1
|
Papageorgiou D, Liouta G, Sapantzoglou I, Zachariou E, Pliakou D, Papakonstantinou K, Floros T, Pliakou E. HER2-Positive Serous Endometrial Cancer Treatment: Current Clinical Practice and Future Directions. MEDICINA (KAUNAS, LITHUANIA) 2024; 60:2012. [PMID: 39768892 PMCID: PMC11728157 DOI: 10.3390/medicina60122012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 11/29/2024] [Accepted: 12/04/2024] [Indexed: 01/16/2025]
Abstract
The most common histological subtypes of endometrial cancer consist of endometrioid and uterine serous carcinoma, with the latter being more aggressive and accompanied by poor prognosis. Human epidermal growth factor receptor 2 (HER2) is a transmembrane tyrosine kinase receptor associated with cell proliferation, differentiation, and survival. HER2 positivity can be diagnosed in many solid tumors. It has been found that approximately one-third of the patients diagnosed with serous carcinoma may overexpress HER2/neu protein and/or show the amplification of the c-erBb2 gene. The prognostic and predictive value of HER2 biomarker is nowadays highlighted and the updates of HER2-directed treatment offer new opportunities for improved efficacy and survival. A number of HER2-targeted therapies have become available in recent years and have had promising results, prompting full drug approvals and additional investigation in many cancer types, among which is endometrial cancer. Data from clinical trials combining classical chemotherapy with anti-HER2 agents, mainly trastuzumab, alone or in combination with pertuzumab, do exist and have been incorporated into international guidelines. Moreover, further research with antibody-drug conjugates and tyrosine kinase inhibitors is being conducted. Acquired resistance remains an important problem, and its underlying mechanisms in endometrial cancer are mostly unknown. Studies exploring earlier use of Her2-directed therapy are also on the way. The purpose of this literature review is to describe the available therapies in the current clinical practice and the most prominent research data regarding the future. In any case, a number of unmet medical needs do exist for HER2-positive serous endometrial cancer, and additional research and studies are warranted to provide further understanding and improved outcomes for this tumor type.
Collapse
Affiliation(s)
- Dimitrios Papageorgiou
- Department of Gynecology, Athens Naval and Veterans Hospital, 115 21 Athens, Greece; (D.P.); (K.P.)
| | - Galateia Liouta
- Department of Medical Oncology, General Oncology Hospital of Kifissia “Agioi Anargiroi”, 145 64 Athens, Greece;
| | - Ioakeim Sapantzoglou
- 1st Department of Obstetrics and Gynecology, Alexandra Hospital, National and Kapodistrian University of Athens, 115 28 Athens, Greece;
| | - Eleftherios Zachariou
- 1st Department of Gynecology, Division of Robotic and Laparoscopic Surgery, Metropolitan General Hospital, 155 62 Athens, Greece;
| | - Dimitra Pliakou
- Medical School, National and Kapodistrian University of Athens, 115 27 Athens, Greece;
| | | | - Theofanis Floros
- 5th Department of Oncology, Metropolitan General Hospital, 155 62 Athens, Greece;
| | - Evangelia Pliakou
- 5th Department of Oncology, Metropolitan General Hospital, 155 62 Athens, Greece;
| |
Collapse
|
2
|
Matoba Y, Devins KM, Milane L, Manning WB, Mazina V, Yeku OO, Rueda BR. High-Grade Endometrial Cancer: Molecular Subtypes, Current Challenges, and Treatment Options. Reprod Sci 2024; 31:2541-2559. [PMID: 38658487 DOI: 10.1007/s43032-024-01544-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Accepted: 04/02/2024] [Indexed: 04/26/2024]
Abstract
Although many recent advancements have been made in women's health, perhaps one of the most neglected areas of research is the diagnosis and treatment of high-grade endometrial cancer (EnCa). The molecular classification of EnCa in concert with histology was a major step forward. The integration of profiling for mismatch repair deficiency and Human Epidermal Growth Factor 2 (HER2) overexpression, can further inform treatment options, especially for drug resistant recurrent disease. Recent early phase trials suggest that regardless of subtype, combination therapy with agents that have distinct mechanisms of action is a fruitful approach to the treatment of high-grade EnCa. Unfortunately, although the importance of diagnosis and treatment of high-grade EnCa is well recognized, it is understudied compared to other gynecologic and breast cancers. There remains a tremendous need to couple molecular profiling and biomarker development with promising treatment options to inform new treatment strategies with higher efficacy and safety for all who suffer from high-grade recurrent EnCa.
Collapse
Affiliation(s)
- Yusuke Matoba
- Vincent Center for Reproductive Biology, Department of Obstetrics and Gynecology, Massachusetts General Hospital, 60 Blossom St, 02114, Boston, MA, USA
- Obstetrics, Gynecology and Reproductive Biology, Harvard Medical School, 02115, Boston, MA, USA
| | - Kyle M Devins
- Department of Pathology, Massachusetts General Hospital, 021151, Boston, MA, USA
| | - Lara Milane
- Department of Pharmaceutical Sciences, Bouvé College of Health Sciences, Northeastern University, 02115, Boston, MA, USA
| | - William B Manning
- Vincent Center for Reproductive Biology, Department of Obstetrics and Gynecology, Massachusetts General Hospital, 60 Blossom St, 02114, Boston, MA, USA
- Obstetrics, Gynecology and Reproductive Biology, Harvard Medical School, 02115, Boston, MA, USA
- Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, Massachusetts General Hospital, 02114, Boston, MA, USA
| | - Varvara Mazina
- Vincent Center for Reproductive Biology, Department of Obstetrics and Gynecology, Massachusetts General Hospital, 60 Blossom St, 02114, Boston, MA, USA
- Obstetrics, Gynecology and Reproductive Biology, Harvard Medical School, 02115, Boston, MA, USA
- Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, Massachusetts General Hospital, 02114, Boston, MA, USA
| | - Oladapo O Yeku
- Vincent Center for Reproductive Biology, Department of Obstetrics and Gynecology, Massachusetts General Hospital, 60 Blossom St, 02114, Boston, MA, USA
- Cancer Center, Massachusetts General Hospital, 55 Fruit St, 02114, Boston, MA, USA
| | - Bo R Rueda
- Vincent Center for Reproductive Biology, Department of Obstetrics and Gynecology, Massachusetts General Hospital, 60 Blossom St, 02114, Boston, MA, USA.
- Obstetrics, Gynecology and Reproductive Biology, Harvard Medical School, 02115, Boston, MA, USA.
| |
Collapse
|
3
|
Sharma S, Chandra K, Naik A, Sharma A, Sharma R, Thakur A, Grewal AS, Dhingra AK, Banerjee A, Liou JP, Guru SK, Nepali K. Flavone-based dual PARP-Tubulin inhibitor manifesting efficacy against endometrial cancer. J Enzyme Inhib Med Chem 2023; 38:2276665. [PMID: 37919954 PMCID: PMC10627047 DOI: 10.1080/14756366.2023.2276665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Accepted: 10/24/2023] [Indexed: 11/04/2023] Open
Abstract
Structural tailoring of the flavone framework (position 7) via organopalladium-catalyzed C-C bond formation was attempted in this study. The impact of substituents with varied electronic effects (phenyl ring, position 2 of the benzopyran scaffold) on the antitumor properties was also assessed. Resultantly, the efforts yielded a furyl arm bearing benzopyran possessing a 4-fluoro phenyl ring (position 2) (14) that manifested a magnificent antitumor profile against the Ishikawa cell lines mediated through dual inhibition of PARP and tubulin [(IC50 (PARP1) = 74 nM, IC50 (PARP2) = 109 nM) and tubulin (IC50 = 1.4 µM)]. Further investigations confirmed the ability of 14 to induce apoptosis as well as autophagy and cause cell cycle arrest at the G2/M phase. Overall, the outcome of the study culminated in a tractable dual PARP-tubulin inhibitor endowed with an impressive activity profile against endometrial cancer.
Collapse
Affiliation(s)
- Sachin Sharma
- School of Pharmacy, College of Pharmacy, Taipei Medical University, Taipei, Taiwan
| | - Kavya Chandra
- Department of Biological Sciences, BITS Pilani KK Birla Goa campus, Goa, India
| | - Aliva Naik
- Department of Biological Sciences, National Institute of Pharmaceutical Education and Research, Hyderabad, India
| | - Anamika Sharma
- Department of Biological Sciences, National Institute of Pharmaceutical Education and Research, Hyderabad, India
| | - Ram Sharma
- School of Pharmacy, College of Pharmacy, Taipei Medical University, Taipei, Taiwan
| | - Amandeep Thakur
- School of Pharmacy, College of Pharmacy, Taipei Medical University, Taipei, Taiwan
| | | | | | - Arnab Banerjee
- Department of Biological Sciences, BITS Pilani KK Birla Goa campus, Goa, India
| | - Jing Ping Liou
- School of Pharmacy, College of Pharmacy, Taipei Medical University, Taipei, Taiwan
- Program in Drug Discovery and Development Industry, College of Pharmacy, Taipei Medical University, Taipei, Taiwan
| | - Santosh Kumar Guru
- Department of Biological Sciences, National Institute of Pharmaceutical Education and Research, Hyderabad, India
| | - Kunal Nepali
- School of Pharmacy, College of Pharmacy, Taipei Medical University, Taipei, Taiwan
- Program in Drug Discovery and Development Industry, College of Pharmacy, Taipei Medical University, Taipei, Taiwan
| |
Collapse
|
4
|
Mao S, Xia A, Tao X, Ye D, Qu J, Sun M, Wei H, Li G. A pan-cancer analysis of the prognostic and immunological roles of matrix metalloprotease-1 (MMP1) in human tumors. Front Oncol 2023; 12:1089550. [PMID: 36727076 PMCID: PMC9885257 DOI: 10.3389/fonc.2022.1089550] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Accepted: 12/28/2022] [Indexed: 01/18/2023] Open
Abstract
Objective Cancer remains the leading killer of human health worldwide. It has been shown that matrix metalloproteinase-1(MMP1) is related to poor prognosis in cancers such as BRCA, CESC and COAD. However, systematic pan-cancer analysis about the prognostic and immunological roles of MMP1 has not been explored. Here, the purpose of this study was to investigate the prognostic and immunological roles of MMP1 in pan-cancer and confirm cancer-promoting effect in pancreatic cancer. Methods In our study, bioinformatics were first used to analyze data from multiple databases. Then, several bioinformatics tools were utilized to investigate the role of MMP1 in 33 tumor types. Finally, molecular biology experiments were carried out to prove the cancer-promoting effect of MMP1 in pancreatic cancer. Results MMP1 expression was higher in tumor tissues than in control tissues in most tumor types. High expression of MMP1 was associated with poor overall survival (OS) and disease-free survival (DFS) in some tumor types. Further analysis of MMP1 gene mutation data showed that MMP1 mutations significantly influenced the prognosis of STAD. In addition, MMP1 expression was closely related to cancer-associated fibroblast (CAFs) infiltration in a variety of cancers and played an important role on immune infiltration score, tumor mutational burden (TMB) and microsatellite instability (MSI). Gene Ontology enrichment analysis indicated that these 20 genes were mainly related to extracellular structure organization/extracellular matrix organization/extracellular matrix disassembly/collagen metabolic process in the enriched biological processes. Finally, molecular biology experiments confirmed the cancer-promoting effect of MMP1 in pancreatic cancer. Conclusions Our pan-cancer analysis comprehensively proved that MMP1 expression is related with clinical prognosis and tumor immune infiltration, and MMP1 can become a prognostic and immunological biomarker.
Collapse
Affiliation(s)
- Shuai Mao
- Department of Hepatobiliary Surgery, Affiliated Drum Tower Hospital, Medical School, Nanjing University, Nanjing, China
| | - Anliang Xia
- Department of Hepatobiliary Surgery, Affiliated Drum Tower Hospital, Medical School, Nanjing University, Nanjing, China
| | - Xuewen Tao
- Department of Hepatobiliary Surgery, Medicine School of Southeast University Nanjing Drum Tower Hospital, Nanjing, China
| | - Dingde Ye
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Jiamu Qu
- Department of Hepatobiliary Surgery, Medicine School of Southeast University Nanjing Drum Tower Hospital, Nanjing, China
| | - Meiling Sun
- Department of Hepatobiliary Surgery, Affiliated Drum Tower Hospital, Medical School, Nanjing University, Nanjing, China
| | - Haowei Wei
- Department of Hepatobiliary Surgery, Affiliated Drum Tower Hospital, Medical School, Nanjing University, Nanjing, China
| | - Guoqiang Li
- Department of Hepatobiliary Surgery, Affiliated Drum Tower Hospital, Medical School, Nanjing University, Nanjing, China,*Correspondence: Guoqiang Li,
| |
Collapse
|
5
|
Dong P, Wang F, Taheri M, Xiong Y, Ihira K, Kobayashi N, Konno Y, Yue J, Watari H. Long Non-Coding RNA TMPO-AS1 Promotes GLUT1-Mediated Glycolysis and Paclitaxel Resistance in Endometrial Cancer Cells by Interacting With miR-140 and miR-143. Front Oncol 2022; 12:912935. [PMID: 35712514 PMCID: PMC9195630 DOI: 10.3389/fonc.2022.912935] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Accepted: 04/29/2022] [Indexed: 01/05/2023] Open
Abstract
Increased glycolysis in tumor cells is frequently associated with drug resistance. Overexpression of glucose transporter-1 (GLUT1) promotes the Warburg effect and mediates chemoresistance in various cancers. Aberrant GLUT1 expression is considered as an essential early step in the development of endometrial cancer (EC). However, its role in EC glycolysis and chemoresistance and the upstream mechanisms underlying GLUT1 overexpression, remain undefined. Here, we demonstrated that GLUT1 was highly expressed in EC tissues and cell lines and that high GLUT1 expression was associated with poor prognosis in EC patients. Both gain-of-function and loss-of-function studies showed that GLUT1 increased EC cell proliferation, invasion, and glycolysis, while also making them resistant to paclitaxel. The long non-coding RNA TMPO-AS1 was found to be overexpressed in EC tissues and to be negatively associated with EC patient outcomes. RNA-immunoprecipitation and luciferase reporter assays confirmed that TMPO-AS1 elevated GLUT1 expression by directly binding to two critical tumor suppressor microRNAs (miR-140 and miR-143). Downregulation of TMPO-AS1 remarkably reduced EC cell proliferation, invasion, glycolysis, and paclitaxel resistance in EC cells. This study established that dysregulation of the TMPO-AS1-miR-140/miR-143 axis contributes to glycolysis and drug resistance in EC cells by up-regulating GLUT1 expression. Thus, inhibiting TMPO-AS1 and GLUT1 may prove beneficial in overcoming glycolysis-induced paclitaxel resistance in patients with EC.
Collapse
Affiliation(s)
- Peixin Dong
- Department of Obstetrics and Gynecology, Hokkaido University School of Medicine, Hokkaido University, Sapporo, Japan
| | - Feng Wang
- Department of Laboratory Medicine, Affiliated Hospital of Nantong University, Jiangsu, China
| | - Mohammad Taheri
- Skull Base Research Center, Loghman Hakim Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran.,Institute of Human Genetics, Jena University Hospital, Jena, Germany
| | - Ying Xiong
- Department of Gynecology, State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Kei Ihira
- Department of Obstetrics and Gynecology, Hokkaido University School of Medicine, Hokkaido University, Sapporo, Japan
| | - Noriko Kobayashi
- Department of Obstetrics and Gynecology, Hokkaido University School of Medicine, Hokkaido University, Sapporo, Japan
| | - Yosuke Konno
- Department of Obstetrics and Gynecology, Hokkaido University School of Medicine, Hokkaido University, Sapporo, Japan
| | - Junming Yue
- Department of Pathology and Laboratory Medicine, University of Tennessee Health Science Center, Memphis, TN, United States.,Center for Cancer Research, University of Tennessee Health Science Center, Memphis, TN, United States
| | - Hidemichi Watari
- Department of Obstetrics and Gynecology, Hokkaido University School of Medicine, Hokkaido University, Sapporo, Japan
| |
Collapse
|
6
|
Yu CL, Yu YL, Yang SF, Hsu CE, Lin CL, Hsieh YH, Chiou HL. Praeruptorin A reduces metastasis of human hepatocellular carcinoma cells by targeting ERK/MMP1 signaling pathway. ENVIRONMENTAL TOXICOLOGY 2021; 36:540-549. [PMID: 33226171 DOI: 10.1002/tox.23059] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Accepted: 11/08/2020] [Indexed: 06/11/2023]
Abstract
Praeruptorin A (PA) is one of the active ingredients found in the dried root of Peucedanum praeruptorum Dunn, has been reported to possess anticancer effects against various types of cancer. However, the effect of PA on human hepatocellular carcinoma (HCC) remains uncleared. In this study, our results indicated that PA did not induce cytotoxicity or alter cell cycle distribution in human HCC cells (Huh-7, SK-Hep-1, and PLC/PRF/5 cells). Instead, PA inhibited the migration and invasion of human HCC cells while downregulating the expression of matrix metalloproteinase-1 (MMP1) and activating the extracellular signal-regulated kinase (ERK) signaling pathways. Furthermore, blocking the ERK signaling pathway through siERK restored the expression of MMP1 and the invasive ability of PA-treated HCC cells. In conclusion, our results demonstrate the antimetastatic activity of PA against human HCC cells, supporting its potential as a therapeutic agent of HCC treatments.
Collapse
Affiliation(s)
- Chen-Lin Yu
- Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan
| | - Yung-Luen Yu
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung, Taiwan
- Center for Molecular Medicine, China Medical University Hospital, Taichung, Taiwan
- Department of Biotechnology, Asia University, Taichung, Taiwan
| | - Shun-Fa Yang
- Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan
- Department of Medical Research, Chung Shan Medical University Hospital, Taichung, Taiwan
| | - Chung-En Hsu
- School of Medical Laboratory and Biotechnology, Chung Shan Medical University, Taichung, Taiwan
| | - Chia-Liang Lin
- Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan
| | - Yi-Hsien Hsieh
- Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan
- Department of Medical Research, Chung Shan Medical University Hospital, Taichung, Taiwan
| | - Hui-Ling Chiou
- School of Medical Laboratory and Biotechnology, Chung Shan Medical University, Taichung, Taiwan
- Department of Clinical Laboratory, Chung Shan Medical University Hospital, Taichung, Taiwan
| |
Collapse
|
7
|
The combination of everolimus and terameprocol exerts synergistic antiproliferative effects in endometrial cancer: molecular role of insulin-like growth factor binding protein 2. J Mol Med (Berl) 2018; 96:1251-1266. [PMID: 30298385 DOI: 10.1007/s00109-018-1699-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2017] [Revised: 09/07/2018] [Accepted: 09/26/2018] [Indexed: 01/09/2023]
Abstract
Oncogenic PIK3CA mutations are common in endometrial cancers, and the PI3K/AKT/mTOR pathway is targetable by drugs. We sought to investigate whether the combination of an mTOR inhibitor, everolimus (RAD001), and an AKT inhibitor, terameprocol (M4N), exerts better antiproliferative effects in endometrial cancer. The molecular mechanisms underlying their pharmacological action were also examined. The combination of RAD001 and M4N exerted in vitro synergistic effects on cell viability, apoptosis, and expression of IGFBP2 in endometrial cancer cells. Mechanistically, the Sp1 site on the IGFBP2 promoter was required for RAD001- and M4N-induced downregulation. IGFBP2 protein expression was higher in endometrial cancer than in the normal endometrium (P < 0.001). Furthermore, elevated IGFBP2 histoscores were significantly associated with a lower overall survival (P = 0.021). In conclusion, our in vitro results demonstrate that RAD001 and M4N exert synergistic antiproliferative effects against endometrial cancer cells, which appeared to be mediated by the inhibition of IGFBP2, a key anti-apoptotic regulator. Further clinical studies of this drug combination in patients with endometrial cancer may be warranted, especially in the presence of PIK3CA and IGFBP2 aberrations. KEY MESSAGES: RAD001 and M4N synergistically suppress endometrial cancer growth. IGFBP2 is overexpressed in endometrial cancer. The combination of RAD001 and M4N significantly reduces IGFBP2 overexpression. Sp1 binding site on the IGFBP2 promoter is required for RAD001- and M4N-induced downregulation. High IGFBP2 histoscore in endometrial cancer portends a poor prognosis.
Collapse
|
8
|
Polymorphisms in the 3'-UTR of SCD5 gene are associated with hepatocellular carcinoma in Korean population. Mol Biol Rep 2018; 45:1705-1714. [PMID: 30168096 DOI: 10.1007/s11033-018-4313-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2018] [Accepted: 08/17/2018] [Indexed: 12/28/2022]
Abstract
The purpose of the study was to assess the relationship between polymorphisms of the SCD5 and MMP1 gene and hepatocellular carcinoma (HCC). The gene polymorphisms with a minor allele frequency (MAF) > 0.05 were selected eight SNPs (rs6840, rs1065403, rs3821974, and rs3733230 in 3'-UTR; rs4693472, rs3733227, rs1848067, and rs6535374 in intron region) of SCD5 gene and two SNPs (rs1799750 and rs1144393 in promoter region) of MMP1 gene. The genotype of SCD5 and MMP1 gene SNPs were determined by direct sequencing and pyrosequencing, respectively. One hundred sixty-two patients with HCC and two hundred twenty-five control subjects were recruited in Korean male population. In terms of genotype frequencies, SCD5 genotype TC, GA, AG, and CG of rs6840, rs1065403, rs3821974, and rs3733230, respectively were higher in control group than HCC. In addition, these genotype decreased the risk (rs6840; OR 0.55, 95% CI 0.31-0.99; rs1065403; OR 0.46, 95% CI 0.26-0.83; rs3821974; OR 0.56, 95% CI 0.31-0.99; rs3733230; OR 0.62, 95% CI 0.34-1.12) of HCC, which may work as a prevention of HCC. At least one minor allele carrier of SCD5 gene polymorphisms were related to decreased risk of HCC for AFP cut-point levels > 200 or > 400 ng/ml, respectively. Our results indicate that polymorphisms in the 3'-UTR of the SCD5 gene may associated with HCC in the Korean male population.
Collapse
|
9
|
Crean-Tate KK, Reizes O. Leptin Regulation of Cancer Stem Cells in Breast and Gynecologic Cancer. Endocrinology 2018; 159:3069-3080. [PMID: 29955847 PMCID: PMC6669812 DOI: 10.1210/en.2018-00379] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/21/2018] [Accepted: 06/19/2018] [Indexed: 12/18/2022]
Abstract
It is well established that obesity increases the incidence and worsens the prognosis of women's cancer. For breast cancer, women with obesity exhibit more than a twofold increase in the odds of being diagnosed with cancer, with a greater risk of advanced stage at diagnosis, and ≤40% greater risk of recurrence and death than their normal-weight counterparts. These findings are similar in gynecologic cancers, where women who are obese with a body mass index (BMI) >40 kg/m2 have up to six times greater risk of developing endometrial cancer and a 9.2% increase in mortality with every 10% increase in BMI. Likewise, patients with obesity exhibit a twofold higher risk of premenopausal ovarian cancer, and patients who are obese with advanced stage ovarian cancer have shown a shorter time to recurrence and poorer overall survival. Obesity is accompanied by changes in expression of adipose factors that act on local tissues and systemically. Once obesity was recognized as a factor in cancer incidence and progression, the adipose cytokine (adipokine) leptin became the focus of intense investigation as a putative link, with nearly 3000 publications on the topic. Leptin has been shown to increase cell proliferation, inhibit apoptosis, promote angiogenesis, and increase therapeutic resistance. These characteristics are associated with a subset of cells in both liquid and solid tumors known as cancer stem cells (CSCs), or tumor initiating cells. We will review the literature discussing leptin's role in breast and gynecologic cancer, focusing on its role in CSCs, and consider goals for targeting future therapy in this arena to disrupt tumor initiation and progression in women's cancer.
Collapse
Affiliation(s)
- Katie K Crean-Tate
- Department of Obstetrics and Gynecology, Women’s Health Institute, Cleveland Clinic, Cleveland, Ohio
| | - Ofer Reizes
- Department of Cellular and Molecular Medicine, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio
- Department of Molecular Medicine, Cleveland Clinic Lerner College of Medicine, Case Western Reserve University, Cleveland, Ohio
- Case Comprehensive Cancer Center, Cleveland, Ohio
- Correspondence: Ofer Reizes, PhD, Department of Cellular and Molecular Medicine, Lerner Research Institute, Cleveland Clinic, 9500 Euclid Avenue, NC10, Cleveland, Ohio 44195. E-mail:
| |
Collapse
|
10
|
Chemerin suppresses hepatocellular carcinoma metastasis through CMKLR1-PTEN-Akt axis. Br J Cancer 2018; 118:1337-1348. [PMID: 29717200 PMCID: PMC5959946 DOI: 10.1038/s41416-018-0077-y] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2017] [Revised: 02/18/2018] [Accepted: 03/15/2018] [Indexed: 01/13/2023] Open
Abstract
BACKGROUND Chemerin, a known chemoattractant, participates in multiple biological events. However, its role in cancer remains largely unknown. METHODS Chemerin expression was evaluated by real-time PCR, western blot and immunohistochemistry. Forced expression, RNAi, immunoprecipitation, etc. were used in function and mechanism study. Mouse models of extrahepatic and intrahepatic metastasis were employed to evaluate the therapeutic potential of chemerin. RESULTS Chemerin expression was significantly downregulated in hepatocellular carcinoma, and associated with poor prognosis of HCC patients. Forced expression of chemerin inhibited in vitro migration, invasion and in vivo metastasis of HCC cells. Administration of chemerin effectively suppressed extrahepatic and intrahepatic metastases of HCC cells, resulting in prolonged survival of tumour-bearing nude mice. Chemerin upregulated expression and phosphatase activity of PTEN by interfering with PTEN-CMKLR1 interaction, leading to weakened ubiquitination of PTEN and decreased p-Akt (Ser473) level, which was responsible for suppressed migration, invasion and metastasis of HCC cells. Positive correlation between chemerin and PTEN, and reverse correlation between chemerin and p-Akt (Ser473) were also observed in HCC clinical samples and intrahepatic mouse model in vivo. CONCLUSIONS Our study has revealed the suppressive role and therapeutic potential of chemerin in HCC metastasis, providing both a prognostic marker and drug candidate for HCC.
Collapse
|
11
|
Dasari VR, Mazack V, Feng W, Nash J, Carey DJ, Gogoi R. Verteporfin exhibits YAP-independent anti-proliferative and cytotoxic effects in endometrial cancer cells. Oncotarget 2018; 8:28628-28640. [PMID: 28404908 PMCID: PMC5438678 DOI: 10.18632/oncotarget.15614] [Citation(s) in RCA: 69] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2016] [Accepted: 01/24/2017] [Indexed: 12/28/2022] Open
Abstract
Endometrial Carcinoma (EMCA) is the most common gynecologic malignancy and the fourth most common malignancy in women in the United States. Yes-associated protein (YAP) is a potent transcription coactivator acting via binding to the TEAD transcription factor, and plays a critical role in organ size regulation. Verteporfin (VP), a benzoporphyrin derivative, was identified as an inhibitor of YAP-TEAD interaction. We investigated the therapeutic efficacy and mechanism of VP in EMCA. The efficacy of VP on cell viability, cytotoxicity and invasion was assayed in EMCA cell lines. An organoid model system was also developed to test the effect of VP on apoptotic markers in an in vitro model system. Treatment with VP resulted in a decrease in cell viability, invasion and an increase in cytotoxicity of EMCA cells. These effects occurred as early as 15 minutes following treatment. Similarly, VP treatment versus vehicle control increased apoptosis in human organoid model systems. Quantitative RT-PCR, cDNA based RTPCR array analysis and western blotting were performed to investigate the mechanism of VP action. The cytotoxic and anti-proliferative effects appeared to be independent of its effect on YAP. Our results suggest that VP is a promising chemotherapeutic agent for the treatment of endometrial cancer.
Collapse
Affiliation(s)
| | - Virginia Mazack
- Weis Center for Research, Geisinger Medical Center, Danville, PA, USA
| | - Wen Feng
- Henry Hood Center for Health Research, Geisinger Medical Center, Danville, PA, USA
| | - John Nash
- Weis Center for Research, Geisinger Medical Center, Danville, PA, USA
| | - David J Carey
- Weis Center for Research, Geisinger Medical Center, Danville, PA, USA
| | - Radhika Gogoi
- Weis Center for Research, Geisinger Medical Center, Danville, PA, USA
| |
Collapse
|
12
|
Divine LM, Nguyen MR, Meller E, Desai RA, Arif B, Rankin EB, Bligard KH, Meyerson C, Hagemann IS, Massad M, Thaker PH, Hagemann AR, McCourt CK, Powell MA, Mutch DG, Fuh KC. AXL modulates extracellular matrix protein expression and is essential for invasion and metastasis in endometrial cancer. Oncotarget 2018; 7:77291-77305. [PMID: 27764792 PMCID: PMC5340229 DOI: 10.18632/oncotarget.12637] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2016] [Accepted: 09/24/2016] [Indexed: 11/29/2022] Open
Abstract
The receptor tyrosine kinase AXL promotes migration, invasion, and metastasis. Here, we evaluated the role of AXL in endometrial cancer. High immunohistochemical expression of AXL was found in 76% (63/83) of advanced-stage, and 77% (82/107) of high-grade specimens and correlated with worse survival in uterine serous cancer patients. In vitro, genetic silencing of AXL inhibited migration and invasion but had no effect on proliferation of ARK1 endometrial cancer cells. AXL-deficient cells showed significantly decreased expression of phospho-AKT as well as uPA, MMP-1, MMP-2, MMP-3, and MMP-9. In a xenograft model of human uterine serous carcinoma with AXL-deficient ARK1 cells, there was significantly less tumor burden than xenografts with control ARK1 cells. Together, these findings underscore the therapeutic potentials of AXL as a candidate target for treatment of metastatic endometrial cancer.
Collapse
Affiliation(s)
- Laura M Divine
- Department of Obstetrics and Gynecology, Washington University School of Medicine, St. Louis, MO, USA
| | - Mai R Nguyen
- Department of Obstetrics and Gynecology, Washington University School of Medicine, St. Louis, MO, USA
| | - Eric Meller
- Department of Obstetrics and Gynecology, Washington University School of Medicine, St. Louis, MO, USA
| | - Riva A Desai
- Department of Obstetrics and Gynecology, Washington University School of Medicine, St. Louis, MO, USA
| | - Batool Arif
- Department of Obstetrics and Gynecology, Washington University School of Medicine, St. Louis, MO, USA
| | - Erinn B Rankin
- Division of Radiation and Cancer Biology, Department of Radiation Oncology, Stanford University Medical Center, Stanford, CA, USA.,Department of Obstetrics and Gynecology, Stanford University Medical Center, Stanford, CA, USA
| | - Katherine H Bligard
- Department of Obstetrics and Gynecology, Washington University School of Medicine, St. Louis, MO, USA
| | - Cherise Meyerson
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, USA
| | - Ian S Hagemann
- Department of Obstetrics and Gynecology, Washington University School of Medicine, St. Louis, MO, USA.,Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, USA
| | - Maria Massad
- Department of Obstetrics and Gynecology, Washington University School of Medicine, St. Louis, MO, USA
| | - Premal H Thaker
- Department of Obstetrics and Gynecology, Washington University School of Medicine, St. Louis, MO, USA
| | - Andrea R Hagemann
- Department of Obstetrics and Gynecology, Washington University School of Medicine, St. Louis, MO, USA
| | - Carolyn K McCourt
- Department of Obstetrics and Gynecology, Washington University School of Medicine, St. Louis, MO, USA
| | - Matt A Powell
- Department of Obstetrics and Gynecology, Washington University School of Medicine, St. Louis, MO, USA
| | - David G Mutch
- Department of Obstetrics and Gynecology, Washington University School of Medicine, St. Louis, MO, USA
| | - Katherine C Fuh
- Department of Obstetrics and Gynecology, Washington University School of Medicine, St. Louis, MO, USA.,Center for Reproductive Health Sciences (CRepHS), Washington University in St. Louis, St. Louis, MO, USA
| |
Collapse
|
13
|
Saito R, Miki Y, Ishida N, Inoue C, Kobayashi M, Hata S, Yamada-Okabe H, Okada Y, Sasano H. The Significance of MMP-1 in EGFR-TKI-Resistant Lung Adenocarcinoma: Potential for Therapeutic Targeting. Int J Mol Sci 2018; 19:ijms19020609. [PMID: 29463039 PMCID: PMC5855831 DOI: 10.3390/ijms19020609] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2018] [Revised: 02/14/2018] [Accepted: 02/16/2018] [Indexed: 12/17/2022] Open
Abstract
Epidermal growth factor receptor–tyrosine kinase inhibitor (EGFR-TKI) resistance is one of the most important problems in lung cancer therapy. Lung adenocarcinoma with EGFR-TKI resistance was reported to have higher abilities of invasion and migration than cancers sensitive to EGFR-TKI, but the function of matrix metalloproteinases (MMPs) has not been explored in EGFR-TKI–resistant lung adenocarcinoma. This study aims to clarify the significance of MMP-1 in EGFR-TKI–resistant lung adenocarcinoma. From the results of in vitro studies of migration and invasion assays using EGFR-TKI–sensitive and –resistant cell lines and phosphorylation antibody arrays using EGF and rapamycin, we first demonstrate that overexpression of MMP-1, which might follow activation of a mammalian target of rapamycin (mTOR) pathway, plays an important role in the migration and invasion abilities of EGFR-TKI–resistant lung adenocarcinoma. Additionally, immunohistochemical studies using 89 cases of lung adenocarcinoma demonstrate that high expression of MMP-1 is significantly correlated with poor prognosis and factors such as smoking history and the subtype of invasive mucinous adenocarcinoma. These are consistent with the results of this in vitro study. To conclude, this study provides insights into the development of a possible alternative therapy manipulating MMP-1 and the mTOR signaling pathway in EGFR-TKI–resistant lung adenocarcinoma.
Collapse
Affiliation(s)
- Ryoko Saito
- Department of Pathology, Tohoku University Graduate School of Medicine, 980-8575, Sendai, Japan.
| | - Yasuhiro Miki
- Department of Pathology, Tohoku University Graduate School of Medicine, 980-8575, Sendai, Japan.
| | - Naoya Ishida
- Department of Pathology, Tohoku University Graduate School of Medicine, 980-8575, Sendai, Japan.
| | - Chihiro Inoue
- Department of Pathology, Tohoku University Graduate School of Medicine, 980-8575, Sendai, Japan.
| | - Masayuki Kobayashi
- Department of Pathology, Tohoku University Graduate School of Medicine, 980-8575, Sendai, Japan.
| | - Shuko Hata
- Department of Pathology, Tohoku Medical and Pharmaceutical University School of Medicine, 981-8558 Sendai, Japan.
| | | | - Yoshinori Okada
- Department of Thoracic Surgery, Tohoku University Hospital, 980-8574, Sendai, Japan.
| | - Hironobu Sasano
- Department of Pathology, Tohoku University Graduate School of Medicine, 980-8575, Sendai, Japan.
| |
Collapse
|
14
|
Zhuang K, Zhang J, Xiong M, Wang X, Luo X, Han L, Meng Y, Zhang Y, Liao W, Liu S. CDK5 functions as a tumor promoter in human colorectal cancer via modulating the ERK5-AP-1 axis. Cell Death Dis 2016; 7:e2415. [PMID: 27735944 PMCID: PMC5133995 DOI: 10.1038/cddis.2016.333] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2016] [Revised: 09/19/2016] [Accepted: 09/22/2016] [Indexed: 01/26/2023]
Abstract
Abnormal expression of cyclin-dependent kinase 5 (CDK5) has been found in several human cancers, whereas the role of CDK5 in the malignant development of colorectal cancer (CRC) has not been well characterized. Here we investigated the role of CDK5 in CRC and found that its expression was much higher in CRC tissues than that in normal tissues with a higher expression level of CDK5 closely correlating to advanced American Joint Committee on Cancer (AJCC) stage, poor differentiation, increased tumor size and poor prognosis of CRC. Biological function experiments showed that CDK5 regulated CRC cell proliferation and metastasis ability. Whole-genome microarray analysis, co-immunoprecipitation, in vitro kinase assay, western blotting, luciferase reporter assays and electrophoretic mobility shift assay (EMSA) showed that CDK5 could directly phosphorylate ERK5 at threonine (Thr) 732 and finally modulate the oncogenic ERK5–AP-1 axis. Further researches showed that CDK5–ERK5–AP-1 axis could promote progression of CRC carcinogenesis and had a significant correlation in human CRC samples. In summary, this study revealed the functional and mechanistic links between CDK5 and the oncogenic ERK5–AP-1 signaling pathway in the pathogenesis of CRC. These findings suggest that CDK5 has an important role in CRC development and may serve as a potential therapeutic target for CRC.
Collapse
Affiliation(s)
- Kangmin Zhuang
- Guangdong Provincial Key Laboratory of Gastroenterology, Department of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Juchang Zhang
- Guangdong Provincial Key Laboratory of Gastroenterology, Department of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Man Xiong
- Guangdong Provincial Key Laboratory of Gastroenterology, Department of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Xianfei Wang
- Department of Gastroenterology, Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan, China
| | - Xiaobei Luo
- Guangdong Provincial Key Laboratory of Gastroenterology, Department of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Lu Han
- Guangdong Provincial Key Laboratory of Gastroenterology, Department of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Yan Meng
- Guangdong Provincial Key Laboratory of Gastroenterology, Department of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Yali Zhang
- Guangdong Provincial Key Laboratory of Gastroenterology, Department of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Wenting Liao
- Department of Pathology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China.,Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong, China
| | - Side Liu
- Guangdong Provincial Key Laboratory of Gastroenterology, Department of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| |
Collapse
|
15
|
Kao C, Chao A, Tsai CL, Chuang WC, Huang WP, Chen GC, Lin CY, Wang TH, Wang HS, Lai CH. Bortezomib enhances cancer cell death by blocking the autophagic flux through stimulating ERK phosphorylation. Cell Death Dis 2014; 5:e1510. [PMID: 25375375 PMCID: PMC4260726 DOI: 10.1038/cddis.2014.468] [Citation(s) in RCA: 90] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2014] [Revised: 09/10/2014] [Accepted: 09/29/2014] [Indexed: 12/19/2022]
Abstract
The antitumor activity of an inhibitor of 26S proteasome bortezomib (Velcade) has been observed in various malignancies, including colon cancer, prostate cancer, breast cancer, and ovarian cancer. Bortezomib has been proposed to stimulate autophagy, but scientific observations did not always support this. Interactions between ERK activity and autophagy are complex and not completely clear. Autophagy proteins have recently been shown to regulate the functions of ERK, and ERK activation has been found to induce autophagy. On the other hand, sustained activation of ERK has also been shown to inhibit the maturation step of the autophagy process. In this study, we sought to identify the mechanism of autophagy regulation in cancer cells treated with bortezomib. Our results indicate that bortezomib blocked the autophagic flux without inhibiting the fusion of the autophagosome and lysosome. In ovarian cancer, as well as endometrial cancer and hepatocellular carcinoma cells, bortezomib inhibited protein degradation in lysosomes by suppressing cathepsins, which requires the participation of ERK phosphorylation, but not JNK or p38. Our findings that ERK phosphorylation reduced cathepsins further explain how ERK phosphorylation inhibits the autophagic flux. In conclusion, bortezomib may induce ERK phosphorylation to suppress cathepsin B and inhibit the catalytic process of autophagy in ovarian cancer and other solid tumors. The inhibition of cisplatin-induced autophagy by bortezomib can enhance chemotherapy efficacy in ovarian cancer. As we also found that bortezomib blocks the autophagic flux in other cancers, the synergistic cytotoxic effect of bortezomib by abolishing chemotherapy-related autophagy may help us develop strategies of combination therapies for multiple cancers.
Collapse
Affiliation(s)
- C Kao
- 1] Department of Obstetrics and Gynecology, Linkou Medical Center, Chang Gung Memorial Hospital, Taoyuan, Taiwan [2] Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - A Chao
- Department of Obstetrics and Gynecology, Linkou Medical Center, Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | - C-L Tsai
- Department of Obstetrics and Gynecology, Linkou Medical Center, Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | - W-C Chuang
- 1] Department of Obstetrics and Gynecology, Linkou Medical Center, Chang Gung Memorial Hospital, Taoyuan, Taiwan [2] Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - W-P Huang
- Department of Life Science, National Taiwan University, Taipei, Taiwan
| | - G-C Chen
- Institute of Biological Chemistry, Academia Sinica, Taipei 115, Taiwan
| | - C-Y Lin
- Department of Obstetrics and Gynecology, Linkou Medical Center, Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | - T-H Wang
- 1] Department of Obstetrics and Gynecology, Linkou Medical Center, Chang Gung Memorial Hospital, Taoyuan, Taiwan [2] Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan [3] Genomic Medicine Research Core Laboratory, Linkou Medical Center, Chang Gung Memorial Hospital, Taoyuan, Taiwan [4] School of Traditional Chinese Medicine, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - H-S Wang
- 1] Department of Obstetrics and Gynecology, Linkou Medical Center, Chang Gung Memorial Hospital, Taoyuan, Taiwan [2] Graduate Institute of Clinical Medical Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - C-H Lai
- Department of Obstetrics and Gynecology, Linkou Medical Center, Chang Gung Memorial Hospital, Taoyuan, Taiwan
| |
Collapse
|