1
|
Regulation of connexins genes expression contributes to reestablishes tissue homeostasis in a renovascular hypertension model. Heliyon 2020; 6:e05406. [PMID: 33163681 PMCID: PMC7609588 DOI: 10.1016/j.heliyon.2020.e05406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Revised: 09/22/2020] [Accepted: 10/28/2020] [Indexed: 11/24/2022] Open
Abstract
Connexins (Cx) are essential for cardiovascular regulation and maintenance of cardio-renal response involving the natriuretic peptide family. Changes in the expression of connexins promote intercellular communication dysfunction and may induce hypertension, atherosclerosis, and several other vascular diseases. This study analyzed the expression of the genes involved in the renin-angiotensin system (RAS) and the relation of the connexins gene expression with the renovascular hypertension 2K1C in different tissues. The insertion of a silver clip induced renovascular hypertension 2K1C into the left renal artery. Biochemical measurements were made using commercial kits. Gene expression was evaluated in the liver, heart, and kidneys by RT-PCR. The genes investigated were LDLr, Hmgcr, Agt, Ren, Ace, Agtr1a, Anp, Bnp, Npr1, Cx26, Cx32, Cx37, Cx40 and Cx43. All genes involved in the RAS presented increased transcriptional levels in the 2K1C group, except hepatic Agt. The natriuretic peptides (Anp; Bnp) and the receptor genes (Npr1) appeared to increase in the heart, however, Npr1 decreased in the kidneys. In hepatic tissue, hypertension promoted increased expression of Cx32, Cx37, and Cx40 genes however, Cx26 and Cx43 genes were not influenced. Expression was upregulated for Cx37 and Cx43 in cardiac tissue in the 2K1C group, but Cx40 did not demonstrate any difference between groups. The stenotic kidney showed an upregulated expression for Cx37 vs Sham and contralateral kidney, although Cx40 and Cx43 were downregulated. Hypertension did not modify the transcriptional expression of Cx26 and Cx32. Therefore, this study indicated that RAS and cardiac response were regulated transcriptionally by renovascular hypertension 2K1C. Moreover, the results of connexin gene expression demonstrated differential transcriptional regulation in different tissues studied and suggest a relationship between cardiac and renal physiological changes as an adaptive mechanism to the hypertensive state.
Collapse
|
2
|
How Does Circadian Rhythm Impact Salt Sensitivity of Blood Pressure in Mice? A Study in Two Close C57Bl/6 Substrains. PLoS One 2016; 11:e0153472. [PMID: 27088730 PMCID: PMC4835052 DOI: 10.1371/journal.pone.0153472] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2015] [Accepted: 03/30/2016] [Indexed: 12/29/2022] Open
Abstract
Background Mouse transgenesis has provided the unique opportunity to investigate mechanisms underlying sodium kidney reabsorption as well as end organ damage. However, understanding mouse background and the experimental conditions effects on phenotypic readouts of engineered mouse lines such as blood pressure presents a challenge. Despite the ability to generate high sodium and chloride plasma levels during high-salt diet, observed changes in blood pressure are not consistent between wild-type background strains and studies. Methods The present work was designed in an attempt to determine guidelines in the field of salt-induced hypertension by recording continuously blood pressure by telemetry in mice submitted to different sodium and potassium loaded diets and changing experimental conditions in both C57BL/6N and C57BL/6J mice strain (Normal salt vs. Low salt vs. High-salt/normal potassium vs. High salt/low potassium, standard vs. modified light cycle, Non-invasive tail cuff blood pressure vs. telemetry). Results In this study, we have shown that, despite a strong blood pressure (BP) basal difference between C57BL/6N and C57BL/6J mice, High salt/normal potassium diet increases BP and heart rate during the active phase only (dark period) in the same extent in both strains. On the other hand, while potassium level has no effect on salt-induced hypertension in C57BL/6N mice, high-salt/low potassium diet amplifies the effect of the high-salt challenge only in C57BL/6J mice. Indeed, in this condition, salt-induced hypertension can also be detected during light period even though this BP increase is lower compared to the one occurring during the dark period. Finally, from a methodological perspective, light cycle inversion has no effect on this circadian BP phenotype and tail-cuff method is less sensitive than telemetry to detect BP phenotypes due to salt challenges. Conclusions Therefore, to carry investigations on salt-induced hypertension in mice, chronic telemetry and studies in the active phase are essential prerequisites.
Collapse
|
3
|
López-Andrés N, Martin-Fernandez B, Rossignol P, Zannad F, Lahera V, Fortuno MA, Cachofeiro V, Díez J. A role for cardiotrophin-1 in myocardial remodeling induced by aldosterone. Am J Physiol Heart Circ Physiol 2011; 301:H2372-82. [PMID: 21926338 DOI: 10.1152/ajpheart.00283.2011] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Hyperaldosteronim is associated with left ventricular (LV) hypertrophy (LVH) and fibrosis. Cardiotrophin (CT)-1 is a cytokine that induces myocardial remodeling. We investigated whether CT-1 mediates aldosterone (Aldo)-induced myocardial remodeling in two experimental models. Wistar rats were treated with Aldo-salt (1 mg·kg(-1)·day(-1)) with or without spironolactone (200 mg·kg(-1)·day(-1)) for 3 wk. Wild-type (WT) and CT-1-null mice were infused with Aldo (1 mg·kg(-1)·day(-1)) for 3 wk. Hemodynamic parameters were analyzed. LVH, fibrosis, inflammation, and CT-1 expression were evaluated in both experimental models by histopathological analysis, RT-PCR, Western blot analysis, and ELISA. Hypertensive Aldo-treated rats exhibited increased LV end-diastolic pressure and -dP/dt compared with controls. The cardiac index, LV cross-sectional area and wall thickness, cardiomyocyte size, collagen deposition, and inflammation were increased in Aldo-salt-treated rats. Myocardial expression of molecular markers assessing LVH and fibrosis as well as CT-l levels were also augmented by Aldo-salt. Spironolactone treatment reversed all the above effects. CT-1 correlated positively with hemodynamic, histological, and molecular parameters showing myocardial remodeling. In WT and CT-1-null mice, Aldo infusion did not modify blood pressure. Whereas Aldo treatment induced LVH, fibrosis, and inflammation in WT mice, the mineralocorticoid did not provoke cardiac remodeling in CT-1-null mice. In conclusion, in experimental hyperaldosteronism, the increase in CT-1 expression was associated with parameters showing LVH and fibrosis. CT-1-null mice were resistant to Aldo-induced LVH and fibrosis. These data suggest a key role for CT-1 in cardiac remodeling induced by Aldo independent of changes in blood pressure levels.
Collapse
Affiliation(s)
- Natalia López-Andrés
- U, Faculty of Medicine, Institut National de la Santé et de la Recherche Médicale, Vandoeuvre-lès-Nancy, France.
| | | | | | | | | | | | | | | |
Collapse
|
4
|
Ceroni A, Moreira ED, Mostarda CT, Silva GJJ, Krieger EM, Irigoyen MC. Acegene dosage influences the development of renovascular hypertension. Clin Exp Pharmacol Physiol 2010; 37:490-5. [DOI: 10.1111/j.1440-1681.2009.05330.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
5
|
Rickard AJ, Morgan J, Tesch G, Funder JW, Fuller PJ, Young MJ. Deletion of Mineralocorticoid Receptors From Macrophages Protects Against Deoxycorticosterone/Salt-Induced Cardiac Fibrosis and Increased Blood Pressure. Hypertension 2009; 54:537-43. [DOI: 10.1161/hypertensionaha.109.131110] [Citation(s) in RCA: 235] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Increased mineralocorticoid levels plus high salt promote vascular inflammation and cardiac tissue remodeling. Mineralocorticoid receptors are expressed in many cell types of the cardiovascular system, including monocytes/macrophages and other inflammatory cell types. Although mineralocorticoid receptors are expressed in monocytes/macrophages, their role in regulating macrophage function to date has not been investigated. We, thus, used the Cre/LoxP-recombination system to selectively delete mineralocorticoid receptors from monocytes/macrophages with the lysozyme M promoter used to drive Cre expression (MR
flox/flox
/LysM
Cre/−
mice). Male mice from each genotype (MR
flox/flox
or wild-type and MR
flox/flox
/LysM
Cre/−
mice) were uninephrectomized, given 0.9% NaCl solution to drink, and treated for 8 days or 8 weeks with either vehicle (n=10) or deoxycorticosterone (n=10). Equivalent tissue macrophage numbers were seen for deoxycorticosterone treatment of each genotype at 8 days; in contrast, plasminogen activator inhibitor type 1 and NAD(P)H oxidase subunit 2 levels were increased in wild-type but not in MR
flox/flox
/LysM
Cre/−
mice given deoxycorticosterone. Baseline expression of other inflammatory genes was reduced in MR
flox/flox
/LysM
Cre/−
mice compared with wild-type mice. At 8 weeks, deoxycorticosterone-induced macrophage recruitment and connective tissue growth factor and plasminogen activator inhibitor type 1 mRNA levels were similar for each genotype; in contrast, MR
flox/flox
/LysM
Cre/−
mice showed no increase in cardiac fibrosis or blood pressure, as was seen in wild-type mice at 8 weeks. These data demonstrate the following points: (1) mineralocorticoid receptor signaling regulates basal monocyte/macrophage function; (2) macrophage recruitment is not altered by loss of mineralocorticoid receptor signaling in these cells; and (3) a novel and significant role is seen for macrophage signaling in the regulation of cardiac remodeling and systolic blood pressure in the deoxycorticosterone/salt model.
Collapse
Affiliation(s)
- Amanda J. Rickard
- From the Prince Henry’s Institute of Medical Research (A.J.R., J.M., J.W.F., P.J.F., M.J.Y.) and Department of Nephrology, Monash Medical Centre (G.T.), and Department of Physiology (A.J.R., M.J.Y.), Monash University, Clayton, Australia
| | - James Morgan
- From the Prince Henry’s Institute of Medical Research (A.J.R., J.M., J.W.F., P.J.F., M.J.Y.) and Department of Nephrology, Monash Medical Centre (G.T.), and Department of Physiology (A.J.R., M.J.Y.), Monash University, Clayton, Australia
| | - Greg Tesch
- From the Prince Henry’s Institute of Medical Research (A.J.R., J.M., J.W.F., P.J.F., M.J.Y.) and Department of Nephrology, Monash Medical Centre (G.T.), and Department of Physiology (A.J.R., M.J.Y.), Monash University, Clayton, Australia
| | - John W. Funder
- From the Prince Henry’s Institute of Medical Research (A.J.R., J.M., J.W.F., P.J.F., M.J.Y.) and Department of Nephrology, Monash Medical Centre (G.T.), and Department of Physiology (A.J.R., M.J.Y.), Monash University, Clayton, Australia
| | - Peter J. Fuller
- From the Prince Henry’s Institute of Medical Research (A.J.R., J.M., J.W.F., P.J.F., M.J.Y.) and Department of Nephrology, Monash Medical Centre (G.T.), and Department of Physiology (A.J.R., M.J.Y.), Monash University, Clayton, Australia
| | - Morag J. Young
- From the Prince Henry’s Institute of Medical Research (A.J.R., J.M., J.W.F., P.J.F., M.J.Y.) and Department of Nephrology, Monash Medical Centre (G.T.), and Department of Physiology (A.J.R., M.J.Y.), Monash University, Clayton, Australia
| |
Collapse
|
6
|
Sontia B, Montezano AC, Paravicini T, Tabet F, Touyz RM. Downregulation of Renal TRPM7 and Increased Inflammation and Fibrosis in Aldosterone-Infused Mice. Hypertension 2008; 51:915-21. [DOI: 10.1161/hypertensionaha.107.100339] [Citation(s) in RCA: 80] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Affiliation(s)
- Bruno Sontia
- From the Kidney Research Centre, Ottawa Health Research Institute, University of Ottawa, Ontario, Canada
| | - Augusto C.I. Montezano
- From the Kidney Research Centre, Ottawa Health Research Institute, University of Ottawa, Ontario, Canada
| | - Tamara Paravicini
- From the Kidney Research Centre, Ottawa Health Research Institute, University of Ottawa, Ontario, Canada
| | - Fatiha Tabet
- From the Kidney Research Centre, Ottawa Health Research Institute, University of Ottawa, Ontario, Canada
| | - Rhian M. Touyz
- From the Kidney Research Centre, Ottawa Health Research Institute, University of Ottawa, Ontario, Canada
| |
Collapse
|
7
|
Jacobi J, Maas R, Cordasic N, Koch K, Schmieder RE, Böger RH, Hilgers KF. Role of asymmetric dimethylarginine for angiotensin II-induced target organ damage in mice. Am J Physiol Heart Circ Physiol 2007; 294:H1058-66. [PMID: 18156199 DOI: 10.1152/ajpheart.01103.2007] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The aim of the present study was to investigate the role of the endogenous nitric oxide synthase inhibitor asymmetric dimethylarginine (ADMA) and its degrading enzyme dimethylarginine dimethylaminohydrolase (DDAH) in angiotensin II (ANG II)-induced hypertension and target organ damage in mice. Mice transgenic for the human DDAH1 gene (TG) and wild-type (WT) mice (each, n = 28) were treated with 1.0 microg kg(-1) min(-1) ANG II, 3.0 microg kg(-1) min(-1) ANG II, or phosphate-buffered saline over 4 wk via osmotic minipumps. Blood pressure, as measured by tail cuff, was elevated to the same degree in TG and WT mice. Plasma levels of ADMA were lower in TG than WT mice and were not affected after 4 wk by either dose of ANG II in both TG and WT animals. Oxidative stress within the wall of the aorta, measured by fluorescence microscopy using the dye dihydroethidium, was significantly reduced in TG mice. ANG II-induced glomerulosclerosis was similar between WT and TG mice, whereas renal interstitial fibrosis was significantly reduced in TG compared with WT animals. Renal mRNA expression of protein arginine methyltransferase (PRMT)1 and DDAH2 increased during the infusion of ANG II, whereas PRMT3 and endogenous mouse DDAH1 expression remained unaltered. Chronic infusion of ANG II in mice has no effect on the plasma levels of ADMA after 4 wk. However, an overexpression of DDAH1 alleviates ANG II-induced renal interstitial fibrosis and vascular oxidative stress, suggesting a blood pressure-independent effect of ADMA on ANG II-induced target organ damage.
Collapse
Affiliation(s)
- Johannes Jacobi
- Department of Nephrology and Hypertension, Friedrich Alexander University Erlangen-Nuremberg, Erlangen, Germany
| | | | | | | | | | | | | |
Collapse
|
8
|
Malignant hypertension and the angiotensinogen gene. J Hypertens 2007; 25:2199-201. [DOI: 10.1097/hjh.0b013e3282f0e02d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
9
|
Luft FC. Titrating angiotensinogen in salt sensitive hypertension. J Mol Med (Berl) 2007; 85:313-6. [PMID: 17356844 DOI: 10.1007/s00109-007-0178-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Affiliation(s)
- Friedrich C Luft
- Franz Volhard Clinic, HELIOS Kliniken Berlin Medical Faculty of the Charité, Humboldt University, Wiltbergstrasse 50, 13125, Berlin-Buch, Germany.
| |
Collapse
|