayed by sperm RNAs to affect future generations.
Collapse
Affiliation(s)
- Marta Gòdia
- Animal Genomics Group, Center for Research in Agricultural Genomics (CRAG) (CSIC-IRTA-UAB-UB), Cerdanyola del Vallès (Barcelona), Catalonia, Spain
| | - Grace Swanson
- Department of Obstetrics and Gynecology, Wayne State University, Detroit, Michigan, USA.,Center for Molecular Medicine and Genetics, Wayne State University, Detroit, Michigan, USA
| | - Stephen A Krawetz
- Department of Obstetrics and Gynecology, Wayne State University, Detroit, Michigan, USA.,Center for Molecular Medicine and Genetics, Wayne State University, Detroit, Michigan, USA.,C.S. Mott Center for Human Growth and Development, Wayne State University, Detroit, Michigan, USA
| |
Collapse
|
18
|
Yang Y, Liu D, Wu L, Huang W, Yang S, Xia J, Liu X, Meng Z. Comparative transcriptome analyses reveal changes of gene expression in fresh and cryopreserved yellow catfish (Pelteobagrus fulvidraco) sperm and the effects of Cryoprotectant Me 2SO. Int J Biol Macromol 2019; 133:457-465. [PMID: 31002905 DOI: 10.1016/j.ijbiomac.2019.04.050] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Revised: 04/08/2019] [Accepted: 04/08/2019] [Indexed: 10/27/2022]
Abstract
This study, for the first time in fish, compared the transcriptome of fresh and frozen-thawed sperm, and would help to better understand the effect of cryopreservation on fish sperm and then better preserve the aquatic germplasm resources. Here, we employed high-throughput sequencing technology to obtain the transcriptome of yellow catfish from fresh sperm, cryopreserved sperm with and without cryoprotectant. When cryoprotectant (Me2SO) was excluded, down-regulated genes were significantly enriched into calcium ion binding, cytoskeletal protein binding, microfilament motor activity, calmodulin binding and carnitine O-acyltransferase activity, which affected Ca2+ regulation, cellular morphology, motility and metabolism. Moreover, heat shock proteins and genes associated with regulation of cholesterol, HCO3- and protein tyrosine phosphorylation (PTP) were down-regulated, and thus would impair ability against stress, membrane rigidity, pH regulation and signal transduction of cryopreserved sperm. After Me2SO was added, the amounts of DEGs decreased significantly and down-regulation of genes were found mainly in cytoskeleton and heat shock proteins, thereby suggesting that Me2SO effectively reduced the impact caused by low temperature on gene expression. Whether adding Me2SO or not, the up-regulated genes were mainly found in ribosomal proteins genes. However, when Me2SO was added, over-expression of some genes might contribute to maintain normal function of cryopreserved sperm.
Collapse
Affiliation(s)
- Yang Yang
- School of Life Sciences, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Dongqing Liu
- School of Life Sciences, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Lina Wu
- School of Life Sciences, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Wenhua Huang
- School of Life Sciences, Sun Yat-sen University, Guangzhou, Guangdong, China.
| | - Sen Yang
- School of Life Sciences, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Junhong Xia
- School of Life Sciences, Sun Yat-sen University, Guangzhou, Guangdong, China.
| | - Xiaochun Liu
- School of Life Sciences, Sun Yat-sen University, Guangzhou, Guangdong, China.
| | - Zining Meng
- School of Life Sciences, Sun Yat-sen University, Guangzhou, Guangdong, China.
| |
Collapse
|
19
|
Mazilina MA, Komarova EM, Baranov VS. RNA in Human Sperm and Some Problems of Male Fertility. RUSS J GENET+ 2018. [DOI: 10.1134/s1022795418120098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
20
|
Geng D, Yang X, Zhang H, Liu X, Yu Y, Jiang Y, Liu R, Zhang G. Association of single nucleotide polymorphism c.673C>A/p.Gln225Lys in SEPT12 gene with spermatogenesis failure in male idiopathic infertility in Northeast China. J Int Med Res 2018; 47:992-998. [PMID: 30488758 PMCID: PMC6381467 DOI: 10.1177/0300060518811770] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Male infertility is a complex multifactorial disease affecting approximately 10% of couples who want to have children. Some cases of infertility can be explained by genetic factors. Septins are members of the GTPase superfamily, which are involved in diverse biological processes including morphogenesis, compartmentalization, cytokinesis, and apoptosis. The septin 12 gene, SEPT12, is expressed exclusively in post-meiotic male germ cells and is considered as a critical gene for spermatogenesis. In this study, we evaluated 200 patients with non-obstructive azoospermia and detected mutations of 25 spermatogenesis-associated genes by targeted exome sequencing. We report a missense SEPT12 variant, c.673C>A/p.Gln225Lys, in an infertile man with non-obstructive azoospermia. The variation was located inside the GTPase domain and had a SIFT score of 0.02 (<0.50) and was considered to be 'probably damaging' by PolyPhen. This case may provide clues to help establish the relationship between SEPT12 gene alterations and some cases of idiopathic male infertility. The role of this variant should thus be investigated further.
Collapse
Affiliation(s)
- Dongfeng Geng
- 1 Center for Reproductive Medicine, Center for Prenatal Diagnosis, The First Hospital of Jilin University, Changchun, Jilin, China
| | - Xiao Yang
- 1 Center for Reproductive Medicine, Center for Prenatal Diagnosis, The First Hospital of Jilin University, Changchun, Jilin, China
| | - Hongguo Zhang
- 1 Center for Reproductive Medicine, Center for Prenatal Diagnosis, The First Hospital of Jilin University, Changchun, Jilin, China
| | - Xiaojun Liu
- 2 Peking Medriv Academy of Genetics and Reproduction, Peking, China
| | - Yang Yu
- 1 Center for Reproductive Medicine, Center for Prenatal Diagnosis, The First Hospital of Jilin University, Changchun, Jilin, China
| | - Yuting Jiang
- 1 Center for Reproductive Medicine, Center for Prenatal Diagnosis, The First Hospital of Jilin University, Changchun, Jilin, China
| | - Ruizhi Liu
- 1 Center for Reproductive Medicine, Center for Prenatal Diagnosis, The First Hospital of Jilin University, Changchun, Jilin, China.,*These authors contributed equally to this work
| | - Guirong Zhang
- 2 Peking Medriv Academy of Genetics and Reproduction, Peking, China.,*These authors contributed equally to this work
| |
Collapse
|
21
|
Pelloni M, Paoli D, Majoli M, Pallotti F, Carlini T, Lenzi A, Lombardo F. Molecular study of human sperm RNA: Ropporin and CABYR in asthenozoospermia. J Endocrinol Invest 2018; 41:781-787. [PMID: 29247344 DOI: 10.1007/s40618-017-0804-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/22/2017] [Accepted: 12/02/2017] [Indexed: 12/15/2022]
Abstract
BACKGROUND Sperm motility is an essential aspect of human fertility. Sperm contain an abundance of transcripts, thought to be remnants of mRNA, which comprise a genetic fingerprint and can be considered a historic record of gene expression during spermatogenesis. The aberrant expression of numerous genes has been found to contribute to impaired sperm motility; these include ROPN1 (rhophilin associated tail protein 1), which encodes a component of the fibrous sheath of the mammalian sperm flagella, and CABYR (calcium-binding tyrosine-(Y)-phosphorylation-regulated protein), which plays an important role in calcium activation and modulation. The aim of this study was to investigate ROPN1 and CABYR gene co-expression in asthenozoospermic semen samples in comparison with normozoospermic samples. METHODS We studied 120 semen samples (60 normozoospermic and 60 asthenozoospermic) from Caucasian patients attending our centre for an andrological check-up. Total RNA was extracted from purified spermatozoa with RNeasy mini kit. ROPN1 and CABYR mRNA expression was analysed using RT-qPCR. Continuous variables were described as means ± standard deviations. RESULTS ROPN1 and CABYR mRNA were simultaneously downregulated in asthenozoospermic in comparison with normozoospermic samples. There was also a positive correlation between total progressive motility and ROPN1 and CABYR gene expression and between total motile sperm number and ROPN1 and CABYR gene expression. CONCLUSIONS The results demonstrated downregulation of both ROPN1 and CABYR in asthenozoospermic samples and importantly, a positive correlation between the expression of the two genes, suggesting that ROPN1 and CABYR co-expression is a prerequisite for normal flagellar function and sperm motility.
Collapse
Affiliation(s)
- M Pelloni
- Laboratory of Seminology-Sperm Bank "Loredana Gandini", Department of Experimental Medicine, University of Rome "La Sapienza", Viale del Policlinico 155, 00161, Rome, Italy
| | - D Paoli
- Laboratory of Seminology-Sperm Bank "Loredana Gandini", Department of Experimental Medicine, University of Rome "La Sapienza", Viale del Policlinico 155, 00161, Rome, Italy.
| | - M Majoli
- Laboratory of Seminology-Sperm Bank "Loredana Gandini", Department of Experimental Medicine, University of Rome "La Sapienza", Viale del Policlinico 155, 00161, Rome, Italy
| | - F Pallotti
- Laboratory of Seminology-Sperm Bank "Loredana Gandini", Department of Experimental Medicine, University of Rome "La Sapienza", Viale del Policlinico 155, 00161, Rome, Italy
| | - T Carlini
- Laboratory of Seminology-Sperm Bank "Loredana Gandini", Department of Experimental Medicine, University of Rome "La Sapienza", Viale del Policlinico 155, 00161, Rome, Italy
| | - A Lenzi
- Laboratory of Seminology-Sperm Bank "Loredana Gandini", Department of Experimental Medicine, University of Rome "La Sapienza", Viale del Policlinico 155, 00161, Rome, Italy
| | - F Lombardo
- Laboratory of Seminology-Sperm Bank "Loredana Gandini", Department of Experimental Medicine, University of Rome "La Sapienza", Viale del Policlinico 155, 00161, Rome, Italy
| |
Collapse
|
22
|
Yuan HF, Zhao K, Zang Y, Liu CY, Hu ZY, Wei JJ, Zhou T, Li Y, Zhang HP. Effect of folate deficiency on promoter methylation and gene expression of Esr1, Cav1, and Elavl1, and its influence on spermatogenesis. Oncotarget 2018; 8:24130-24141. [PMID: 28445960 PMCID: PMC5421833 DOI: 10.18632/oncotarget.15731] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2016] [Accepted: 02/08/2017] [Indexed: 11/25/2022] Open
Abstract
This study aims to investigate the effect of folate deficiency on the male reproductive function and the underlying mechanism. A total of 269 screened participants from 421 recruitments were enrolled in this study. An animal model of folate deficiency was constructed. Folate concentration was measured in the ejaculate, and its association with semen parameters was then determined. The expression and promoter methylation status of ESR1, CAV1, and ELAVL1 were also evaluated. Results showed that seminal plasma folate level was significantly lower among subjects with azoospermia than those with normozoospermia. Low folate level was significantly correlated with low sperm concentration in men with normozoospermia. Folate deficiency significantly reduced the expression of ESR1, CAV1, and ELAVL1, which are critical to spermatogenesis. However, low folate levels did not increase the methylation levels of the promoter regions of ESR1, CAV1, and ELAVL1 in human sperm DNA. Thus, folate deficiency impairs spermatogenesis may partly due to inhibiting the expression of these genes. Thus future research should determine the significance of sufficient folate status in male fertilization and subsequent pregnancy outcomes.
Collapse
Affiliation(s)
- Hong-Fang Yuan
- Family Planning Research Institute, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Kai Zhao
- Family Planning Research Institute, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Center of Human Reproduction, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yu Zang
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Chun-Yan Liu
- Family Planning Research Institute, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zhi-Yong Hu
- Family Planning Research Institute, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jia-Jing Wei
- Family Planning Research Institute, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ting Zhou
- Family Planning Research Institute, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ying Li
- Family Planning Research Institute, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Hui-Ping Zhang
- Family Planning Research Institute, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Center of Human Reproduction, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
23
|
Bianchi E, Stermer A, Boekelheide K, Sigman M, Hall SJ, Reyes G, Dere E, Hwang K. High-quality human and rat spermatozoal RNA isolation for functional genomic studies. Andrology 2018; 6:374-383. [PMID: 29470852 DOI: 10.1111/andr.12471] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Revised: 12/11/2017] [Accepted: 01/04/2018] [Indexed: 12/30/2022]
Abstract
Sperm RNA is a sensitive monitoring endpoint for male reproductive toxicants, and a potential biomarker to assess male infertility and sperm quality. However, isolation of sperm RNA is a challenging procedure due to the heterogeneous population of cells present in the ejaculate, the low yield of RNA per spermatozoon, and the absence of 18S and 28S ribosomal RNA subunits. The unique biology of spermatozoa has created some uncertainty in the field about RNA isolation methods, indicating the need for rigorous quality control checks to ensure reproducibility of data generated from sperm RNA. Therefore, we developed a reliable and effective protocol for RNA isolation from rat and human spermatozoa that delivers highly purified and intact RNA, verified using RNA-specific electrophoretic chips and molecular biology approaches such as RT-PCR and Western blot analysis. The sperm RNA isolation technique was optimized using rat spermatozoa and then adapted to human spermatozoa. Three steps in the sperm isolation procedure, epididymal fluid collection, sperm purification, and spermatozoon RNA extraction, were evaluated and assessed. The sperm RNA extraction methodology consists of collection of rat epididymal fluid with repeated needle punctures of the epididymis, somatic cell elimination using detergent-based somatic cell lysis buffer (SCLB) and the use of RNA isolation Kit. Rat sperm heads are more resistant to disruption than human spermatozoa, necessitating the addition of mechanical lysis with microbeads and heat in the rat protocol, whereas the human sperm protocol only required lysis buffer. In conclusion, this methodology results in reliable and consistent isolation of high-quality sperm RNA. Using this technique will aid in translation of data collected from animal models, and reproducibility of clinical assessment of male factor fertility using RNA molecular biomarkers.
Collapse
Affiliation(s)
- E Bianchi
- Division of Urology, Rhode Island Hospital, Providence, RI, USA.,Department of Pathology and Laboratory Medicine, Brown University, Providence, RI, USA
| | - A Stermer
- Department of Pathology and Laboratory Medicine, Brown University, Providence, RI, USA
| | - K Boekelheide
- Department of Pathology and Laboratory Medicine, Brown University, Providence, RI, USA
| | - M Sigman
- Division of Urology, Rhode Island Hospital, Providence, RI, USA.,Department of Pathology and Laboratory Medicine, Brown University, Providence, RI, USA
| | - S J Hall
- Department of Pathology and Laboratory Medicine, Brown University, Providence, RI, USA
| | - G Reyes
- Department of Pathology and Laboratory Medicine, Brown University, Providence, RI, USA
| | - E Dere
- Division of Urology, Rhode Island Hospital, Providence, RI, USA.,Department of Pathology and Laboratory Medicine, Brown University, Providence, RI, USA
| | - K Hwang
- Division of Urology, Rhode Island Hospital, Providence, RI, USA.,Department of Pathology and Laboratory Medicine, Brown University, Providence, RI, USA
| |
Collapse
|
24
|
Laqqan M, Hammadeh ME. Alterations in DNA methylation patterns and gene expression in spermatozoa of subfertile males. Andrologia 2017; 50. [DOI: 10.1111/and.12934] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/08/2017] [Indexed: 02/06/2023] Open
Affiliation(s)
- M. Laqqan
- Department of Obstetrics & Gynecology; Assisted Reproduction Laboratory; Saarland University; Homburg Germany
| | - M. E. Hammadeh
- Department of Obstetrics & Gynecology; Assisted Reproduction Laboratory; Saarland University; Homburg Germany
| |
Collapse
|
25
|
Yeganeh IS, Taromchi AH, Fathabadi FF, Nejatbakhsh R, Novin MG, Shokri S. Expression and localization of relaxin family peptide receptor 4 in human spermatozoa and impact of insulin-like peptide 5 on sperm functions. Reprod Biol 2017; 17:327-332. [PMID: 28986276 DOI: 10.1016/j.repbio.2017.09.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2017] [Revised: 09/12/2017] [Accepted: 09/14/2017] [Indexed: 01/26/2023]
Abstract
Insulin-like peptide 5 (INSL5) is a member of the insulin superfamily peptide that interacts with the relaxin family peptide receptor 4 (RXFP4). Numerous recent studies have focused on the functional effects of INSL5 on fat and glucose metabolism. Although there is no evidence that the human sperm may be a candidate target of INSL5, it has been detected in mice testis and sperm. Therefore, the present study sought to analyze the localization and expression of RXFP4 on human sperm and determine the efficiency of INSL5 in human sperm. Normal semen samples were incubated in different doses and exposure time periods of INSL5. We analyzed sperm motility by computer-assisted sperm analysis (CASA) and ROS levels by flow cytometry using the MitoSOX™ Red probe. Localization and expression of RXFP4 were assayed by immunofluorescence and RT-PCR, respectively. The results confirmed the presence of RXFP4 in human spermatozoa, which localized in the neck and midpiece of sperm. Nested PCR showed the expression of RXFP4 in human sperm. INSL5 could attenuate generation of mitochondrial ROS at the 1, 10, 30, and 100nmol/L doses. This result was particularly noted in the 30nmol/L treated samples after 4h incubation. Total motility of sperm was significantly preserved in the 100nmol/L after 2h and in 30nmol/L after 4h incubation period. This study, for the first time, clarified the expression and localization of RXFP4 on human sperm and revealed the role of INSL5 in sperm motility and mitochondrial ROS generation in a dose-dependent manner.
Collapse
Affiliation(s)
- Imaneh Shamayeli Yeganeh
- Department of Biology and Anatomical Sciences, Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Ph.D. Student in Anatomical Sciences, International Branch, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Amir Hossein Taromchi
- Department of Medical Biotechnology and Nanotechnology, Faculty of Medicine, Zanjan University of Medical Sciences (ZUMS), Zanjan, Iran.
| | - Fatemeh Fadaei Fathabadi
- Department of Biology and Anatomical Sciences, Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Reza Nejatbakhsh
- Department of Anatomical Sciences, Faculty of Medicine, Zanjan University of Medical Sciences (ZUMS), Zanjan, Iran.
| | - Marefat Ghaffari Novin
- Department of Biology and Anatomical Sciences, Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Saeed Shokri
- Department of Anatomical Sciences, Faculty of Medicine, Zanjan University of Medical Sciences (ZUMS), Zanjan, Iran.
| |
Collapse
|
26
|
Zhou JH, Zhou QZ, Yang JK, Lyu XM, Bian J, Guo WB, Chen ZJ, Xia M, Xia H, Qi T, Li X, Liu CD. MicroRNA-27a-mediated repression of cysteine-rich secretory protein 2 translation in asthenoteratozoospermic patients. Asian J Androl 2017; 19:591-595. [PMID: 27517483 PMCID: PMC5566855 DOI: 10.4103/1008-682x.185001] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2015] [Revised: 03/05/2016] [Accepted: 06/08/2016] [Indexed: 12/28/2022] Open
Abstract
Cysteine-rich secretory protein 2 (CRISP2) is an important protein in spermatozoa that plays roles in modulating sperm flagellar motility, the acrosome reaction, and gamete fusion. Spermatozoa lacking CRISP2 exhibit low sperm motility and abnormal morphology. However, the molecular mechanisms underlying the reduction of CRISP2 in asthenoteratozoospermia (ATZ) remain unknown. In this study, low expression of CRISP2 protein rather than its mRNA was observed in the ejaculated spermatozoa from ATZ patients as compared with normozoospermic males. Subsequently, bioinformatic prediction, luciferase reporter assays, and microRNA-27a (miR-27a) transfection experiments revealed that miR-27a specifically targets CRISP2 by binding to its 3' untranslated region (3'-UTR), suppressing CRISP2 expression posttranscriptionally. Further evidence was provided by the clinical observation of high miR-27a expression in ejaculated spermatozoa from ATZ patients and a negative correlation between miR-27a expression and CRISP2 protein expression. Finally, a retrospective follow-up study supported that both high miR-27a expression and low CRISP2 protein expression were associated with low progressive sperm motility, abnormal morphology, and infertility. This study demonstrates a novel mechanism responsible for reduced CRISP2 expression in ATZ, which may offer a potential therapeutic target for treating male infertility, or for male contraception.
Collapse
Affiliation(s)
- Jun-Hao Zhou
- Department of Urology, The Third Affiliated Hospital of Southern Medical University, Guangzhou, China
| | - Qi-Zhao Zhou
- Department of Urology, The Third Affiliated Hospital of Southern Medical University, Guangzhou, China
| | - Jian-Kun Yang
- Department of Urology, The Third Affiliated Hospital of Southern Medical University, Guangzhou, China
| | - Xiao-Ming Lyu
- Laboratory Medical Center, The Third Affiliated Hospital of Southern Medical University, Guangzhou, China
| | - Jun Bian
- Department of Urology, The Third Affiliated Hospital of Southern Medical University, Guangzhou, China
| | - Wen-Bin Guo
- Department of Urology, The Third Affiliated Hospital of Southern Medical University, Guangzhou, China
| | - Zi-Jian Chen
- Department of Urology, The Third Affiliated Hospital of Southern Medical University, Guangzhou, China
| | - Ming Xia
- Department of Urology, The Third Affiliated Hospital of Southern Medical University, Guangzhou, China
| | - Hui Xia
- Department of Urology, The Third Affiliated Hospital of Southern Medical University, Guangzhou, China
| | - Tao Qi
- Laboratory Medicine Center, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Xin Li
- Department of Urology, The Third Affiliated Hospital of Southern Medical University, Guangzhou, China
- Cancer Research Institute, Southern Medical University, Guangzhou, China
| | - Cun-Dong Liu
- Department of Urology, The Third Affiliated Hospital of Southern Medical University, Guangzhou, China
| |
Collapse
|
27
|
Solomon O, Yousefi P, Huen K, Gunier RB, Escudero-Fung M, Barcellos LF, Eskenazi B, Holland N. Prenatal phthalate exposure and altered patterns of DNA methylation in cord blood. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2017; 58:398-410. [PMID: 28556291 PMCID: PMC6488305 DOI: 10.1002/em.22095] [Citation(s) in RCA: 61] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2016] [Revised: 04/11/2017] [Accepted: 04/12/2017] [Indexed: 05/18/2023]
Abstract
Epigenetic changes such as DNA methylation may be a molecular mechanism through which environmental exposures affect health. Phthalates are known endocrine disruptors with ubiquitous exposures in the general population including pregnant women, and they have been linked with a number of adverse health outcomes. We examined the association between in utero phthalate exposure and altered patterns of cord blood DNA methylation in 336 Mexican-American newborns. Concentrations of 11 phthalate metabolites were analyzed in maternal urine samples collected at 13 and 26 weeks gestation as a measure of fetal exposure. DNA methylation was assessed using the Infinium HumanMethylation 450K BeadChip adjusting for cord blood cell composition. To identify differentially methylated regions (DMRs) that may be more informative than individual CpG sites, we used two different approaches, DMRcate and comb-p. Regional assessment by both methods identified 27 distinct DMRs, the majority of which were in relation to multiple phthalate metabolites. Most of the significant DMRs (67%) were observed for later pregnancy (26 weeks gestation). Further, 51% of the significant DMRs were associated with the di-(2-ethylhexyl) phthalate metabolites. Five individual CpG sites were associated with phthalate metabolite concentrations after multiple comparisons adjustment (FDR), all showing hypermethylation. Genes with DMRs were involved in inflammatory response (IRAK4 and ESM1), cancer (BRCA1 and LASP1), endocrine function (CNPY1), and male fertility (IFT140, TESC, and PRDM8). These results on differential DNA methylation in newborns with prenatal phthalate exposure provide new insights and targets to explore mechanism of adverse effects of phthalates on human health. Environ. Mol. Mutagen. 58:398-410, 2017. © 2017 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Olivia Solomon
- School of Public Health, Center for Environmental Research and Children’s Health (CERCH), University
of California, Berkeley, Berkeley, CA 94720, USA
| | - Paul Yousefi
- School of Public Health, Center for Environmental Research and Children’s Health (CERCH), University
of California, Berkeley, Berkeley, CA 94720, USA
| | - Karen Huen
- School of Public Health, Center for Environmental Research and Children’s Health (CERCH), University
of California, Berkeley, Berkeley, CA 94720, USA
| | - Robert B. Gunier
- School of Public Health, Center for Environmental Research and Children’s Health (CERCH), University
of California, Berkeley, Berkeley, CA 94720, USA
| | - Maria Escudero-Fung
- School of Public Health, Center for Environmental Research and Children’s Health (CERCH), University
of California, Berkeley, Berkeley, CA 94720, USA
| | - Lisa F. Barcellos
- School of Public Health, Center for Environmental Research and Children’s Health (CERCH), University
of California, Berkeley, Berkeley, CA 94720, USA
| | - Brenda Eskenazi
- School of Public Health, Center for Environmental Research and Children’s Health (CERCH), University
of California, Berkeley, Berkeley, CA 94720, USA
| | - Nina Holland
- School of Public Health, Center for Environmental Research and Children’s Health (CERCH), University
of California, Berkeley, Berkeley, CA 94720, USA
| |
Collapse
|
28
|
Krizova J, Stufkova H, Rodinova M, Macakova M, Bohuslavova B, Vidinska D, Klima J, Ellederova Z, Pavlok A, Howland DS, Zeman J, Motlik J, Hansikova H. Mitochondrial Metabolism in a Large-Animal Model of Huntington Disease: The Hunt for Biomarkers in the Spermatozoa of Presymptomatic Minipigs. NEURODEGENER DIS 2017. [PMID: 28633139 DOI: 10.1159/000475467] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Huntington disease (HD) is a fatal neurodegenerative disorder involving reduced muscle coordination, mental and behavioral changes, and testicular degeneration. In order to further clarify the decreased fertility and penetration ability of the spermatozoa of transgenic HD minipig boars (TgHD), we applied a set of mitochondrial metabolism (MM) parameter measurements to this promising biological material, which can be collected noninvasively in longitudinal studies. OBJECTIVE We aimed to optimize methods for MM measurements in spermatozoa and to establish possible biomarkers of HD in TgHD spermatozoa expressing the N-terminal part of mutated human huntingtin. METHODS Semen samples from 12 TgHD and wild-type animals, aged 12-65 months, were obtained repeatedly during the study. Respiration was measured by polarography, MM was assessed by the detection of oxidation of radiolabeled substrates (mitochondrial energy-generating system; MEGS), and the content of the oxidative phosphorylation system subunits was detected by Western blot. Three possibly interfering factors were statistically analyzed: the effect of HD, generation and aging. RESULTS We found 5 MM parameters which were significantly diminished in TgHD spermatozoa and propose 3 specific MEGS incubations and complex I-dependent respiration as potential biomarkers of HD in TgHD spermatozoa. CONCLUSIONS Our results suggest a link between the gain of toxic function of mutated huntingtin in TgHD spermatozoa and the observed MM and/or glycolytic impairment. We determined 4 biomarkers useful for HD phenotyping and experimental therapy monitoring studies in TgHD minipigs.
Collapse
Affiliation(s)
- Jana Krizova
- Laboratory for Study of Mitochondrial Disorders, Department of Pediatrics and Adolescent Medicine, General University Hospital and First Faculty of Medicine, Charles University, Prague, Czech Republic
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
El Fekih S, Nguyen MH, Perrin A, Beauvillard D, Morel F, Saad A, Ben Ali H, De Braekeleer M. Sperm RNA preparation for transcriptomic analysis: Review of the techniques and personal experience. Andrologia 2017; 49. [DOI: 10.1111/and.12767] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/19/2016] [Indexed: 12/24/2022] Open
Affiliation(s)
- S. El Fekih
- Faculté de Médecine et des Sciences de la Santé; Université de Brest; Brest France
- Institut National de la Santé et de la Recherche Médicale (INSERM), U1078; Brest France
- Laboratoire de Cytogénétique, Génétique Moléculaire et Biologie de la Reproduction Humaines; CHU Farhat Hached Sousse; Université de Monastir; Monastir Tunisia
| | - M.-H. Nguyen
- Faculté de Médecine et des Sciences de la Santé; Université de Brest; Brest France
- Institut National de la Santé et de la Recherche Médicale (INSERM), U1078; Brest France
| | - A. Perrin
- Faculté de Médecine et des Sciences de la Santé; Université de Brest; Brest France
- Institut National de la Santé et de la Recherche Médicale (INSERM), U1078; Brest France
- Service de Cytogénétique et Biologie de la Reproduction; Hôpital Morvan; CHRU Brest; Brest France
| | - D. Beauvillard
- Faculté de Médecine et des Sciences de la Santé; Université de Brest; Brest France
- Institut National de la Santé et de la Recherche Médicale (INSERM), U1078; Brest France
- Service de Cytogénétique et Biologie de la Reproduction; Hôpital Morvan; CHRU Brest; Brest France
| | - F. Morel
- Faculté de Médecine et des Sciences de la Santé; Université de Brest; Brest France
- Institut National de la Santé et de la Recherche Médicale (INSERM), U1078; Brest France
- Service de Cytogénétique et Biologie de la Reproduction; Hôpital Morvan; CHRU Brest; Brest France
| | - A. Saad
- Laboratoire de Cytogénétique, Génétique Moléculaire et Biologie de la Reproduction Humaines; CHU Farhat Hached Sousse; Université de Monastir; Monastir Tunisia
| | - H. Ben Ali
- Laboratoire de Cytogénétique, Génétique Moléculaire et Biologie de la Reproduction Humaines; CHU Farhat Hached Sousse; Université de Monastir; Monastir Tunisia
| | - M. De Braekeleer
- Faculté de Médecine et des Sciences de la Santé; Université de Brest; Brest France
- Institut National de la Santé et de la Recherche Médicale (INSERM), U1078; Brest France
- Service de Cytogénétique et Biologie de la Reproduction; Hôpital Morvan; CHRU Brest; Brest France
| |
Collapse
|
30
|
Identification of sperm mRNA biomarkers associated with testis injury during preclinical testing of pharmaceutical compounds. Toxicol Appl Pharmacol 2017; 320:1-7. [PMID: 28167222 DOI: 10.1016/j.taap.2017.02.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2016] [Revised: 01/03/2017] [Accepted: 02/03/2017] [Indexed: 12/30/2022]
Abstract
The human testis is sensitive to toxicant-induced injury but current methods for detecting adverse effects are limited, insensitive and unreliable. Animal studies use sensitive histopathological endpoints to assess toxicity, but require testicular tissue that is not available during human clinical trials. More sensitive and reliable molecular biomarkers of testicular injury are needed to better monitor testicular toxicity in both clinical and preclinical. Adult male Wistar Han rats were exposed for 4weeks to compounds previously associated with testicular injury, including cisplatin (0, 0.2, 0.3, or 0.4mg/kg/day), BI665915 (0, 20, 70, 100mg/kg/d), BI665636 (0, 20, 100mg/kg/d) or BI163538 (0, 70, 150, 300mg/kg/d) to evaluate reproductive toxicity and assess changes in sperm mRNA levels. None of the compounds resulted in any significant changes in body, testis or epididymis weights, nor were there decreases in testicular homogenization resistant spermatid head counts. Histopathological evaluation found that only BI665915 treatment caused any testicular effects, including minor germ cell loss and disorganization of the seminiferous tubule epithelium, and an increase in the number of retained spermatid heads. A custom PCR-array panel was used to assess induced changes in sperm mRNA. BI665915 treatment resulted in a significant increase in clusterin (Clu) levels and decreases in GTPase, IMAP family member 4 (Gimap4), prostaglandin D2 synthase (Ptgds) and transmembrane protein with EGF like and two follistatin like domains 1 (Tmeff1) levels. Correlation analysis between transcript levels and quantitative histopathological endpoints found a modest association between Clu with retained spermatid heads. These results demonstrate that sperm mRNA levels are sensitive molecular indicators of testicular injury that can potentially be translated into a clinical setting.
Collapse
|
31
|
Dere E, Wilson SK, Anderson LM, Boekelheide K. From the Cover: Sperm Molecular Biomarkers Are Sensitive Indicators of Testicular Injury following Subchronic Model Toxicant Exposure. Toxicol Sci 2016; 153:327-40. [PMID: 27466211 DOI: 10.1093/toxsci/kfw137] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Traditional testis histopathology endpoints remain the gold standard for evaluating testicular insult and injury in a non-clinical setting, but are invasive and unfeasible for monitoring these effects clinically in humans. Assessing testicular injury in humans relies on semen and serum hormone analyses, both of which are insensitive and poor indicators of effect. Therefore, we hypothesized that sperm messenger RNA (mRNA) transcripts and DNA methylation marks can be used as translatable and sensitive indicators or testicular injury. Dose-response studies using adult male Fischer 344 rats subchronically exposed to model Sertoli cell toxicants (0.14, 0.21, and 0.33% 2,5-hexanedione, and 30, 50, and 70 mg/kg/day carbendazim), and a model germ cell toxicant (1.4, 3.4, and 5.1 mg/kg/day cyclophosphamide) for 3 months were evaluated for testicular injury by traditional histopathological endpoints, changes in sperm mRNA transcript levels using custom PCR arrays, and alterations in sperm DNA methylation via reduced representation bisulfite sequencing. Testis histopathological evaluation and PCR array analysis of the sperm transcriptome identified dose-dependent changes elicited by toxicant exposure (P < 0.05). Global sperm DNA methylation analysis of subchronic 0.33% 2,5-hexandione and 5.1 mg/kg/day cyclophosphamide exposure using a Monte Carlo approach did not identify differentially methylated regions (methylation difference > 10% and q < 0.05) with robust signatures. Overall, these results suggest that sperm mRNA transcripts are sensitive indicators of low dose toxicant-induced testicular injury in the rat, while sperm DNA methylation changes are not. Additionally, the Monte Carlo analysis is a powerful approach that can be used to assess the robustness of signals resulting from -omic studies.
Collapse
Affiliation(s)
- Edward Dere
- *Division of Urology, Rhode Island Hospital, Providence, Rhode Island 02903 Department of Pathology and Laboratory Medicine, Brown University, Providence, Rhode Island 02912
| | - Shelby K Wilson
- Department of Pathology and Laboratory Medicine, Brown University, Providence, Rhode Island 02912
| | - Linnea M Anderson
- Department of Pathology and Laboratory Medicine, Brown University, Providence, Rhode Island 02912
| | - Kim Boekelheide
- Department of Pathology and Laboratory Medicine, Brown University, Providence, Rhode Island 02912
| |
Collapse
|
32
|
New insights about the evaluation of human sperm quality: the aromatase example. Folia Histochem Cytobiol 2016; 47:S13-7. [PMID: 20067884 DOI: 10.2478/v10042-009-0059-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Male contribution to the couple's infertility is at first evaluated by the routine examination of semen parameters upon optical microscopy providing valuable information for a rational initial diagnosis and for a clinical management of infertility. But the different forms of infertility defined according to the WHO criteria especially teratozoospermia are not always related to the chromatin structure or to the fertilization capacity. New investigations at the molecular level (transcript and protein) could be developed in order to understand the nature of sperm malformation responsible of human infertility and thus to evaluate the sperm quality. The profile analysis of spermatozoal transcripts could be considered as a fingerprint of the past spermatogenic events. The selection of representative transcripts of normal spermatozoa remains complex because a differential expression (increased, decreased or not modified levels) of specific transcripts has been revealed between immotile and motile sperm fractions issued from normozoospermic donors. Microarrays tests or real-time quantitative PCR could be helpful for the identification of factors involved in the male infertility. Differences in the expression of specific transcripts have been reported between normal and abnormal semen samples. With the aromatase example, we have noted a negative strong correlation between the amount of transcript and the percentage of abnormal forms especially in presence of head defects. Immunocytochemical procedures using fluorescent probes associated with either confocal microscopy or flow cytometry can be also helpful to proceed with further investigations about the localization of proteins in the compartmentalized spermatozoa or the acrosome reaction. The dual location of aromatase both in the equatorial segment, the mid-piece and the tail could explain the double role of this enzyme in acrosome reaction and motility.
Collapse
|
33
|
Singh RP, Shafeeque CM, Sharma SK, Singh R, Mohan J, Sastry KVH, Saxena VK, Azeez PA. Chicken sperm transcriptome profiling by microarray analysis. Genome 2015; 59:185-96. [PMID: 26868024 DOI: 10.1139/gen-2015-0106] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
It has been confirmed that mammalian sperm contain thousands of functional RNAs, and some of them have vital roles in fertilization and early embryonic development. Therefore, we attempted to characterize transcriptome of the sperm of fertile chickens using microarray analysis. Spermatozoal RNA was pooled from 10 fertile males and used for RNA preparation. Prior to performing the microarray, RNA quality was assessed using a bioanalyzer, and gDNA and somatic cell RNA contamination was assessed by CD4 and PTPRC gene amplification. The chicken sperm transcriptome was cross-examined by analysing sperm and testes RNA on a 4 × 44K chicken array, and results were verified by RT-PCR. Microarray analysis identified 21,639 predominantly nuclear-encoded transcripts in chicken sperm. The majority (66.55%) of the sperm transcripts were shared with the testes, while surprisingly, 33.45% transcripts were detected (raw signal intensity greater than 50) only in the sperm and not in the testes. The greatest proportion of up-regulated transcripts were responsible for signal transduction (63.20%) followed by embryonic development (56.76%) and cell structure (56.25%). Of the 20 most abundant transcripts, 18 remain uncharacterized, whereas the least abundant genes were mostly associated with the ribosome. These findings lay a foundation for more detailed investigations on sperm RNAs in chickens to identify sperm-based biomarkers for fertility.
Collapse
Affiliation(s)
- R P Singh
- a Avian Physiology and Genetics Division, Sálim Ali Centre for Ornithology and Natural History, Anaikatty-641108, Coimbatore, India
| | - C M Shafeeque
- a Avian Physiology and Genetics Division, Sálim Ali Centre for Ornithology and Natural History, Anaikatty-641108, Coimbatore, India
| | - S K Sharma
- b Central Avian Research Institute, Izatnagar, 243122, India
| | - R Singh
- c Indian Veterinary Research Institute, Izatnagar, 243122, India
| | - J Mohan
- b Central Avian Research Institute, Izatnagar, 243122, India
| | - K V H Sastry
- b Central Avian Research Institute, Izatnagar, 243122, India
| | - V K Saxena
- b Central Avian Research Institute, Izatnagar, 243122, India
| | - P A Azeez
- a Avian Physiology and Genetics Division, Sálim Ali Centre for Ornithology and Natural History, Anaikatty-641108, Coimbatore, India
| |
Collapse
|
34
|
Lim D, Shaw IC. Is there a link between dietary phytoestrogens and reproductive health in men? A meta-analysis of data from the USA and China. Int J Food Sci Technol 2015. [DOI: 10.1111/ijfs.12931] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Affiliation(s)
- David Lim
- Human Toxicology Research Group; Department of Chemistry; University of Canterbury; Private Bag 4800 Christchurch 8140 New Zealand
| | - Ian C. Shaw
- Human Toxicology Research Group; Department of Chemistry; University of Canterbury; Private Bag 4800 Christchurch 8140 New Zealand
| |
Collapse
|
35
|
Fu G, Wei Y, Wang X, Yu L. Identification of candidate causal genes and their associated pathogenic mechanisms underlying teratozoospermia based on the spermatozoa transcript profiles. Andrologia 2015; 48:576-83. [PMID: 26404029 DOI: 10.1111/and.12484] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/25/2015] [Indexed: 01/12/2023] Open
Abstract
Teratozoospermia with unclear pathomechanism is one of the common causes for failed fertilisation. This study aimed to further explore the pathological mechanism for teratozoospermia. Spermatozoal transcript profiles generated from 13 normal fertile men and eight infertile males with a consistent severe heterogeneous teratozoospermia were used. These data were pre-processed, and differentially expressed genes were screened. Besides, gene ontology and pathway enrichment analysis were performed, and then, protein-protein interaction (PPI) network was constructed, and spermatogenesis-related genes in the PPI network were extracted. As a result, 366 up-regulated and 2158 down-regulated genes were identified. Multiple gene ontology terms and pathways including cell-cell signalling and reproduction enriched by differentially expressed genes were obtained. Moreover, four clusters including cluster 1 associated with RNA catabolic process were identified from the PPI network. In addition, genes including cyclin B1, proteasome (prosome, macropain) activator subunit 4, Rac GTPase-activating protein 1 and pituitary tumour-transforming 1 were received. In conclusion, abnormal expression of cyclin B1 and Rac GTPase-activating protein 1, still proteasome (prosome, macropain) activator subunit 4 and pituitary tumour-transforming 1 would impede cell cycle progression during sperm development and maturation, which may contribute to the occurrence and development of teratozoospermia.
Collapse
Affiliation(s)
- G Fu
- State Key Laboratory of Genetic Engineering, Institute of Genetics, School of Life Sciences, Fudan University, Shanghai, China
| | - Y Wei
- State Key Laboratory of Genetic Engineering, Institute of Genetics, School of Life Sciences, Fudan University, Shanghai, China
| | - X Wang
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education, School of Pharmaceutical Sciences, Wuhan University, Wuhan, China
| | - L Yu
- State Key Laboratory of Genetic Engineering, Institute of Genetics, School of Life Sciences, Fudan University, Shanghai, China
| |
Collapse
|
36
|
Amer MK, Mostafa RM, Fathy A, Saad HM, Mostafa T. Ropporin gene expression in infertile asthenozoospermic men with varicocele before and after repair. Urology 2015; 85:805-808. [PMID: 25704993 DOI: 10.1016/j.urology.2014.12.033] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2014] [Revised: 12/16/2014] [Accepted: 12/22/2014] [Indexed: 02/05/2023]
Abstract
OBJECTIVE To assess Ropporin gene expression in the sperm of infertile asthenozoospermic men with varicocele (Vx) before and after repair. METHODS This study included 24 infertile asthenozoospermic men with Vx. They were subjected to history taking, clinical examination, scrotal color Doppler, and semen analysis with sperm separation. Three months after varicocelectomy, they were subjected to postoperative color Doppler, semen analysis, and sperm semiquantitative Reverse Transcription-Polymerase Chain Reaction assay for Ropporin gene expression levels. RESULTS Ropporin gene expression is significantly associated with different types of sperm motility, except for nonprogressive sperm motility. There was significant Ropporin gene overexpression postvaricocelectomy that was correlated with improved sperm count, sperm motility, and abnormal sperm morphology with decreased veins diameters. CONCLUSION Ropporin gene expression is related to the sperm motility. Its abnormal expression in the sperm of asthenozoospermic men with Vx is associated with impaired sperm motility that is improved after varicocelectomy.
Collapse
Affiliation(s)
- Medhat K Amer
- Andrology & Sexology Department, Faculty of Medicine, Cairo University, Cairo, Egypt; Adam International Hospital, Giza, Egypt
| | - Rashad M Mostafa
- Department of Dermatology and Andrology, Andrology Unit, Faculty of Medicine, Suez Canal University, Ismailia, Egypt
| | - Amal Fathy
- Clinical Pathology Department, Faculty of Medicine, Suez Canal University, Ismailia, Egypt
| | - Hany M Saad
- Department of Dermatology and Andrology, Andrology Unit, Faculty of Medicine, Suez Canal University, Ismailia, Egypt
| | - Taymour Mostafa
- Andrology & Sexology Department, Faculty of Medicine, Cairo University, Cairo, Egypt.
| |
Collapse
|
37
|
Male reproductive cancers and infertility: a mutual relationship. Int J Mol Sci 2015; 16:7230-60. [PMID: 25837470 PMCID: PMC4425014 DOI: 10.3390/ijms16047230] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2015] [Revised: 03/29/2015] [Accepted: 03/29/2015] [Indexed: 12/14/2022] Open
Abstract
Reproductive dysfunction and malignancies related to the male gender represent a serious health concern, whose incidence has significantly risen over the past years. Prior to treatment, testicular or prostate cancer patients often display poor semen characteristics similar to subfertile or infertile patients. This fact is underscored by cases where the malignancy is often diagnosed in males who undergo a general fertility screening. This review aims to examine the associations between male infertility and reproductive cancers focusing on common etiologies and biological mechanisms underlining these pathologies. Furthermore, we discuss compelling epidemiological data hypothesizing that male reproductive failure may act as a precursor of future andrological malignancies, including testicular or prostate cancer, thus providing a stimulus for a more specific research in male reproductive health and emphasizing the importance of this relation for physicians taking care of male patients with a reproductive disease.
Collapse
|
38
|
Tu W, Liu Y, Shen Y, Yan Y, Wang X, Yang D, Li L, Ma Y, Tao D, Zhang S, Yang Y. Genome-Wide Loci Linked to Non-Obstructive Azoospermia Susceptibility May Be Independent of Reduced Sperm Production in Males with Normozoospermia1. Biol Reprod 2015; 92:41. [DOI: 10.1095/biolreprod.114.125237] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
|
39
|
Zhou JH, Zhou QZ, Lyu XM, Zhu T, Chen ZJ, Chen MK, Xia H, Wang CY, Qi T, Li X, Liu CD. The Expression of Cysteine-Rich Secretory Protein 2 (CRISP2) and Its Specific Regulator miR-27b in the Spermatozoa of Patients with Asthenozoospermia1. Biol Reprod 2015; 92:28. [DOI: 10.1095/biolreprod.114.124487] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
|
40
|
Savadi-Shiraz E, Edalatkhah H, Talebi S, Heidari-Vala H, Zandemami M, Pahlavan S, Modarressi MH, Akhondi MM, Paradowska-Dogan A, Sadeghi MR. Quantification of sperm specific mRNA transcripts (PRM1, PRM2
, and TNP2
) in teratozoospermia and normozoospermia: New correlations between mRNA content and morphology of sperm. Mol Reprod Dev 2014; 82:26-35. [DOI: 10.1002/mrd.22440] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2013] [Accepted: 10/30/2014] [Indexed: 01/21/2023]
Affiliation(s)
- Elham Savadi-Shiraz
- Reproductive Biotechnology Research Center; Avicenna Research Institute; ACECR; Tehran Iran
- Department of Urology; Pediatric Urology and Andrology; Section Molecular Andrology; Justus Liebig University; Giessen Germany
| | - Haleh Edalatkhah
- Reproductive Biotechnology Research Center; Avicenna Research Institute; ACECR; Tehran Iran
| | - Saeed Talebi
- Department of Medical Genetics; Faculty of Medicine; Tehran University of Medical Sciences; Tehran Iran
| | - Hamed Heidari-Vala
- Nanobiotechnology Research Center; Avicenna Research Institute; ACECR; Tehran Iran
| | - Mahdi Zandemami
- Monoclonal Antibody Research Center; Avicenna Research Institute; ACECR; Tehran Iran
| | - Somayeh Pahlavan
- Reproductive Biotechnology Research Center; Avicenna Research Institute; ACECR; Tehran Iran
| | | | - Mohammad Mehdi Akhondi
- Reproductive Biotechnology Research Center; Avicenna Research Institute; ACECR; Tehran Iran
| | - Agnieszka Paradowska-Dogan
- Department of Urology; Pediatric Urology and Andrology; Section Molecular Andrology; Justus Liebig University; Giessen Germany
| | - Mohammad Reza Sadeghi
- Monoclonal Antibody Research Center; Avicenna Research Institute; ACECR; Tehran Iran
| |
Collapse
|
41
|
Fang P, Xu W, Li D, Zhao X, Dai J, Wang Z, Yan X, Qin M, Zhang Y, Xu C, Wang L, Qiao Z. A novel acrosomal protein, IQCF1, involved in sperm capacitation and the acrosome reaction. Andrology 2014; 3:332-44. [PMID: 25380116 DOI: 10.1111/andr.296] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2014] [Revised: 09/08/2014] [Accepted: 09/20/2014] [Indexed: 12/11/2022]
Abstract
On the basis of the unknown tags in the mature human sperm serial analysis of gene expression library constructed by our laboratory, some transcripts were cloned, including Iqcf1 (IQ motif containing F1). To investigate the function of sperm-retained Iqcf1 in spermatogenesis and fertilization of mice, we investigated the spatial and temporal expression of IQCF1. By using the (transcription activator-like effector nuclease) strategy, Iqcf1-knockout mice were produced, and the phenotypes of the Iqcf1(-/-) mice were analyzed. The results showed that IQCF1 was localized in the acrosome of spermatozoa and spermatids; the expression of IQCF1 in testes was associated with spermatogenic capacity. The Iqcf1(-/-) mice were significantly less fertile than the wild-type mice (p = 0.0057) because of reduced sperm motility (p = 0.0094) and the acrosome reaction (AR) (p = 0.0093). In spermatozoa, IQCF1 interacted with calmodulin (CaM) and possibly participated in the tyrosine phosphorylation of sperm proteins during capacitation. In conclusion, a newly identified acrosomal protein, IQCF1, is closely related to sperm capacitation and AR; in particular, it is involved in tyrosine phosphorylation of sperm proteins through interaction with CaM. Research into the function of IQCF1 during fertilization could facilitate the investigation of the molecular mechanism of capacitation, which is unclear.
Collapse
Affiliation(s)
- P Fang
- School of Life Sciences and Biotechnology, Shanghai Key Laboratory of Reproductive Medicine, Shanghai Jiao Tong University, Shanghai, China
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Comparative transcript profiling of gene expression of fresh and frozen-thawed bull sperm. Theriogenology 2014; 83:504-11. [PMID: 25459024 DOI: 10.1016/j.theriogenology.2014.10.015] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2014] [Revised: 10/09/2014] [Accepted: 10/10/2014] [Indexed: 11/21/2022]
Abstract
Although frozen semen is widely used commercially in the cattle breeding industry, the resultant pregnancy rate is lower than that produced using fresh semen. Cryodamage is a major problem in semen cryopreservation; it causes changes to sperm transcripts that may influence sperm function and motility. We used suppression subtractive hybridization technology to establish a complementary DNA subtractive library, and combined microarray technology and sequence homology analysis to screen and analyze differentially expressed genes in the library, comparing fresh sperm with the frozen-thawed sperm of nine bulls. Overall, 19 positive differentially expressed unigenes were identified using microarray data and Significance Analysis of Microarrays software (|score (d)| ≥ 2, fold change > 1, and false discovery rate < 0.05). Of 15 differentially expressed unigenes exhibited high sequence homology (E-value ≤ 1 × 10(-3)), 12 were upregulated in frozen-thawed sperm, the remaining 3 were upregulated in fresh sperm, and 4 other clones were identified as unknown because of incomplete sequences or because there was no significant sequence homology (E-value > 1E(-03)) and were considered novel genes. The expression of five of these genes-RPL31, PRKCE, PAPSS2, PLP1, and R1G7-was verified by quantitative real-time reverse transcription-polymerase chain reaction. There was a significant differential expression of the RPL31 gene (P < 0.05). Our preliminary results provide an overview of differentially expressed transcripts between fresh and frozen-thawed sperm of Holstein bulls.
Collapse
|
43
|
High quality RNA in semen and sperm: isolation, analysis and potential application in clinical testing. J Urol 2014; 193:352-9. [PMID: 25088949 DOI: 10.1016/j.juro.2014.07.107] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/24/2014] [Indexed: 01/14/2023]
Abstract
PURPOSE Male infertility is a complex health condition. To our knowledge there are no molecular biomarkers of male infertility. Sperm RNA is a potential biomarker for detecting sperm abnormalities and viability at infertility clinics. However, RNA use is hindered by its inconsistent quantity, quality, multiple cell types in semen and condensed sperm structure. MATERIALS AND METHODS We tested the usefulness of high quality RNA isolated from mature sperm and whole semen by our protocol, which reduces RNA degradation by maintaining semen and protocol components at 37 C and decreasing processing time. We isolated RNA from 83 whole semen samples, 18 samples of motile sperm prepared by the swim-up protocol and 18 of sperm prepared by the standard Percoll gradient method. RESULTS Electrophoretic and spectral analysis of RNA revealed high quality 18S and 28S rRNAs in 71 of 83 whole semen samples (86%) and 15 of 18 mature sperm swim-up samples (83%). However, high quality RNA was isolated from only 7 of 18 Percoll gradient sperm samples (39%). Interestingly quantitative reverse transcriptase-polymerase chain reaction analysis of 4 somatic and 10 germ cell markers showed that whole semen and swim-up samples had similar RNA profiles. RNA sequencing revealed that most encoded proteins were involved in mature sperm function, regulation of DNA replication, transcription, translation, cell cycle and embryo development. CONCLUSIONS We believe that semen and sperm specific RNAs are highly informative biomarkers for germ cell stages and somatic cell contribution. Therefore, these RNAs could be valuable diagnostic indicators of sperm survival, fertilization and early embryogenesis, and could serve as a predictor of the in vitro fertilization prognosis.
Collapse
|
44
|
Sun Z, Niu R, Wang B, Wang J. Altered sperm chromatin structure in mice exposed to sodium fluoride through drinking water. ENVIRONMENTAL TOXICOLOGY 2014; 29:690-696. [PMID: 22865829 DOI: 10.1002/tox.21796] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2012] [Revised: 06/14/2012] [Accepted: 06/30/2012] [Indexed: 06/01/2023]
Abstract
This study investigated the effects of sodium fluoride (NaF) on sperm abnormality, sperm chromatin structure, protamine 1 and protamine 2 (P1 and P2) mRNA expression, and histones expression in sperm in male mice. NaF was orally administrated to male mice at 30, 70, and 150 mg/l for 49 days (more than one spermatogenic cycle). Sperm head and tail abnormalities were significantly enhanced at middle and high doses. Similarly, sperm chromatin structure was also adversely affected by NaF exposure, indicating DNA integrity damage. Furthermore, middle and high NaF significantly reduced the mRNA expressions of P1 and P2, and P1/P2 ratio, whereas the sperm histones level was increased, suggesting the abnormal histone-protamine replacement. Therefore, we concluded that the mechanism by which F induced mice sperm abnormality and DNA integrity damage may involved in the alterations in P1, P2, and histones expression in sperm of mice.
Collapse
Affiliation(s)
- Zilong Sun
- Shanxi Key Laboratory of Ecological Animal Science and Environmental Veterinary Medicine, College of Animal Science and Technology, Shanxi Agricultural University, Taigu, 030801, Shanxi, China
| | | | | | | |
Collapse
|
45
|
Fang P, Zeng P, Wang Z, Liu M, Xu W, Dai J, Zhao X, Zhang D, Liang D, Chen X, Shi S, Zhang M, Wang L, Qiao Z, Shi H. Estimated Diversity of Messenger RNAs in Each Murine Spermatozoa and Their Potential Function During Early Zygotic Development1. Biol Reprod 2014; 90:94. [DOI: 10.1095/biolreprod.114.117788] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
|
46
|
Murdoch FE, Goldberg E. Male contraception: another Holy Grail. Bioorg Med Chem Lett 2013; 24:419-24. [PMID: 24368213 DOI: 10.1016/j.bmcl.2013.12.004] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2013] [Revised: 11/27/2013] [Accepted: 12/02/2013] [Indexed: 12/11/2022]
Abstract
The idea that men should participate in family planning by playing an active role in contraception has become more acceptable in recent years. Up to the present the condom and vasectomy have been the main methods of male contraception. There have been and continue to be efforts to develop an acceptable hormonal contraceptive involving testosterone (T) suppression. However the off target affects, delivery of the analogs and the need for T replacement have proven difficult obstacles to this technology. Research into the development of non-hormonal contraception for men is progressing in several laboratories and this will be the subject of the present review. A number of promising targets for the male pill are being investigated. These involve disruption of spermatogenesis by compromising the integrity of the germinal epithelium, interfering with sperm production at the level of meiosis, attacking specific sperm proteins to disrupt fertilizing ability, or interfering with the assembly of seminal fluid components required by ejaculated sperm for acquisition of motility. Blocking contractility of the vas deferens smooth muscle vasculature to prevent ejaculation is a unique approach that prevents sperm from reaching the egg. We shall note the lack of interest by big pharma with most of the support for male contraception provided by the NIH.
Collapse
Affiliation(s)
- Fern E Murdoch
- The Center for Reproductive Science Northwestern University, Evanston, IL 60208, United States
| | - Erwin Goldberg
- The Center for Reproductive Science Northwestern University, Evanston, IL 60208, United States; Department of Molecular Biosciences Northwestern University, Evanston, IL 60208, United States.
| |
Collapse
|
47
|
Sánchez V, Wistuba J, Mallidis C. Semen analysis: update on clinical value, current needs and future perspectives. Reproduction 2013; 146:R249-58. [DOI: 10.1530/rep-13-0109] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
At present, evaluation of male reproductive function consists primarily of routine semen analysis, a collection of conventional microscopic assessments ideally performed following the guidelines set by the World Health Organization. While providing some insight into testicular function, these long-performed tests are limited in the information that they impart; more specifically, they are unable to predict true fertility potential. As a consequence, there is a need for the appraisal and consideration of newer semen parameters that may be more indicative of reproductive success. Although various novel assays have been introduced that broaden the scope of information available to both researcher and clinician, the utility of these tests remains limited due to the lack of standardisation of protocols and the absence of clinically established, dependable reference ranges. As such, it is not surprising that most of these parameters and their associated methods remain recommended for ‘research purposes only’. With the burgeoning ‘omics’ revolution, nanotechnology and the development of new analytical instruments, there is now an opportunity for the identification and measurement of previously unknown features that may prove to be more indicative of each sperm's true functional status and capability. Once optimised, simplified, clinically validated and made more readily accessible, these new approaches hold the promise of forming the fulcrum upon which andrological investigations can enter a new era.
Collapse
|
48
|
Campion S, Aubrecht J, Boekelheide K, Brewster DW, Vaidya VS, Anderson L, Burt D, Dere E, Hwang K, Pacheco S, Saikumar J, Schomaker S, Sigman M, Goodsaid F. The current status of biomarkers for predicting toxicity. Expert Opin Drug Metab Toxicol 2013; 9:1391-408. [PMID: 23961847 PMCID: PMC3870154 DOI: 10.1517/17425255.2013.827170] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
INTRODUCTION There are significant rates of attrition in drug development. A number of compounds fail to progress past preclinical development due to limited tools that accurately monitor toxicity in preclinical studies and in the clinic. Research has focused on improving tools for the detection of organ-specific toxicity through the identification and characterization of biomarkers of toxicity. AREAS COVERED This article reviews what we know about emerging biomarkers in toxicology, with a focus on the 2012 Northeast Society of Toxicology meeting titled 'Translational Biomarkers in Toxicology.' The areas covered in this meeting are summarized and include biomarkers of testicular injury and dysfunction, emerging biomarkers of kidney injury and translation of emerging biomarkers from preclinical species to human populations. The authors also provide a discussion about the biomarker qualification process and possible improvements to this process. EXPERT OPINION There is currently a gap between the scientific work in the development and qualification of novel biomarkers for nonclinical drug safety assessment and how these biomarkers are actually used in drug safety assessment. A clear and efficient path to regulatory acceptance is needed so that breakthroughs in the biomarker toolkit for nonclinical drug safety assessment can be utilized to aid in the drug development process.
Collapse
Affiliation(s)
- Sarah Campion
- Principal Scientist, Drug Safety Research and Development, Pfizer, Inc., Eastern Point Road, MS 8274 1260, Groton, CT 06340, USA
| | - Jiri Aubrecht
- Senior Director, Drug Safety Research and Development, Pfizer, Inc., Eastern Point Road, MS 8274-1424, Groton, CT 06340, USA
| | - Kim Boekelheide
- Professor of Laboratory Medicine, Brown University, Department of Pathology and Laboratory Medicine, Providence, RI 02912, USA
| | - David W Brewster
- Vice-President, Global Head Drug Safety Evaluation, Vertex Pharmaceuticals, Inc., 130 Waverly Street, Cambridge, MA 02139, USA
| | - Vishal S Vaidya
- Assistant Professor of Medicine and Environmental Health, Harvard Institutes of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Harvard School of Public Health, Renal Division, Department of Environmental Health, Rm 510, 77 Avenue Louis Pasteur, Boston, MA 02115, USA
| | - Linnea Anderson
- Graduate Student, Brown University, Department of Pathology and Laboratory Medicine, Providence, RI 02912, USA
| | - Deborah Burt
- Scientist, Drug Safety Research and Development, Pfizer, Inc., Eastern Point Road, MS 8274- 1234, Groton, CT 06340, USA
| | - Edward Dere
- Postdoctoral Associate, Rhode Island Hospital, Division of Urology, Providence, RI 02903, USA
| | - Kathleen Hwang
- Assistant Professor, Rhode Island Hospital, Division of Urology, Providence, RI 02903, USA
| | - Sara Pacheco
- Graduate Student, Brown University, Department of Pathology and Laboratory Medicine, Providence, RI 02912, USA
| | - Janani Saikumar
- Brigham and Women’s Hospital, Harvard Institutes of Medicine, Harvard Medical School, Renal Division, Department of Medicine, Rm 510, 77 Avenue Louis Pasteur, Boston, MA 02115, USA
| | - Shelli Schomaker
- Principal Scientist, Drug Safety Research and Development, Pfizer, Inc., Eastern Point Road, MS 8274-1227, Groton, CT 06340, USA
| | - Mark Sigman
- Chief of Urology, Rhode Island Hospital and The Miriam Hospital, Division of Urology, Providence, RI 02903, USA
| | - Federico Goodsaid
- Vice President, Strategic Regulatory Intelligence, Vertex Pharmaceuticals, Inc., 1050 K Street NW, Suite 1125, Washington, DC 20016, USA
| |
Collapse
|
49
|
Dere E, Anderson LM, Coulson M, McIntyre BS, Boekelheide K, Chapin RE. SOT Symposium Highlight: Translatable Indicators of Testicular Toxicity: Inhibin B, MicroRNAs, and Sperm Signatures. Toxicol Sci 2013; 136:265-73. [PMID: 24052563 DOI: 10.1093/toxsci/kft207] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Testicular toxicity is an important safety endpoint in drug development and risk assessment, but reliable and translatable biomarkers for predicting injury have eluded researchers. However, this area shows great potential for improvement, with several avenues currently being pursued. This was the topic of a symposium session during the 2013 Society of Toxicology Annual Meeting in San Antonio, TX, entitled "Translatable Indicators of Testicular Toxicity: Inhibin B, MicroRNAs, and Sperm Signatures." This symposium brought together stakeholders from academia, government, and industry to present the limitations and drawbacks of currently used indicators of injury and discussed the ongoing efforts in developing more predictive biomarkers of injury. The presentations highlighted the early challenges of using circulating inhibin B and microRNA levels, and sperm messenger RNA transcript abundance and DNA methylation profiles, as novel biomarkers of testicular toxicity.
Collapse
Affiliation(s)
- Edward Dere
- * Division of Urology, Rhode Island Hospital, Providence, Rhode Island 02903
| | | | | | | | | | | |
Collapse
|
50
|
Potential biomarkers of nonobstructive azoospermia identified in microarray gene expression analysis. Fertil Steril 2013; 100:1686-94.e1-7. [PMID: 24012201 DOI: 10.1016/j.fertnstert.2013.07.1999] [Citation(s) in RCA: 80] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2013] [Revised: 07/30/2013] [Accepted: 07/30/2013] [Indexed: 12/26/2022]
Abstract
OBJECTIVE To identify potential biomarkers of azoospermia to determine a particular stage of spermatogenetic differentiation. DESIGN GeneChip Human Gene 1.0 ST microarray with validation at mRNA and protein levels. SETTING Basic research laboratory. PATIENT(S) Men with various types of nonobstructive azoospermia (n = 18) and with normal spermatogenesis (n = 4). INTERVENTION(S) Obtaining 31 testicular biopsy samples. MAIN OUTCOME MEASURE(S) Gene expression analysis using the Affymetrix Human Gene 1.0 ST microarrays on 14 selected genes according to the highest fold change, verified with quantitative polymerase chain reaction and on independent set of microarray samples. Western blot and immunohistochemistry were additionally performed. RESULT(S) The comparative analysis of gene expression profiles in the infertile and control groups resulted in the selection of 4,946 differentially expressed genes. AKAP4, UBQLN3, CAPN11, GGN, SPACA4, SPATA3, and FAM71F1 were the most significantly down-regulated genes in infertile patients. Global analysis also led to identification of up-regulated genes-WBSCR28, ADCY10, TMEM225, SPATS1, FSCN3, GTSF1L, and GSG1-in men with late maturation arrest. Moreover, the results from quantitative polymerase chain reaction and Western blot largely confirmed the microarray data. CONCLUSION(S) The set of selected genes can be used to create a molecular diagnostic tool to determine the degree of spermatogenic impairment for men with idiopathic nonobstructive azoospermia.
Collapse
|