1
|
Toncheva D, Marinova M, Borovska P, Serbezov D. Incidence of ancient variants associated with oncological diseases in modern populations. BIOTECHNOL BIOTEC EQ 2023. [DOI: 10.1080/13102818.2022.2151376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Affiliation(s)
- Draga Toncheva
- Department of Medical Genetics, Medical Faculty, Medical University of Sofia, Sofia, Bulgaria
- Bulgarian Academy of Sciences, Sofia, Bulgaria
| | - Maria Marinova
- Department of Computer Systems and Technologies, Faculty of Electronics and Automation, Technical University of Sofia, Sofia, Bulgaria
| | - Plamenka Borovska
- Department of Informatics, Faculty of Applied Mathematics and Informatics, Technical University of Sofia, Sofia, Bulgaria
| | - Dimitar Serbezov
- Department of Medical Genetics, Medical Faculty, Medical University of Sofia, Sofia, Bulgaria
| |
Collapse
|
2
|
Chomette L, Migeotte I, Dewachter C, Vachiery J, Smits G, Bondue A. Early-onset and severe pulmonary arterial hypertension due to a novel compound heterozygous association of rare VHL mutations: A case report and review of existing data. Pulm Circ 2022; 12:e12052. [PMID: 35734542 PMCID: PMC9190294 DOI: 10.1002/pul2.12052] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Revised: 01/03/2022] [Accepted: 01/25/2022] [Indexed: 11/11/2022] Open
Abstract
Very rare cases of pulmonary arterial hypertension (PAH) have been linked to homozygous or compound heterozygous von Hippel-Lindau (VHL) tumor suppressor gene mutations, while heterozygous VHL mutations lead to VHL tumor syndrome. Although those entities are defined, the genotype-phenotype correlation is incompletely understood, and patient management recommendations are lacking. Here, we describe a case of severe early-onset PAH due to a so-far unreported compound heterozygous association of VHL mutations and review the existing data.
Collapse
Affiliation(s)
- Laura Chomette
- Department of Cardiology, CUB Hôpital ErasmeUniversité Libre de Bruxelles (ULB)BrusselsBelgium
- Institut de Recherche Interdisciplinaire en Biologie Humaine et Moléculaire (IRIBHM)Université Libre de Bruxelles (ULB)BrusselsBelgium
| | - Isabelle Migeotte
- Institut de Recherche Interdisciplinaire en Biologie Humaine et Moléculaire (IRIBHM)Université Libre de Bruxelles (ULB)BrusselsBelgium
- Department of Human Genetics, CUB Hôpital ErasmeUniversité Libre de Bruxelles (ULB)BrusselsBelgium
| | - Céline Dewachter
- Department of Cardiology, CUB Hôpital ErasmeUniversité Libre de Bruxelles (ULB)BrusselsBelgium
| | - Jean‐Luc Vachiery
- Department of Cardiology, CUB Hôpital ErasmeUniversité Libre de Bruxelles (ULB)BrusselsBelgium
| | - Guillaume Smits
- Department of Human Genetics, CUB Hôpital ErasmeUniversité Libre de Bruxelles (ULB)BrusselsBelgium
| | - Antoine Bondue
- Department of Cardiology, CUB Hôpital ErasmeUniversité Libre de Bruxelles (ULB)BrusselsBelgium
- Institut de Recherche Interdisciplinaire en Biologie Humaine et Moléculaire (IRIBHM)Université Libre de Bruxelles (ULB)BrusselsBelgium
| |
Collapse
|
3
|
Rojas-Canales DM, Li JY, Makuei L, Gleadle JM. Compensatory renal hypertrophy following nephrectomy: When and how? Nephrology (Carlton) 2019; 24:1225-1232. [PMID: 30809888 DOI: 10.1111/nep.13578] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/24/2019] [Indexed: 12/16/2022]
Abstract
Following surgical removal of one kidney, the other enlarges and increases its function. The mechanism for the sensing of this change and the growth is incompletely understood but begins within days and compensatory renal hypertrophy (CRH) is the dominant contributor to the growth. In many individuals undergoing nephrectomy for cancer or kidney donation this produces a substantial and helpful increase in renal function. Two main mechanisms have been proposed, one in which increased activity by the remaining kidney leads to hypertrophy, the second in which there is release of a kidney specific factor in response to a unilateral nephrectomy that initiates CRH. Whilst multiple growth factors and pathways such as the mTORC pathway have been implicated in experimental studies, their roles and the precise mechanism of CRH are not defined. Unrestrained hypoxia inducible factor activation in renal cancer promotes growth and may play an important role in driving CRH.
Collapse
Affiliation(s)
- Darling M Rojas-Canales
- College of Medicine and Public Health and Medicine, Flinders University, Adelaide, South Australia, Australia.,Department of Renal Medicine, Flinders Medical Centre, Adelaide, South Australia, Australia
| | - Jordan Y Li
- College of Medicine and Public Health and Medicine, Flinders University, Adelaide, South Australia, Australia.,Department of Renal Medicine, Flinders Medical Centre, Adelaide, South Australia, Australia
| | - Leek Makuei
- College of Medicine and Public Health and Medicine, Flinders University, Adelaide, South Australia, Australia
| | - Jonathan M Gleadle
- College of Medicine and Public Health and Medicine, Flinders University, Adelaide, South Australia, Australia.,Department of Renal Medicine, Flinders Medical Centre, Adelaide, South Australia, Australia
| |
Collapse
|
4
|
Gordeuk VR, Key NS, Prchal JT. Re-evaluation of hematocrit as a determinant of thrombotic risk in erythrocytosis. Haematologica 2019; 104:653-658. [PMID: 30872370 PMCID: PMC6442963 DOI: 10.3324/haematol.2018.210732] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Accepted: 01/28/2019] [Indexed: 12/20/2022] Open
Abstract
Here we critically evaluate the role of elevated hematocrit as the principal determinant of thrombotic risk in polycythemia and erythrocytosis, defined by an expansion of red cell mass. Since red cell volume determination is no longer readily available, in clinical practice, polycythemia and erythrocytosis are defined by elevated hemoglobin and hematocrit. Thrombosis is common in Chuvash erythrocytosis and polycythemia vera. Although the increased thrombotic risk is assumed to be due to the elevated hematocrit and an associated increase in blood viscosity, thrombosis does not accompany most types of erythrocytosis. We review studies indicating that the occurrence of thrombosis in Chuvash erythrocytosis is independent of hematocrit, that the thrombotic risk is paradoxically increased by phlebotomy in Chuvash erythrocytosis, and that, when compared to chemotherapy, phlebotomy is associated with increased thrombotic risk in polycythemia vera. Inherited and environmental causes that lead to polycythemia and erythrocytosis are accompanied by diverse cellular changes that could directly affect thrombotic risk, irrespective of the elevated hematocrit. The pressing issue in these disorders is to define factors other than elevated hematocrit that determine thrombotic risk. Defining these predisposing factors in polycythemia and erythrocytosis should then lead to rational therapies and facilitate development of targeted interventions.
Collapse
Affiliation(s)
- Victor R Gordeuk
- Division of Hematology and Oncology, University of Illinois at Chicago, IL
| | - Nigel S Key
- Division of Hematology-Oncology and UNC Hemophilia and Thrombosis Center, UNC, Chapel Hill, NC
| | - Josef T Prchal
- Division of Hematology and Hematologic Malignancies, University of Utah and Huntsman Cancer Center, Salt Lake City, UT, USA
| |
Collapse
|
5
|
Metabolic Pathways of the Warburg Effect in Health and Disease: Perspectives of Choice, Chain or Chance. Int J Mol Sci 2017; 18:ijms18122755. [PMID: 29257069 PMCID: PMC5751354 DOI: 10.3390/ijms18122755] [Citation(s) in RCA: 131] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2017] [Revised: 12/11/2017] [Accepted: 12/13/2017] [Indexed: 12/13/2022] Open
Abstract
Focus on the Warburg effect, initially descriptive of increased glycolysis in cancer cells, has served to illuminate mitochondrial function in many other pathologies. This review explores our current understanding of the Warburg effect’s role in cancer, diabetes and ageing. We highlight how it can be regulated through a chain of oncogenic events, as a chosen response to impaired glucose metabolism or by chance acquisition of genetic changes associated with ageing. Such chain, choice or chance perspectives can be extended to help understand neurodegeneration, such as Alzheimer’s disease, providing clues with scope for therapeutic intervention. It is anticipated that exploration of Warburg effect pathways in extreme conditions, such as deep space, will provide further insights crucial for comprehending complex metabolic diseases, a frontier for medicine that remains equally significant for humanity in space and on earth.
Collapse
|
6
|
Schadde E, Tsatsaris C, Swiderska-Syn M, Breitenstein S, Urner M, Schimmer R, Booy C, Z'graggen BR, Wenger RH, Spahn DR, Hertl M, Knechtle S, Diehl AM, Schläpfer M, Beck-Schimmer B. Hypoxia of the growing liver accelerates regeneration. Surgery 2017; 161:666-679. [PMID: 27436690 DOI: 10.1016/j.surg.2016.05.018] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2016] [Revised: 05/16/2016] [Accepted: 05/17/2016] [Indexed: 02/06/2023]
Abstract
BACKGROUND After portal vein ligation of 1 side of the liver, the other side regenerates at a slow rate. This slow growth may be accelerated to rapid growth by adding a transection between the 2 sides, i.e., performing portal vein ligation and parenchymal transection. We found that in patients undergoing portal vein ligation and parenchymal transection, portal vein hyperflow in the regenerating liver causes a significant reduction of arterial flow due to the hepatic arterial buffer response. We postulated that the reduction of arterial flow induces hypoxia in the regenerating liver and used a rat model to assess hypoxia and its impact on kinetic growth. METHODS A rat model of rapid (portal vein ligation and parenchymal transection) and slow regeneration (portal vein ligation) was established. Portal vein flow and pressure data were collected. Liver regeneration was assessed in rats using computed tomography, proliferation with Ki-67, and hypoxia with pimonidazole and HIF-1α staining. RESULTS The rat model confirmed acceleration of regeneration in portal vein ligation and parenchymal transection as well as the portal vein hyperflow seen in patients. Additionally, tissue hypoxia was observed after portal vein ligation and parenchymal transection, while little hypoxia staining was detected after portal vein ligation. To determine if hypoxia is a consequence or an inciting stimulus of rapid liver regeneration, we used a prolyl-hydroxylase blocker to activate hypoxia signaling pathways in the slow model. This clearly accelerated slow to rapid liver regeneration. Inversely, abrogation of hypoxia led to a blunting of rapid growth to slow growth. The topical application of prolyl-hydroxylase inhibitors on livers in rats induced spontaneous areas of regeneration. CONCLUSION This study shows that pharmacologically induced hypoxic signaling accelerates liver regeneration similar to portal vein ligation and parenchymal transection. Hypoxia is likely an accelerator of liver regeneration. Also, prolyl-hydroxylase inhibitors may be used to enhance liver regeneration pharmaceutically.
Collapse
Affiliation(s)
- Erik Schadde
- Institute of Physiology, Center for Integrative Human Physiology, University of Zürich, Zürich, Switzerland; Division of Transplant Surgery, Department of Surgery, Rush University Medical Center, Chicago, IL; Department of Surgery, Cantonal Hospital Winterthur, Zürich, Switzerland.
| | - Christopher Tsatsaris
- Institute of Physiology, Center for Integrative Human Physiology, University of Zürich, Zürich, Switzerland
| | | | | | - Martin Urner
- Institute of Physiology, Center for Integrative Human Physiology, University of Zürich, Zürich, Switzerland; Institute of Anesthesiology, University Hospital Zürich, Zürich, Switzerland
| | - Roman Schimmer
- Institute of Physiology, Center for Integrative Human Physiology, University of Zürich, Zürich, Switzerland
| | - Christa Booy
- Institute of Physiology, Center for Integrative Human Physiology, University of Zürich, Zürich, Switzerland
| | - Birgit Roth Z'graggen
- Institute of Physiology, Center for Integrative Human Physiology, University of Zürich, Zürich, Switzerland
| | - Roland H Wenger
- Institute of Physiology, Center for Integrative Human Physiology, University of Zürich, Zürich, Switzerland
| | - Donat R Spahn
- Institute of Anesthesiology, University Hospital Zürich, Zürich, Switzerland
| | - Martin Hertl
- Division of Transplant Surgery, Department of Surgery, Rush University Medical Center, Chicago, IL
| | - Stuart Knechtle
- Division of Transplantation, Department of Surgery, Duke University, Durham, NC
| | - Ann Mae Diehl
- Division of Hepatology, Department of Gastroenterology, Duke University, Durham, NC
| | - Martin Schläpfer
- Institute of Physiology, Center for Integrative Human Physiology, University of Zürich, Zürich, Switzerland; Institute of Anesthesiology, University Hospital Zürich, Zürich, Switzerland
| | - Beatrice Beck-Schimmer
- Institute of Physiology, Center for Integrative Human Physiology, University of Zürich, Zürich, Switzerland; Institute of Anesthesiology, University Hospital Zürich, Zürich, Switzerland; Department of Anesthesiology, University of Illinois Chicago, Chicago, IL
| |
Collapse
|
7
|
Kron P, Linecker M, Limani P, Schlegel A, Kambakamba P, Lehn JM, Nicolau C, Graf R, Humar B, Clavien PA. Hypoxia-driven Hif2a coordinates mouse liver regeneration by coupling parenchymal growth to vascular expansion. Hepatology 2016; 64:2198-2209. [PMID: 27628483 DOI: 10.1002/hep.28809] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/27/2016] [Accepted: 07/28/2016] [Indexed: 01/09/2023]
Abstract
UNLABELLED Interaction between sinusoidal endothelial cells and hepatocytes is a prerequisite for liver function. Upon tissue loss, both liver cell populations need to be regenerated. Repopulation occurs in a coordinated pattern, first through the regeneration of parenchyme (hepatocytes), which then produces vascular endothelial growth factor (VEGF) to enable the subsequent angiogenic phase. The signals that instruct hepatocytes to induce timely VEGF remain unidentified. Given that liver is highly vascularized, we reasoned that fluctuations in oxygenation after tissue loss may contribute to the coordination between hepatocyte and sinusoidal endothelial cell proliferation. To prevent drops in oxygen after hepatectomy, mice were pretreated with inositol trispyrophosphate (ITPP), an allosteric effector of hemoglobin causing increased O2 release from heme under hypoxic conditions. ITPP treatment delayed liver weight gain after hepatectomy. Comparison with controls revealed the presence of a hypoxic period around the peak of hepatocyte mitosis. Inhibition of hypoxia led to deficient hepatocyte mitosis, suppressed the regenerative Vegf wave, and abrogated the subsequent reconstruction of the sinusoidal network. These ITPP effects were ongoing with the reduction in hepatocellular hypoxia inducible factor 2a (Hif2a). In contrast, Hif1a was unaffected by ITPP. Hif2a knockdown phenocopied all effects of ITPP, including the mitotic deficiencies, Vegf suppression, and angiogenic failure. CONCLUSIONS Oxygen is a key regulator of liver regeneration. Hypoxia-inherent to the expansion of parenchyme-activates Hif2a to couple hepatocyte mitosis with the angiogenic phase. Hif2a acts as a safeguard to initiate sinusoidal reconstruction only upon successful hepatocyte mitosis, thereby enforcing a timely order onto cell type-specific regeneration patterns. These findings portray the hypoxia-driven Hif2a-Vegf axis as a prime node in coordinating sinusoidal endothelial cell-hepatocyte crosstalk during liver regeneration. (Hepatology 2016;64:2198-2209).
Collapse
Affiliation(s)
- Philipp Kron
- Department of Surgery, Swiss Hepato-Pancreato-Biliary and Transplantation Center, University Hospital Zurich, Zurich, Switzerland
| | - Michael Linecker
- Department of Surgery, Swiss Hepato-Pancreato-Biliary and Transplantation Center, University Hospital Zurich, Zurich, Switzerland
| | - Perparim Limani
- Department of Surgery, Swiss Hepato-Pancreato-Biliary and Transplantation Center, University Hospital Zurich, Zurich, Switzerland
| | - Andrea Schlegel
- Department of Surgery, Swiss Hepato-Pancreato-Biliary and Transplantation Center, University Hospital Zurich, Zurich, Switzerland
| | - Patryk Kambakamba
- Department of Surgery, Swiss Hepato-Pancreato-Biliary and Transplantation Center, University Hospital Zurich, Zurich, Switzerland
| | - Jean-Marie Lehn
- Institut de Science et d'Ingénierie Supramoléculaires, Université de Strasbourg, Strasbourg, France
| | - Claude Nicolau
- Friedman School of Nutrition Science and Policy, Tufts University, Boston, MA
| | - Rolf Graf
- Department of Surgery, Swiss Hepato-Pancreato-Biliary and Transplantation Center, University Hospital Zurich, Zurich, Switzerland
| | - Bostjan Humar
- Department of Surgery, Swiss Hepato-Pancreato-Biliary and Transplantation Center, University Hospital Zurich, Zurich, Switzerland
| | - Pierre-Alain Clavien
- Department of Surgery, Swiss Hepato-Pancreato-Biliary and Transplantation Center, University Hospital Zurich, Zurich, Switzerland
| |
Collapse
|
8
|
Slingo M, Cole M, Carr C, Curtis MK, Dodd M, Giles L, Heather LC, Tyler D, Clarke K, Robbins PA. The von Hippel-Lindau Chuvash mutation in mice alters cardiac substrate and high-energy phosphate metabolism. Am J Physiol Heart Circ Physiol 2016; 311:H759-67. [PMID: 27422990 PMCID: PMC5142182 DOI: 10.1152/ajpheart.00912.2015] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2015] [Accepted: 07/12/2016] [Indexed: 02/07/2023]
Abstract
This is the first integrative metabolic and functional study of the effects of modest hypoxia-inducible factor manipulation within the heart. Of particular note, the combination (and correlation) of perfused heart metabolic flux measurements with the new technique of real-time in vivo magnetic resonance spectroscopy using hyperpolarized pyruvate is a novel development. Hypoxia-inducible factor (HIF) appears to function as a global master regulator of cellular and systemic responses to hypoxia. HIF pathway manipulation is of therapeutic interest; however, global systemic upregulation of HIF may have as yet unknown effects on multiple processes. We used a mouse model of Chuvash polycythemia (CP), a rare genetic disorder that modestly increases expression of HIF target genes in normoxia, to understand what these effects might be within the heart. An integrated in and ex vivo approach was employed. Compared with wild-type controls, CP mice had evidence (using in vivo magnetic resonance imaging) of pulmonary hypertension, right ventricular hypertrophy, and increased left ventricular ejection fraction. Glycolytic flux (measured using [3H]glucose) in the isolated contracting perfused CP heart was 1.8-fold higher. Net lactate efflux was 1.5-fold higher. Furthermore, in vivo 13C-magnetic resonance spectroscopy (MRS) of hyperpolarized [13C1]pyruvate revealed a twofold increase in real-time flux through lactate dehydrogenase in the CP hearts and a 1.6-fold increase through pyruvate dehydrogenase. 31P-MRS of perfused CP hearts under increased workload (isoproterenol infusion) demonstrated increased depletion of phosphocreatine relative to ATP. Intriguingly, no changes in cardiac gene expression were detected. In summary, a modest systemic dysregulation of the HIF pathway resulted in clear alterations in cardiac metabolism and energetics. However, in contrast to studies generating high HIF levels within the heart, the CP mice showed neither the predicted changes in gene expression nor any degree of LV impairment. We conclude that the effects of manipulating HIF on the heart are dose dependent.
Collapse
Affiliation(s)
- Mary Slingo
- Department of Physiology, Anatomy, and Genetics, University of Oxford, Oxford, United Kingdom
| | - Mark Cole
- Department of Physiology, Anatomy, and Genetics, University of Oxford, Oxford, United Kingdom
| | - Carolyn Carr
- Department of Physiology, Anatomy, and Genetics, University of Oxford, Oxford, United Kingdom
| | - Mary K Curtis
- Department of Physiology, Anatomy, and Genetics, University of Oxford, Oxford, United Kingdom
| | - Michael Dodd
- Department of Physiology, Anatomy, and Genetics, University of Oxford, Oxford, United Kingdom
| | - Lucia Giles
- Department of Physiology, Anatomy, and Genetics, University of Oxford, Oxford, United Kingdom
| | - Lisa C Heather
- Department of Physiology, Anatomy, and Genetics, University of Oxford, Oxford, United Kingdom
| | - Damian Tyler
- Department of Physiology, Anatomy, and Genetics, University of Oxford, Oxford, United Kingdom
| | - Kieran Clarke
- Department of Physiology, Anatomy, and Genetics, University of Oxford, Oxford, United Kingdom
| | - Peter A Robbins
- Department of Physiology, Anatomy, and Genetics, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
9
|
Yousaf F, Spinowitz B. Hypoxia-Inducible Factor Stabilizers: a New Avenue for Reducing BP While Helping Hemoglobin? Curr Hypertens Rep 2016; 18:23. [DOI: 10.1007/s11906-016-0629-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
10
|
Mimicking hypoxia to treat anemia: HIF-stabilizer BAY 85-3934 (Molidustat) stimulates erythropoietin production without hypertensive effects. PLoS One 2014; 9:e111838. [PMID: 25392999 PMCID: PMC4230943 DOI: 10.1371/journal.pone.0111838] [Citation(s) in RCA: 136] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2014] [Accepted: 10/01/2014] [Indexed: 11/30/2022] Open
Abstract
Oxygen sensing by hypoxia-inducible factor prolyl hydroxylases (HIF-PHs) is the dominant regulatory mechanism of erythropoietin (EPO) expression. In chronic kidney disease (CKD), impaired EPO expression causes anemia, which can be treated by supplementation with recombinant human EPO (rhEPO). However, treatment can result in rhEPO levels greatly exceeding the normal physiological range for endogenous EPO, and there is evidence that this contributes to hypertension in patients with CKD. Mimicking hypoxia by inhibiting HIF-PHs, thereby stabilizing HIF, is a novel treatment concept for restoring endogenous EPO production. HIF stabilization by oral administration of the HIF-PH inhibitor BAY 85-3934 (molidustat) resulted in dose-dependent production of EPO in healthy Wistar rats and cynomolgus monkeys. In repeat oral dosing of BAY 85-3934, hemoglobin levels were increased compared with animals that received vehicle, while endogenous EPO remained within the normal physiological range. BAY 85-3934 therapy was also effective in the treatment of renal anemia in rats with impaired kidney function and, unlike treatment with rhEPO, resulted in normalization of hypertensive blood pressure in a rat model of CKD. Notably, unlike treatment with the antihypertensive enalapril, the blood pressure normalization was achieved without a compensatory activation of the renin–angiotensin system. Thus, BAY 85-3934 may provide an approach to the treatment of anemia in patients with CKD, without the increased risk of adverse cardiovascular effects seen for patients treated with rhEPO. Clinical studies are ongoing to investigate the effects of BAY 85-3934 therapy in patients with renal anemia.
Collapse
|
11
|
Xie Y, Zhang J, Lin Y, Gaeta X, Meng X, Wisidagama DRR, Cinkornpumin J, Koehler CM, Malone CS, Teitell MA, Lowry WE. Defining the role of oxygen tension in human neural progenitor fate. Stem Cell Reports 2014; 3:743-57. [PMID: 25418722 PMCID: PMC4235163 DOI: 10.1016/j.stemcr.2014.09.021] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2014] [Revised: 09/29/2014] [Accepted: 09/30/2014] [Indexed: 01/01/2023] Open
Abstract
Hypoxia augments human embryonic stem cell (hESC) self-renewal via hypoxia-inducible factor 2α-activated OCT4 transcription. Hypoxia also increases the efficiency of reprogramming differentiated cells to a pluripotent-like state. Combined, these findings suggest that low O2 tension would impair the purposeful differentiation of pluripotent stem cells. Here, we show that low O2 tension and hypoxia-inducible factor (HIF) activity instead promote appropriate hESC differentiation. Through gain- and loss-of-function studies, we implicate O2 tension as a modifier of a key cell fate decision, namely whether neural progenitors differentiate toward neurons or glia. Furthermore, our data show that even transient changes in O2 concentration can affect cell fate through HIF by regulating the activity of MYC, a regulator of LIN28/let-7 that is critical for fate decisions in the neural lineage. We also identify key small molecules that can take advantage of this pathway to quickly and efficiently promote the development of mature cell types. Low oxygen tension promotes gliogenesis of human neural progenitors HIF activation is required for gliogenic effect of lowered oxygen tension HIF acts through MYC to disrupt LIN28/let-7 in gliogenesis Small molecule stimulators of HIF or inhibitors of MYC can drive gliogenesis
Collapse
Affiliation(s)
- Yuan Xie
- Department of Molecular Cell and Developmental Biology, University of California, Los Angeles, Los Angeles, CA 90095, USA; Eli and Edythe Center for Regenerative Medicine and Stem Cell Research, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Jin Zhang
- Department of Pathology and Laboratory Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Ying Lin
- Department of Molecular Cell and Developmental Biology, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Xavier Gaeta
- Department of Molecular Cell and Developmental Biology, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Xiangzhi Meng
- Department of Molecular Cell and Developmental Biology, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Dona R R Wisidagama
- Department of Biology, California State University, Northridge, Northridge, CA 91330, USA
| | - Jessica Cinkornpumin
- Department of Molecular Cell and Developmental Biology, University of California, Los Angeles, Los Angeles, CA 90095, USA; Eli and Edythe Center for Regenerative Medicine and Stem Cell Research, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Carla M Koehler
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, CA 90095, USA; Molecular Biology Institute, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Cindy S Malone
- Department of Biology, California State University, Northridge, Northridge, CA 91330, USA
| | - Michael A Teitell
- Eli and Edythe Center for Regenerative Medicine and Stem Cell Research, University of California, Los Angeles, Los Angeles, CA 90095, USA; Department of Pathology and Laboratory Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA; Molecular Biology Institute, University of California, Los Angeles, Los Angeles, CA 90095, USA; Jonsson Comprehensive Cancer Center, University of California, Los Angeles, Los Angeles, CA 90095, USA; California NanoSystems Institute, University of California, Los Angeles, Los Angeles, CA 90095, USA.
| | - William E Lowry
- Department of Molecular Cell and Developmental Biology, University of California, Los Angeles, Los Angeles, CA 90095, USA; Eli and Edythe Center for Regenerative Medicine and Stem Cell Research, University of California, Los Angeles, Los Angeles, CA 90095, USA; Molecular Biology Institute, University of California, Los Angeles, Los Angeles, CA 90095, USA; Jonsson Comprehensive Cancer Center, University of California, Los Angeles, Los Angeles, CA 90095, USA.
| |
Collapse
|
12
|
Cyclic GMP catabolism up-regulation in MRL/lpr lupus-prone mice is associated with organ remodeling. Biochim Biophys Acta Mol Basis Dis 2014; 1842:916-26. [PMID: 24631654 DOI: 10.1016/j.bbadis.2014.03.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2013] [Revised: 02/19/2014] [Accepted: 03/03/2014] [Indexed: 11/21/2022]
Abstract
Production of high titer of antibodies against nuclear components is a hallmark of systemic lupus erythematosus, an autoimmune disease characterized by the progressive chronic inflammation of multiple joints and organs. Organ damage and dysfunction such as renal failure are typical clinical features in lupus. Cell hypermetabolism and hypertrophy can accelerate organ dysfunction. In this study we focus on a specific murine model of lupus, the MRL/lpr strain, and investigated the role of cyclic guanosine monophosphate (cGMP) catabolism in organ remodeling of main target tissues (kidney, spleen and liver) in comparison with age-matched control mice. In MRL/lpr-prone mice, the cGMP-phosphodiesterase (PDE) activities were significantly increased in the kidney (3-fold, P<0.001), spleen (2-fold, P<0.001) and liver (1.6-fold, P<0.05). These raised activity levels were paralleled by both an increased activity of PDE1 in the kidney (associated with nephromegaly) and in the liver, and PDE2 in the spleen of lupus-prone mice. The up-regulation of PDE1 and PDE2 activities were associated with a decrease in intracellular cGMP levels. This underlines an alteration of cGMP-PDE signaling in the kidney, spleen and liver targeting different PDEs according to organs. In good agreement with these findings, a single intravenous administration to MRL/lpr mice of nimodipine (PDE1 inhibitor) but not of EHNA (PDE2 inhibitor) was able to significantly lower peripheral hypercellularity (P=0.0401), a characteristic feature of this strain of lupus-prone mice. Collectively, our findings are important for generating personalized strategies to prevent certain forms of the lupus disease as well as for understanding the role of PDEs and cGMP in the pathophysiology of lupus.
Collapse
|
13
|
Slingo ME, Turner PJ, Christian HC, Buckler KJ, Robbins PA. The von Hippel-Lindau Chuvash mutation in mice causes carotid-body hyperplasia and enhanced ventilatory sensitivity to hypoxia. J Appl Physiol (1985) 2013; 116:885-92. [PMID: 24030664 PMCID: PMC3972741 DOI: 10.1152/japplphysiol.00530.2013] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
The hypoxia-inducible factor (HIF) family of transcription factors coordinates diverse cellular and systemic responses to hypoxia. Chuvash polycythemia (CP) is an autosomal recessive disorder in humans in which there is impaired oxygen-dependent degradation of HIF, resulting in long-term systemic elevation of HIF levels at normal oxygen tensions. CP patients demonstrate the characteristic features of ventilatory acclimatization to hypoxia, namely, an elevated baseline ventilation and enhanced acute hypoxic ventilatory response (AHVR). We investigated the ventilatory and carotid-body phenotype of a mouse model of CP, using whole-body plethysmography, immunohistochemistry, and electron microscopy. In keeping with studies in humans, CP mice had elevated ventilation in euoxia and a significantly exaggerated AHVR when exposed to 10% oxygen, with or without the addition of 3% carbon dioxide. Carotid-body immunohistochemistry demonstrated marked hyperplasia of the oxygen-sensing type I cells, and the cells themselves appeared enlarged with more prominent nuclei. This hypertrophy was confirmed by electron microscopy, which also revealed that the type I cells contained an increased number of mitochondria, enlarged dense-cored vesicles, and markedly expanded rough endoplasmic reticulum. The morphological and ultrastructural changes seen in the CP mouse carotid body are strikingly similar to those observed in animals exposed to chronic hypoxia. Our study demonstrates that the HIF pathway plays a major role, not only in regulating both euoxic ventilatory control and the sensitivity of the response to hypoxia, but also in determining the morphology of the carotid body.
Collapse
Affiliation(s)
- Mary E Slingo
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, United Kingdom
| | | | | | | | | |
Collapse
|
14
|
Mollenhauer M, Kiss J, Dudda J, Kirchberg J, Rahbari N, Radhakrishnan P, Niemietz T, Rausch V, Weitz J, Schneider M. Deficiency of the oxygen sensor PHD1 augments liver regeneration after partial hepatectomy. Langenbecks Arch Surg 2012; 397:1313-22. [PMID: 22961008 DOI: 10.1007/s00423-012-0998-5] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2012] [Accepted: 08/27/2012] [Indexed: 01/09/2023]
Abstract
PURPOSE Liver regeneration after partial hepatectomy (PH) occurs in conditions of reduced oxygen supply. HIF prolyl hydroxylase enzymes (PHD1, PHD2, and PHD3) are oxygen sensors involved in adaptive response to hypoxia. Specific functions of these PHD enzymes in liver regeneration have, however, remained enigmatic. Here, we investigated the significance of PHD1 in liver regeneration following hepatectomy. METHODS Liver regeneration was studied in PHD1-deficient (PHD1(-/-)) and wild type (WT) mice subjected to 80% hepatectomy. For in vitro analyses, hepatocytes were isolated from PHD1(-/-) and WT livers. Cell cycle progression was studied via FACS-based analysis of nuclear DNA profile. Transcription factor binding assays, qRT-PCR, and immunoblotting were applied to study the relevance of PHD1 downstream effectors during liver regeneration. RESULTS Liver regeneration was significantly enhanced in PHD1(-/-) mice compared to WT littermates. This effect was due to enhanced proliferation rather than to hypertrophy of liver cells. Cell cycle progression was significantly enhanced, and transcriptional activity of the cell cycle regulator c-Myc was increased in PHD1-deficient hepatocytes. These changes coincided with increased expression of cyclin D2, a cell cycle-promoting c-Myc target, and decreased expression of the cell cycle-delaying c-Myc target p21. CONCLUSIONS Loss of PHD1 enhances liver regeneration by boosting hepatocyte proliferation in a c-Myc-dependent fashion. PHD1 might, therefore, represent a potential target to facilitate liver regeneration after surgical resection.
Collapse
Affiliation(s)
- Martin Mollenhauer
- Department of General, Visceral and Transplantation Surgery, University of Heidelberg, Heidelberg, Germany
| | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Expression of HIF-1α in Ischemia and Reperfusion in Human Microsurgical Free Muscle Tissue Transfer. Plast Reconstr Surg 2011; 127:2293-2300. [DOI: 10.1097/prs.0b013e318213a01f] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
16
|
Miasnikova GY, Sergueeva AI, Nouraie M, Niu X, Okhotin DJ, Polyakova LA, Ganz T, Prchal JT, Gordeuk VR. The heterozygote advantage of the Chuvash polycythemia VHLR200W mutation may be protection against anemia. Haematologica 2011; 96:1371-4. [PMID: 21606165 DOI: 10.3324/haematol.2011.045609] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
The germ-line loss-of-function VHL(R200W) mutation is common in Chuvashia, Russia and occurs in other parts of the world. VHL(R200W) homozygotes have elevated hypoxia inducible factor (HIF)-1 and HIF-2 levels, increased hemoglobin concentration, propensity to thrombosis and early mortality. Because the mutation persists from an ancient origin, we hypothesized that there is a heterozygote advantage. Thirty-four VHL(R200W) heterozygotes and 44 controls over 35 years of age from Chuvashia, Russia were studied. Anemia was defined as hemoglobin less than 130 g/L in men and less than 120 g/L in women. Mild anemia was present in 15% of VHL(R200W) heterozygotes and 34% of controls without a mutated VHL allele. By multivariate logistic regression, the odds of anemia were reduced an estimated 5.6-fold in the VHL(R200W) heterozygotes compared to controls (95% confidence interval 1.4-22.7; P=0.017). In conclusion, heterozygosity for VHL(R200W) may provide protection from anemia; such protection could explain the persistence of this mutation.
Collapse
|