1
|
Thornton M, Sommer N, McGonigle M, Kumar Ram A, Yerrathota S, Ehirim H, Chaturvedi A, Dinh Phan J, Chakraborty A, Chakravarthi VP, Gunewardena S, Tyagi M, Talreja J, Wang T, Singhal P, Tran PV, Fields TA, Ray PE, Dhillon NK, Sharma M. Notch3 deletion regulates HIV-1 gene expression and systemic inflammation to ameliorate chronic kidney disease. Dis Model Mech 2025; 18:DMM052056. [PMID: 39910908 PMCID: PMC11892680 DOI: 10.1242/dmm.052056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Accepted: 01/16/2025] [Indexed: 02/07/2025] Open
Abstract
Anti-retroviral therapy (ART) has decreased human immunodeficiency virus (HIV)-1-associated morbidity. However, despite ART, immune cells remain latently infected, leading to chronic inflammation and HIV-1-associated comorbidities. New strategies are needed to target viral proteins and inflammation. We found activation of Notch3 in renal cells of the HIV-1 transgenic mouse model (HIV-Tg26) and in patients with HIV-associated nephropathy. We hypothesized that targeting NOTCH3 activation constitutes an effective therapy for HIV-related chronic kidney disease. We generated HIV-Tg26 mice with Notch3 knocked out (Tg-N3KO). Compared to HIV-Tg26 mice at 3 months, Tg-N3KO mice showed a marked reduction in renal injury, skin lesions and mortality rate. They also showed reduced renal infiltrating cells and significantly reduced expression of HIV genes. Moreover, Notch3 activated the HIV long terminal repeat promoter, and induction of HIV-1 increased Notch3 activation, indicating a feedback mechanism. Further, bone marrow-derived macrophages from HIV-Tg26 mice showed activation of Notch3, indicating systemic effects. Consistent with that observation, systemic levels of TNF and MCP-1 were reduced in Tg-N3KO compared to HIV-Tg26 mice. Thus, Notch3 deletion/inhibition has a dual-therapeutic effect in HIV-related chronic kidney disease, which might extend to other HIV-related pathologies.
Collapse
Affiliation(s)
- Mackenzie Thornton
- Department of Internal Medicine, University of Kansas Medical Center, Kansas City, KS 66160, USA
| | - Nicole Sommer
- Department of Internal Medicine, University of Kansas Medical Center, Kansas City, KS 66160, USA
| | - Mercedes McGonigle
- Department of Internal Medicine, University of Kansas Medical Center, Kansas City, KS 66160, USA
| | - Anil Kumar Ram
- Department of Internal Medicine, University of Kansas Medical Center, Kansas City, KS 66160, USA
| | - Sireesha Yerrathota
- Department of Internal Medicine, University of Kansas Medical Center, Kansas City, KS 66160, USA
| | - Henrietta Ehirim
- Department of Internal Medicine, University of Kansas Medical Center, Kansas City, KS 66160, USA
| | - Aakriti Chaturvedi
- Department of Internal Medicine, University of Kansas Medical Center, Kansas City, KS 66160, USA
| | - Johnny Dinh Phan
- Department of Internal Medicine, University of Kansas Medical Center, Kansas City, KS 66160, USA
| | - Anubhav Chakraborty
- Department of Internal Medicine, University of Kansas Medical Center, Kansas City, KS 66160, USA
| | - V. Praveen Chakravarthi
- Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, Kansas City, KS 66160, USA
| | - Sumedha Gunewardena
- Department of Cell Biology and Physiology, University of Kansas Medical Center, Kansas City, KS 66160, USA
| | - Mudit Tyagi
- Department of Medicine, Center for Translational Medicine, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Jaya Talreja
- Division of Pulmonary, Critical Care and Sleep Medicine, Wayne State University School of Medicine and Detroit Medical Center, Detroit, MI 48201, USA
| | - Tao Wang
- Department of Biology, Medicine and Health, The University of Manchester, Manchester M13 9PT, UK
| | - Pravin Singhal
- Institute of Molecular Medicine, Feinstein Institute for Medical Research, Zucker School of Medicine at Hofstra-Northwell, New York, NY 11021, USA
| | - Pamela V. Tran
- Department of Cell Biology and Physiology, University of Kansas Medical Center, Kansas City, KS 66160, USA
| | - Timothy A. Fields
- Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, Kansas City, KS 66160, USA
| | - Patricio E. Ray
- Child Health Research Center and Department of Pediatrics, University of Virginia School of Medicine, Charlottesville, VA 22903, USA
| | - Navneet K. Dhillon
- Department of Internal Medicine, University of Kansas Medical Center, Kansas City, KS 66160, USA
| | - Madhulika Sharma
- Department of Internal Medicine, University of Kansas Medical Center, Kansas City, KS 66160, USA
| |
Collapse
|
2
|
Thornton M, Sommer N, McGonigle M, Ram AK, Yerrathota S, Ehirim H, Chaturvedi A, Phan JD, Chakraborty A, Chakravarthi PV, Gunewardena S, Tyagi M, Talreja J, Wang T, Singhal P, Tran PV, Fields TA, Ray PE, Dhillon NK, Sharma M. Notch3 deletion regulates HIV-1 gene expression and systemic inflammation to ameliorate chronic kidney disease. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.09.12.557484. [PMID: 37745500 PMCID: PMC10515825 DOI: 10.1101/2023.09.12.557484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/26/2023]
Abstract
Antiretroviral therapy (ART) has decreased HIV-1 associated morbidity. However, despite ART, immune cells remain latently infected and slowly release viral proteins, leading to chronic inflammation and HIV-1 associated comorbidities. New strategies are needed to target viral proteins and inflammation. We found activation of Notch3 in several renal cells of the HIV-1 mouse model (HIV-Tg26) and in patients with HIV associated Nephropathy. We hypothesized that targeting Notch3 activation constitutes an effective therapy for HIV-related chronic kidney diseases (HIV-CKD). We generated HIV-Tg26 mice with Notch3 knocked out (Tg-N3KO). Compared to HIV-Tg26 mice at 3 months, HIV-Tg-N3KO mice showed a marked reduction in renal injury, skin lesions and mortality rate. Bulk RNA sequencing revealed that N3KO not only reduced renal infiltrating cells but significantly reduced the expression of HIV genes. Moreover, Notch3 activated the HIV- promoter and induction of HIV-1 resulted in increased Notch3 activation indicating a feedback mechanism. Further, bone marrow derived macrophages (BMDMs) from HIV-Tg26 mice showed activation of Notch3 indicating systemic effects. Consistent with that, systemic levels of TNF-α, MCP-1 and other inflammatory chemokines and cytokines were reduced in Tg-N3KO mice. Thus, Notch3 inhibition/deletion has a dual therapeutic effect in HIV-CKD and may extend to other HIV-related pathologies.
Collapse
Affiliation(s)
- Mackenzie Thornton
- Department of Internal Medicine, University of Kansas Medical Center, Kansas City, KS
- The Jared Grantham Kidney Institute, University of Kansas Medical Center, Kansas City, KS
| | - Nicole Sommer
- Department of Internal Medicine, University of Kansas Medical Center, Kansas City, KS
- The Jared Grantham Kidney Institute, University of Kansas Medical Center, Kansas City, KS
| | - Mercedes McGonigle
- Department of Internal Medicine, University of Kansas Medical Center, Kansas City, KS
- The Jared Grantham Kidney Institute, University of Kansas Medical Center, Kansas City, KS
| | - Anil Kumar Ram
- Department of Internal Medicine, University of Kansas Medical Center, Kansas City, KS
| | - Sireesha Yerrathota
- Department of Internal Medicine, University of Kansas Medical Center, Kansas City, KS
- The Jared Grantham Kidney Institute, University of Kansas Medical Center, Kansas City, KS
| | - Henrietta Ehirim
- Department of Internal Medicine, University of Kansas Medical Center, Kansas City, KS
- The Jared Grantham Kidney Institute, University of Kansas Medical Center, Kansas City, KS
| | - Aakriti Chaturvedi
- Department of Internal Medicine, University of Kansas Medical Center, Kansas City, KS
- The Jared Grantham Kidney Institute, University of Kansas Medical Center, Kansas City, KS
| | - Johnny Dinh Phan
- Department of Internal Medicine, University of Kansas Medical Center, Kansas City, KS
- The Jared Grantham Kidney Institute, University of Kansas Medical Center, Kansas City, KS
| | - Anubhav Chakraborty
- Department of Internal Medicine, University of Kansas Medical Center, Kansas City, KS
- The Jared Grantham Kidney Institute, University of Kansas Medical Center, Kansas City, KS
| | - Praveen V Chakravarthi
- Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, Kansas City, KS
| | - Sumedha Gunewardena
- Department of Cell Biology and Physiology, University of Kansas Medical Center, Kansas City, KS
| | - Mudit Tyagi
- Department of Medicine, Center for Translational Medicine, Thomas Jefferson University, Philadelphia, PA
| | - Jaya Talreja
- Division of Pulmonary, Critical Care and Sleep Medicine, Wayne State University School of Medicine and Detroit Medical Center, Detroit, MI
| | - Tao Wang
- Department of Biology, Medicine and Health, The University of Manchester, UK
| | - Pravin Singhal
- Institute of Molecular Medicine, Feinstein Institute for Medical Research, Zucker School of Medicine at Hofstra-Northwell, New York, NY
| | - Pamela V Tran
- Department of Cell Biology and Physiology, University of Kansas Medical Center, Kansas City, KS
- The Jared Grantham Kidney Institute, University of Kansas Medical Center, Kansas City, KS
| | - Timothy A Fields
- Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, Kansas City, KS
- The Jared Grantham Kidney Institute, University of Kansas Medical Center, Kansas City, KS
| | - Patricio E Ray
- Child Health Research Center and Department of Pediatrics, University of Virginia School of Medicine, Charlottesville, VA
| | - Navneet K Dhillon
- Department of Internal Medicine, University of Kansas Medical Center, Kansas City, KS
| | - Madhulika Sharma
- Department of Internal Medicine, University of Kansas Medical Center, Kansas City, KS
- The Jared Grantham Kidney Institute, University of Kansas Medical Center, Kansas City, KS
| |
Collapse
|
3
|
Faulhaber JR, Baffoe-Bonnie AW, Oursler KK, Vasudeva SS. Update in Human Immunodeficiency Virus and Aging. Infect Dis Clin North Am 2023; 37:153-173. [PMID: 36805011 DOI: 10.1016/j.idc.2022.11.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2023]
Abstract
Effective and consistent antiretroviral therapy has enabled people with human immunodeficiency virus (HIV) (PWH) to survive longer than previously encountered earlier in the epidemic. Consequently, PWH are subject to the struggles and clinical conditions typically associated with aging. However, the aging process in PWH is not the same as for those who do not have HIV. There is a complex interplay of molecular, microbiologic, and pharmacologic factors that leads to accelerated aging in PWH; this leads to increased risk for certain age-related comorbidities requiring greater vigilance and interventions in routine care.
Collapse
Affiliation(s)
- Jason R Faulhaber
- Virginia Tech Carilion School of Medicine, Carilion Clinic, Division of Infectious Diseases, 213 McClanahan St SW, Roanoke, VA 24014, USA.
| | - Anthony W Baffoe-Bonnie
- Virginia Tech Carilion School of Medicine, Carilion Clinic, Division of Infectious Diseases, 213 McClanahan St SW, Roanoke, VA 24014, USA
| | - Krisann K Oursler
- Virginia Tech Carilion School of Medicine, VA Salem Healthcare System, 1970 Roanoke Boulevard Salem, VA 24153-6404, USA
| | - Shikha S Vasudeva
- Virginia Tech Carilion School of Medicine, VA Salem Healthcare System, 1970 Roanoke Boulevard Salem, VA 24153-6404, USA
| |
Collapse
|
4
|
Jin X, Zhou R, Huang Y. Role of inflammasomes in HIV-1 infection and treatment. Trends Mol Med 2022; 28:421-434. [PMID: 35341684 DOI: 10.1016/j.molmed.2022.02.010] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 02/27/2022] [Accepted: 02/28/2022] [Indexed: 02/07/2023]
Abstract
Although combined antiretroviral therapy (cART) is effective in inhibiting human immunodeficiency virus type 1 (HIV-1) replication, it does not eradicate the virus because small amounts of latent HIV-1 provirus persist in quiescent memory CD4+ T cells. Therefore, strategies for eradicating latent HIV-1 are urgently needed. Recently, several studies have reported that the inflammatory response and lymphocyte death induced by HIV-1 depend on inflammasomes and pyroptosis, suggesting that inflammasomes and pyroptosis have a vital role in HIV-1 infection and contribute to the eradication of latent HIV-1. In this review, we summarize current knowledge of the role of inflammasomes, including NLR family pyrin domain-containing protein 3 (NLRP3), caspase recruitment domain-containing protein 8 (CARD8), interferon-inducible protein 16 (IFI16), NLRP1, NLR family CARD domain-containing 4 (NLRC4), and absent in melanoma 2 (AIM2), in HIV-1 infection and discuss promising therapeutic strategies for HIV-1-associated diseases by targeting inflammasomes.
Collapse
Affiliation(s)
- Xiangyu Jin
- Wuxi School of Medicine, Jiangnan University, Jiangsu, China
| | - Rongbin Zhou
- Hefei National Laboratory for Physical Sciences at Microscale, the CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China.
| | - Yi Huang
- Wuxi School of Medicine, Jiangnan University, Jiangsu, China.
| |
Collapse
|
5
|
Puri RV, Yerrathota S, Home T, Idowu JY, Chakravarthi VP, Ward CJ, Singhal PC, Vanden Heuvel GB, Fields TA, Sharma M. Notch4 activation aggravates NF-κB-mediated inflammation in HIV-1-associated nephropathy. Dis Model Mech 2019; 12:dmm.040642. [PMID: 31727625 PMCID: PMC6918754 DOI: 10.1242/dmm.040642] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Accepted: 11/06/2019] [Indexed: 12/14/2022] Open
Abstract
Notch pathway activation plays a central role in the pathogenesis of many glomerular diseases. We have previously shown that Notch4 expression was upregulated in various renal cells in human immunodeficiency virus (HIV)-associated nephropathy (HIVAN) patients and rodent models of HIVAN. In this study, we examined whether the Notch pathway can be distinctly activated by HIV-1 gene products and whether Notch4, in particular, can influence disease progression. Using luciferase reporter assays, we did not observe activation of the NOTCH4 promoter with the HIV protein Nef in podocytes. Further, we observed upregulated expression of a gamma secretase complex protein, presenilin 1, but not Notch4, in podocytes infected with an HIV-1 expression construct. To assess the effects of Notch4 on HIVAN disease progression, we engineered Tg26 mice with global deletion of the Notch4 intracellular domain (Notch4dl), which is required for signaling function. These mice (Notch4d1/Tg26+) showed a significant improvement in renal function and a significant decrease in mortality compared to Tg26 mice. Histological examination of kidneys showed that Notch4d1/Tg26+ mice had overall glomerular, tubulointerstitial injury and a marked decrease in interstitial inflammation. A significant decrease in the proliferating cells was observed in the tubulointerstitial compartments of Notch4d1/Tg26+ mice. Consistent with the diminished inflammation, kidneys from Notch4d1/Tg26+ mice also showed a significant decrease in expression of the inflammatory cytokine transcripts Il-6 and Ccl2, as well as the master inflammatory transcription factor NF-κB (Nfkb1 transcripts and p65 protein). These data identify Notch4 as an important mediator of tubulointerstitial injury and inflammation in HIVAN and a potential therapeutic target. Summary: Notch4 activation contributes to the inflammation seen in HIV-associated nephropathy (HIVAN), and inhibition of Notch4 ameliorates inflammation and prolongs life in a mouse model of HIVAN.
Collapse
Affiliation(s)
- Rajni Vaid Puri
- Department of Internal Medicine, University of Kansas Medical Center, Kansas City, KS 66160, USA.,The Jared Grantham Kidney Institute, University of Kansas Medical Center, Kansas City, KS 66160, USA
| | - Sireesha Yerrathota
- Department of Internal Medicine, University of Kansas Medical Center, Kansas City, KS 66160, USA.,The Jared Grantham Kidney Institute, University of Kansas Medical Center, Kansas City, KS 66160, USA
| | - Trisha Home
- Department of Internal Medicine, University of Kansas Medical Center, Kansas City, KS 66160, USA.,The Jared Grantham Kidney Institute, University of Kansas Medical Center, Kansas City, KS 66160, USA
| | - Jessica Y Idowu
- Department of Internal Medicine, University of Kansas Medical Center, Kansas City, KS 66160, USA.,The Jared Grantham Kidney Institute, University of Kansas Medical Center, Kansas City, KS 66160, USA
| | - V Praveen Chakravarthi
- Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, Kansas City, KS 66160, USA
| | - Christopher J Ward
- Department of Internal Medicine, University of Kansas Medical Center, Kansas City, KS 66160, USA.,The Jared Grantham Kidney Institute, University of Kansas Medical Center, Kansas City, KS 66160, USA
| | - Pravin C Singhal
- Institute of Molecular Medicine, Feinstein Institute for Medical Research and Zucker School of Medicine at Hofstra-Northwell, New York, NY 11549, USA
| | | | - Timothy A Fields
- The Jared Grantham Kidney Institute, University of Kansas Medical Center, Kansas City, KS 66160, USA.,Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, Kansas City, KS 66160, USA
| | - Madhulika Sharma
- Department of Internal Medicine, University of Kansas Medical Center, Kansas City, KS 66160, USA .,The Jared Grantham Kidney Institute, University of Kansas Medical Center, Kansas City, KS 66160, USA
| |
Collapse
|
6
|
Rai P, Singh T, Lederman R, Chawla A, Kumar D, Cheng K, Valecha G, Mathieson PW, Saleem MA, Malhotra A, Singhal PC. Hyperglycemia enhances kidney cell injury in HIVAN through down-regulation of vitamin D receptors. Cell Signal 2014; 27:460-9. [PMID: 25542307 DOI: 10.1016/j.cellsig.2014.12.011] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2013] [Revised: 11/28/2014] [Accepted: 12/19/2014] [Indexed: 12/14/2022]
Abstract
In the present study, we evaluated the effect of short term hyperglycemia on renal lesions in a mouse model (Tg26) of HIV-associated nephropathy (HIVAN). Control and Tg26 mice in groups (n=6) were administered either normal saline (FVBN or Tg) or streptozotocin (FVBN+STZ or Tg26+STZ). After two weeks, biomarkers were collected and kidneys were harvested. FVBN+ STZ and Tg26+STZ displayed elevated serum glucose levels when compared to FVBN and Tg26 respectively. Tg26+STZ displayed elevated (P<0.05) blood urea nitrogen (BUN) levels (P<0.05) and enhanced (P<0.01) proteinuria when compared to Tg26. Tg26+STZ displayed enhanced (P<0.001) number of sclerotic glomeruli and microcysts vs. Tg26. Renal tissues of Tg26 displayed down regulation of vitamin D receptor (VDR) expression and enhanced Ang II production when compared to FVBN mice. Hyperglycemia exacerbated down regulation of VDR and production of Ang II in FVBN and Tg mice. Hyperglycemia increased kidney cell reactive oxygen species (ROS) production and oxidative DNA damage in both FVBN and Tg26 mice. In in vitro studies, HIV down regulated podocyte VDR expression and also enhanced renin angiotensin system activation. In addition, both glucose and HIV stimulated kidney cell ROS generation and DNA damage and compromised DNA repair; however, tempol (superoxide dismutase mimetic), losartan (Ang II blocker) and EB1089 (VDR agonist) provided protection against DNA damaging effects of glucose and HIV. These findings indicated that glucose activated the RAS and inflicted oxidative stress-mediated DNA damage via down regulation of kidney cell VDR expression in HIV milieu both in vivo and in vitro.
Collapse
Affiliation(s)
- Partab Rai
- Department of Medicine, Feinstein Institute for Medical Research, North Shore LIJ Medical School, NY, USA; Department of Pediatrics, University of Bristol, Bristol, UK
| | - Tejinder Singh
- Department of Medicine, Feinstein Institute for Medical Research, North Shore LIJ Medical School, NY, USA; Department of Pediatrics, University of Bristol, Bristol, UK
| | - Rivka Lederman
- Department of Medicine, Feinstein Institute for Medical Research, North Shore LIJ Medical School, NY, USA; Department of Pediatrics, University of Bristol, Bristol, UK
| | - Amrita Chawla
- Department of Medicine, Feinstein Institute for Medical Research, North Shore LIJ Medical School, NY, USA; Department of Pediatrics, University of Bristol, Bristol, UK
| | - Dileep Kumar
- Department of Medicine, Feinstein Institute for Medical Research, North Shore LIJ Medical School, NY, USA; Department of Pediatrics, University of Bristol, Bristol, UK
| | - Kang Cheng
- Department of Medicine, Feinstein Institute for Medical Research, North Shore LIJ Medical School, NY, USA; Department of Pediatrics, University of Bristol, Bristol, UK
| | - Gautam Valecha
- Department of Medicine, Feinstein Institute for Medical Research, North Shore LIJ Medical School, NY, USA; Department of Pediatrics, University of Bristol, Bristol, UK
| | - Peter W Mathieson
- Department of Medicine, Feinstein Institute for Medical Research, North Shore LIJ Medical School, NY, USA; Department of Pediatrics, University of Bristol, Bristol, UK
| | - Moin A Saleem
- Department of Medicine, Feinstein Institute for Medical Research, North Shore LIJ Medical School, NY, USA; Department of Pediatrics, University of Bristol, Bristol, UK
| | - Ashwani Malhotra
- Department of Medicine, Feinstein Institute for Medical Research, North Shore LIJ Medical School, NY, USA; Department of Pediatrics, University of Bristol, Bristol, UK
| | - Pravin C Singhal
- Department of Medicine, Feinstein Institute for Medical Research, North Shore LIJ Medical School, NY, USA; Department of Pediatrics, University of Bristol, Bristol, UK.
| |
Collapse
|
7
|
Mbita Z, Hull R, Dlamini Z. Human immunodeficiency virus-1 (HIV-1)-mediated apoptosis: new therapeutic targets. Viruses 2014; 6:3181-227. [PMID: 25196285 PMCID: PMC4147692 DOI: 10.3390/v6083181] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2014] [Revised: 06/12/2014] [Accepted: 07/08/2014] [Indexed: 12/18/2022] Open
Abstract
HIV has posed a significant challenge due to the ability of the virus to both impair and evade the host’s immune system. One of the most important mechanisms it has employed to do so is the modulation of the host’s native apoptotic pathways and mechanisms. Viral proteins alter normal apoptotic signaling resulting in increased viral load and the formation of viral reservoirs which ultimately increase infectivity. Both the host’s pro- and anti-apoptotic responses are regulated by the interactions of viral proteins with cell surface receptors or apoptotic pathway components. This dynamic has led to the development of therapies aimed at altering the ability of the virus to modulate apoptotic pathways. These therapies are aimed at preventing or inhibiting viral infection, or treating viral associated pathologies. These drugs target both the viral proteins and the apoptotic pathways of the host. This review will examine the cell types targeted by HIV, the surface receptors exploited by the virus and the mechanisms whereby HIV encoded proteins influence the apoptotic pathways. The viral manipulation of the hosts’ cell type to evade the immune system, establish viral reservoirs and enhance viral proliferation will be reviewed. The pathologies associated with the ability of HIV to alter apoptotic signaling and the drugs and therapies currently under development that target the ability of apoptotic signaling within HIV infection will also be discussed.
Collapse
Affiliation(s)
- Zukile Mbita
- College of Agriculture and Environmental Sciences, University of South Africa, Florida Science Campus, C/o Christiaan de Wet and Pioneer Avenue P/Bag X6, Johannesburg 1710, South Africa.
| | - Rodney Hull
- College of Agriculture and Environmental Sciences, University of South Africa, Florida Science Campus, C/o Christiaan de Wet and Pioneer Avenue P/Bag X6, Johannesburg 1710, South Africa.
| | - Zodwa Dlamini
- College of Agriculture and Environmental Sciences, University of South Africa, Florida Science Campus, C/o Christiaan de Wet and Pioneer Avenue P/Bag X6, Johannesburg 1710, South Africa.
| |
Collapse
|
8
|
Sharma M, Magenheimer LK, Home T, Tamano KN, Singhal PC, Hyink DP, Klotman PE, Vanden Heuvel GB, Fields TA. Inhibition of Notch pathway attenuates the progression of human immunodeficiency virus-associated nephropathy. Am J Physiol Renal Physiol 2013; 304:F1127-36. [PMID: 23389453 DOI: 10.1152/ajprenal.00475.2012] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
The Notch pathway is an evolutionarily conserved signaling cascade that is critical in kidney development and has also been shown to play a pathogenetic role in a variety of kidney diseases. We have previously shown that the Notch signaling pathway is activated in human immunodeficiency virus-associated nephropathy (HIVAN) as well as in a rat model of the disease. In this study, we examined Notch signaling in the well established Tg26 mouse model of HIVAN. Notch signaling components were distinctly upregulated in the kidneys of these mice as well as in immortalized podocytes derived from these mice. Notch1 and Notch4 were upregulated in the Tg26 glomeruli, and Notch4 was also expressed in tubules. Notch ligands Jagged1, Jagged2, Delta-like1, and Delta-like 4 were all upregulated in the tubules of Tg26 mice, but glomeruli showed minimal expression of Notch ligands. To examine a potential pathogenetic role for Notch in HIVAN, Tg26 mice were treated with GSIXX, a gamma secretase inhibitor that blocks Notch signaling. Strikingly, GSIXX treatment resulted in significant improvement in both histological kidney injury scores and renal function. GSIXX-treated Tg26 mice also showed diminished podocyte proliferation and dedifferentiation, cellular hallmarks of the disease. Moreover, GSIXX blocked podocyte proliferation in vitro induced by HIV proteins Nef and Tat. These studies suggest that Notch signaling can promote HIVAN progression and that Notch inhibition may be a viable treatment strategy for HIVAN.
Collapse
Affiliation(s)
- Madhulika Sharma
- Department of Internal Medicine, The Kidney Institute, University of Kansas Medical Center, Kansas City, KS 66160, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Abstract
Antiretroviral therapy has been immensely successful in reducing the incidence of opportunistic infections and death after HIV infection. This has resulted in heightened interest in noninfectious comorbidities including kidney disease. Although HIV-associated nephropathy, the most ominous kidney disease related to the direct effects of HIV, may be prevented and treated with antiretrovirals, kidney disease remains an important issue in this population. In addition to the common risk factors for kidney disease of diabetes mellitus and hypertension, HIV-infected individuals have a high prevalence of other risk factors, including hepatitis C and exposure to antiretrovirals and other medications. Therefore, the differential diagnosis is vast. Early identification (through efficient screening) and prompt treatment of kidney disease in HIV-infected individuals are critical to lead to better outcomes. This review focuses on clinical and epidemiological issues, treatment strategies (including dialysis and kidney transplantation), and recent advances among kidney disease in the HIV population.
Collapse
|
10
|
Tan R, Patni H, Tandon P, Luan L, Sharma B, Salhan D, Saleem MA, Mathieson PW, Malhotra A, Husain M, Upadhya P, Singhal PC. Nef interaction with actin compromises human podocyte actin cytoskeletal integrity. Exp Mol Pathol 2012; 94:51-7. [PMID: 22721673 DOI: 10.1016/j.yexmp.2012.06.001] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2012] [Accepted: 06/07/2012] [Indexed: 10/28/2022]
Abstract
The HIV-1 accessory protein Nef is considered to play an important role in the development of a podocyte phenotype in HIV-1 associated nephropathy. We hypothesized that Nef may be altering the podocyte phenotype both structurally and functionally. To elucidate the involved mechanisms, podocyte proteins interacting with Nef were identified using GST pull down assay and yeast two hybrid assay. The GST pull down assay on protein extracts made from stable colonies of conditionally immortalized human podocytes expressing Nef (Nef/CIHP) displayed a band at 45 kD, which was identified as actin by mass spectrometry. Yeast two hybrid assay identified the following Nef-interacting proteins: syntrophin, filamin B, syntaxin, translational elongation factor 1, and zyxin. The Nef-actin and Nef-zyxin interactions were confirmed by co-localization studies on Nef/CIHP stable cell lines. The co-localization studies also showed that Nef/CIHP stable cell lines had a decreased number of actin filaments (stress fibers), displayed formation of lamellipodia, and increased number of podocyte projections (filopodia). Nef/CIHP displayed an enhanced cortical F-actin score index (P<0.001) and thus indicated a reorganization of F-actin in the cortical regions. Microarray analysis showed that Nef enhanced the expression of Rac1, syndecan-4, Rif, and CDC42 and attenuated the expression of syndecan-3 and syntenin. In addition, Nef/CIHPs displayed a diminished sphingomyelinase (ASMase) activity. Functionally, Nef/CIHPs displayed diminished attachment and enhanced detachment to their substrate. These findings indicate that Nef interaction with actin compromises the podocyte cytoskeleton integrity.
Collapse
Affiliation(s)
- Raymond Tan
- Department of Immunology, Feinstein Institute for Medical Research, North Shore LIJ Health System, NY, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Yadav A, Kumar D, Salhan D, Rattanavich R, Maheshwari S, Adabala M, Ding G, Singhal PC. Sirolimus modulates HIVAN phenotype through inhibition of epithelial mesenchymal transition. Exp Mol Pathol 2012; 93:173-81. [PMID: 22579465 DOI: 10.1016/j.yexmp.2012.04.021] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2011] [Revised: 04/26/2012] [Accepted: 04/26/2012] [Indexed: 10/28/2022]
Abstract
HIV-associated nephropathy (HIVAN) is characterized by proliferative phenotype in the form of collapsing glomerulopathy and microcystic dilatation of tubules. Recently, epithelial mesenchymal transition (EMT) of renal cells has been demonstrated to contribute to the pathogenesis of proliferative HIVAN phenotype. We hypothesized that sirolimus would modulate HIVAN phenotype by attenuating renal cell EMT. In the present study, we evaluated the effect of sirolimus on the development of renal cell EMT as well as on display of HIVAN phenotype in a mouse model of HIVAN (Tg26). Tg26 mice receiving normal saline (TgNS) showed enhanced proliferation of both glomerular and tubular cells when compared to control mice-receiving normal saline (CNS); on the other hand, Tg26 mice receiving sirolimus (TgS) showed attenuated renal cell proliferation when compared with TgNS. TgNS also showed increased number of α-SMA-, vimentin-, and FSP1-positive cells (glomerular as well as tubular) when compared with CNS; however, TgS showed reduced number of SMA, vimentin, and FSP1+ve renal cells when compared to TgNS. Interestingly, sirolimus preserved renal epithelial cell expression of E-cadherin in TgS. Since sirolimus attenuated renal cell ZEB expression (a repressor of E-cadherin transcription), it appears that sirolimus may be attenuating renal cell EMT by preserving epithelial cell E-cadherin expression.
Collapse
Affiliation(s)
- Anju Yadav
- Immunology Center, Feinstein Institute for Medical Research, North Shore-Long Island Jewish Health System, Manhasset, NY 11030, United States
| | | | | | | | | | | | | | | |
Collapse
|
12
|
Hu CAA, Klopfer EI, Ray PE. Human apolipoprotein L1 (ApoL1) in cancer and chronic kidney disease. FEBS Lett 2012; 586:947-55. [PMID: 22569246 DOI: 10.1016/j.febslet.2012.03.002] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2011] [Revised: 02/28/2012] [Accepted: 03/01/2012] [Indexed: 02/09/2023]
Abstract
Human apolipoprotein L1 (ApoL1) possesses both extra- and intra-cellular functions crucial in host defense and cellular homeostatic mechanisms. Alterations in ApoL1 function due to genetic, environmental, and lifestyle factors have been associated with African sleeping sickness, atherosclerosis, lipid disorders, obesity, schizophrenia, cancer, and chronic kidney disease (CKD). Importantly, two alleles of APOL1 carrying three coding-sequence variants have been linked to CKD, particularly in Sub-Saharan Africans and African Americans. Intracellularly, elevated ApoL1 can induce autophagy and autophagy-associated cell death, which may be critical in the maintenance of cellular homeostasis in the kidney. Similarly, ApoL1 may protect kidney cells against renal cell carcinoma (RCC). We summarize the role of ApoL1 in RCC and CKD, highlighting the critical function of ApoL1 in autophagy.
Collapse
Affiliation(s)
- Chien-An A Hu
- Department of Biochemistry and Molecular Biology, University of New Mexico, Health Sciences Center, Albuquerque, NM 87131-0001, USA.
| | | | | |
Collapse
|
13
|
Fine DM, Wasser WG, Estrella MM, Atta MG, Kuperman M, Shemer R, Rajasekaran A, Tzur S, Racusen LC, Skorecki K. APOL1 risk variants predict histopathology and progression to ESRD in HIV-related kidney disease. J Am Soc Nephrol 2011; 23:343-50. [PMID: 22135313 DOI: 10.1681/asn.2011060562] [Citation(s) in RCA: 86] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
With earlier institution of antiretroviral therapy, kidney diseases other than HIV-associated nephropathy (HIVAN) predominate in HIV-infected persons. Outcomes for these diseases are typically worse among those infected with HIV, but the reasons for this are not clear. Here, we examined the role of APOL1 risk variants in predicting renal histopathology and progression to ESRD in 98 HIV-infected African Americans with non-HIVAN kidney disease on biopsy. We used survival analysis to determine time to ESRD associated with APOL1 genotype. Among the 29 patients with two APOL1 risk alleles, the majority (76%) had FSGS and 10% had hypertensive nephrosclerosis. In contrast, among the 54 patients with one APOL1 risk allele, 47% had immune-complex GN as the predominant lesion and only 23% had FSGS. Among the 25 patients with no APOL1 risk allele, 40% had immune-complex GN and 12% had FSGS. In 310 person-years of observation, 29 patients progressed to ESRD. In adjusted analyses, individuals with two APOL1 risk alleles had a nearly three-fold higher risk for ESRD compared with those with one or zero risk alleles (P=0.03). In summary, these data demonstrate an association between APOL1 variants and renal outcomes in non-HIVAN kidney disease, suggesting a possible use for APOL1 genotyping to help guide the care of HIV-infected patients.
Collapse
Affiliation(s)
- Derek M Fine
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Papeta N, Kiryluk K, Patel A, Sterken R, Kacak N, Snyder HJ, Imus PH, Mhatre AN, Lawani AK, Julian BA, Wyatt RJ, Novak J, Wyatt CM, Ross MJ, Winston JA, Klotman ME, Cohen DJ, Appel GB, D'Agati VD, Klotman PE, Gharavi AG. APOL1 variants increase risk for FSGS and HIVAN but not IgA nephropathy. J Am Soc Nephrol 2011; 22:1991-6. [PMID: 21997397 DOI: 10.1681/asn.2011040434] [Citation(s) in RCA: 96] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
A chromosome 22q13 locus strongly associates with increased risk for idiopathic focal segmental glomerulosclerosis (FSGS), HIV-1-associated nephropathy (HIVAN), and hypertensive ESRD among individuals of African descent. Although initial studies implicated MYH9, more recent analyses localized the strongest association within the neighboring APOL1 gene. In this replication study, we examined the six top-most associated variants in APOL1 and MYH9 in an independent cohort of African Americans with various nephropathies (44 with FSGS, 21 with HIVAN, 32 with IgA nephropathy, and 74 healthy controls). All six variants associated with FSGS and HIVAN (additive ORs, 1.8 to 3.0; P values 3 × 10(-2) to 5 × 10(-5)) but not with IgA nephropathy. In conditional and haplotype analyses, two APOL1 haplotypes accounted for virtually all of the association with FSGS and HIVAN on chromosome 22q13 (haplotype P value = 5.6 × 10(-8)). To assess the role of MYH9 deficiency in nephropathy, we crossbred Myh9-haploinsufficient mice (Myh9(+/-)) with HIV-1 transgenic mice. Myh9(+/-) mice were healthy and did not demonstrate overt proteinuria or nephropathy, irrespective of the presence of the HIV-1 transgene. These data further support the strong association of genetic variants in APOL1 with susceptibility to FSGS and HIVAN among African Americans.
Collapse
Affiliation(s)
- Natalia Papeta
- Department of Medicine, Columbia University College of Physicians and Surgeons, New York, New York 10032, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Behar DM, Kedem E, Rosset S, Haileselassie Y, Tzur S, Kra-Oz Z, Wasser WG, Shenhar Y, Shahar E, Hassoun G, Maor C, Wolday D, Pollack S, Skorecki K. Absence of APOL1 risk variants protects against HIV-associated nephropathy in the Ethiopian population. Am J Nephrol 2011; 34:452-9. [PMID: 21968148 DOI: 10.1159/000332378] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2011] [Accepted: 08/30/2011] [Indexed: 01/03/2023]
Abstract
BACKGROUND Susceptibility to end-stage kidney disease (ESKD) among HIV-infected Americans of African ancestral heritage has been attributed to APOL1 genetic variation. We determined the frequency of the APOL1 G1 and G2 risk variants together with the prevalence of HIV-associated nephropathy (HIVAN) among individuals of Ethiopian ancestry to determine whether the kidney disease genetic risk is PanAfrican or restricted to West Africa, and can explain the previously reported low risk of HIVAN among Ethiopians. METHODS We studied a cohort of 338 HIV-infected individuals of Ethiopian ancestry treated in one Israeli and one Ethiopian center. We sought clinical evidence for HIVAN (serum creatinine >1.4 mg/dl or proteinuria >30 mg/dl in a spot urine sample). Genetic analyses included the genotyping of the APOL1 G1 and G2 variants, and a panel of 33 genomic ancestry-informative markers. Statistical analysis compared clinical and genetic indices for HIV-infected individuals of Ethiopian ancestry and overall Ethiopians to those reported for HIV-infected African-Americans, overall African-Americans, West Africans and non-Africans. FINDINGS Three (0.8%) of 338 HIV-infected patients of Ethiopian ancestry showed clinical criteria compatible with renal impairment. Two of these 3 patients also have severe poorly controlled diabetes mellitus. The third nondiabetic patient underwent renal biopsy which ruled out HIVAN. This absence of clinically apparent HIVAN was significantly different from that reported for African-Americans. The APOL1 G1 and G2 risk variants were found, respectively, in 0 and 2 (heterozygote state) of the 338 HIV-infected individuals. Global ancestry and the frequencies of the APOL1 G1 and G2 variants are not statistically different from their frequencies in the general Ethiopian population, but are significantly and dramatically lower than those observed among HIV-infected African-Americans, African-Americans and West Africans. INTERPRETATION The coinciding absence of HIVAN and the APOL1 risk variants among HIV-infected individuals of Ethiopian ancestry support a Western rather than Pan-African ancestry risk for ESKD, and can readily explain the lack of HIVAN among individuals of Ethiopian ancestry.
Collapse
Affiliation(s)
- Doron M Behar
- Molecular Medicine Laboratory, Rambam Health Care Campus, Haifa, Israel
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|