1
|
Cook JR, Ausiello J. Functional ACE2 deficiency leading to angiotensin imbalance in the pathophysiology of COVID-19. Rev Endocr Metab Disord 2022; 23:151-170. [PMID: 34195965 PMCID: PMC8245275 DOI: 10.1007/s11154-021-09663-z] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 06/04/2021] [Indexed: 02/07/2023]
Abstract
SARS-CoV-2, the virus responsible for COVID-19, uses angiotensin converting enzyme 2 (ACE2) as its primary cell-surface receptor. ACE2 is a key enzyme in the counter-regulatory pathway of the broader renin-angiotensin system (RAS) that has been implicated in a broad array of human pathology. The RAS is composed of two competing pathways that work in opposition to each other: the "conventional" arm involving angiotensin converting enzyme (ACE) generating angiotensin-2 and the more recently identified ACE2 pathway that generates angiotensin (1-7). Following the original SARS pandemic, additional studies suggested that coronaviral binding to ACE2 resulted in downregulation of the membrane-bound enzyme. Given the similarities between the two viruses, many have posited a similar process with SARS-CoV-2. Proponents of this ACE2 deficiency model argue that downregulation of ACE2 limits its enzymatic function, thereby skewing the delicate balance between the two competing arms of the RAS. In this review we critically examine this model. The available data remain incomplete but are consistent with the possibility that the broad multisystem dysfunction of COVID-19 is due in large part to functional ACE2 deficiency leading to angiotensin imbalance with consequent immune dysregulation and endothelial cell dysfunction.
Collapse
Affiliation(s)
- Joshua R Cook
- New York-Presbyterian Hospital and the Columbia University Irving Medical Center, New York, NY, USA
| | - John Ausiello
- New York-Presbyterian Hospital and the Columbia University Irving Medical Center, New York, NY, USA.
| |
Collapse
|
2
|
Chaves ADS, Magalhães NS, Insuela DBR, Silva PMRE, Martins MA, Carvalho VF. Effect of the renin-angiotensin system on the exacerbation of adrenal glucocorticoid steroidogenesis in diabetic mice: Role of angiotensin-II type 2 receptor. Front Endocrinol (Lausanne) 2022; 13:1040040. [PMID: 36465619 PMCID: PMC9712183 DOI: 10.3389/fendo.2022.1040040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Accepted: 11/01/2022] [Indexed: 11/18/2022] Open
Abstract
Prior investigation shows an increase in the activity of both hypothalamus-pituitary-adrenal (HPA) axis and the renin-angiotensin system (RAS) in diabetic patients. Moreover, activation of angiotensin-II type 1 receptor (AT1) has been associated with adrenal steroidogenesis. This study investigates the role of RAS on the overproduction of corticosterone in diabetic mice. Diabetes was induced by intravenous injection of alloxan into fasted Swiss-webster mice. Captopril (angiotensin-converting enzyme inhibitor), Olmesartan (AT1 receptor antagonist), CGP42112A (AT2 receptor agonist) or PD123319 (AT2 receptor antagonist) were administered daily for 14 consecutive days, starting 7 days post-alloxan. Plasma corticosterone was evaluated by ELISA, while adrenal gland expressions of AT1 receptor, AT2 receptor, adrenocorticotropic hormone receptor MC2R, pro-steroidogenic enzymes steroidogenic acute regulatory protein (StAR), and 11β-hydroxysteroid dehydrogenase type 1 (11βHSD1) were assessed using immunohistochemistry or western blot. Diabetic mice showed adrenal gland overexpression of AT1 receptor, MC2R, StAR, and 11βHSD1 without altering AT2 receptor levels, all of which were sensitive to Captopril or Olmesartan treatment. In addition, PD123319 blocked the ability of Olmesartan to reduce plasma corticosterone levels in diabetic mice. Furthermore, CGP42112A significantly decreased circulating corticosterone levels in diabetic mice, without altering the overexpression of MC2R and StAR in the adrenal glands. Our findings revealed that inhibition of both angiotensin synthesis and AT1 receptor activity reduced the high production of corticosterone in diabetic mice via the reduction of MC2R signaling expression in the adrenal gland. Furthermore, the protective effect of Olmesartan on the overproduction of corticosterone by adrenals in diabetic mice depends on both AT1 receptor blockade and AT2 receptor activation.
Collapse
Affiliation(s)
- Amanda da Silva Chaves
- Laboratory of Inflammation, Oswaldo Cruz Institute, Oswaldo Cruz Foundation (Fiocruz), Rio de Janeiro, Brazil
| | - Nathalia Santos Magalhães
- Laboratory of Inflammation, Oswaldo Cruz Institute, Oswaldo Cruz Foundation (Fiocruz), Rio de Janeiro, Brazil
| | | | | | - Marco Aurélio Martins
- Laboratory of Inflammation, Oswaldo Cruz Institute, Oswaldo Cruz Foundation (Fiocruz), Rio de Janeiro, Brazil
| | - Vinicius Frias Carvalho
- Laboratory of Inflammation, Oswaldo Cruz Institute, Oswaldo Cruz Foundation (Fiocruz), Rio de Janeiro, Brazil
- 2National Institute of Science and Technology on Neuroimmunomodulation (INCT-NIM), Oswaldo Cruz Institute, Oswaldo Cruz Foundation (Fiocruz), Rio de Janeiro, Brazil
- *Correspondence: Vinicius Frias Carvalho,
| |
Collapse
|
3
|
Impact of cortisol on blood pressure and hypertension-mediated organ damage in hypertensive patients. J Hypertens 2021; 39:1412-1420. [PMID: 33534343 DOI: 10.1097/hjh.0000000000002801] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
OBJECTIVES Patients with overt and subclinical Cushing's syndrome frequently develop hypertension, metabolism disorders, and atherosclerotic lesions. The aim of the present study was to test the association between cortisol and blood pressure (BP), organ damage, and metabolic parameters in hypertensive patients without hypercortisolism. METHODS After exclusion of patients treated with corticosteroids or with Cushing's syndrome, the cohort included 623 hypertensive patients (mean ± SD age 50.3 ± 15.4 years, 50.9% men, median 24-h BP 146/88 mmHg) with an extended work-up (lipid profile, hypertension-mediated organ damage). Cortisol secretion was assessed by plasma cortisol at 0800 and 1600 h, and by 24-h urinary free cortisol (24 h UFC) normalized if required to urine creatinine (UFC/U creat). RESULTS Plasma cortisol at 1600 h, 24 h-UFC, and UFC/U creat were significantly and positively correlated with daytime, night-time, and 24-h SBP; plasma cortisol at 0800 h was not associated with BP. The strongest correlations were observed in the subgroup of aged more than 50 years (correlation coefficients between 0.23 and 0.28). These correlations remained after adjustment on plasma aldosterone. Metabolic parameters were weakly associated with cortisol. Arterial stiffness (central pulse pressure and pulse wave velocity), plasma NT-proBNP, and microalbuminuria were significantly correlated with 24 h UFC, UFC/U creat, and plasma cortisol at 1600 h. CONCLUSION Cortisol influences weakly the level of BP independently from plasma aldosterone in hypertensive patients, particularly in older patients, and that there was weak association with HMOD. It may, therefore, be of interest to test specific treatments targeting cortisol excess in selected hypertensive patients.
Collapse
|
4
|
Lang F, Leibrock C, Pelzl L, Gawaz M, Pieske B, Alesutan I, Voelkl J. Therapeutic Interference With Vascular Calcification-Lessons From Klotho-Hypomorphic Mice and Beyond. Front Endocrinol (Lausanne) 2018; 9:207. [PMID: 29780355 PMCID: PMC5945862 DOI: 10.3389/fendo.2018.00207] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/12/2018] [Accepted: 04/13/2018] [Indexed: 12/13/2022] Open
Abstract
Medial vascular calcification, a major pathophysiological process associated with cardiovascular disease and mortality, involves osteo-/chondrogenic transdifferentiation of vascular smooth muscle cells (VSMCs). In chronic kidney disease (CKD), osteo-/chondrogenic transdifferentiation of VSMCs and, thus, vascular calcification is mainly driven by hyperphosphatemia, resulting from impaired elimination of phosphate by the diseased kidneys. Hyperphosphatemia with subsequent vascular calcification is a hallmark of klotho-hypomorphic mice, which are characterized by rapid development of multiple age-related disorders and early death. In those animals, hyperphosphatemia results from unrestrained formation of 1,25(OH)2D3 with subsequent retention of calcium and phosphate. Analysis of klotho-hypomorphic mice and mice with vitamin D3 overload uncovered several pathophysiological mechanisms participating in the orchestration of vascular calcification and several therapeutic opportunities to delay or even halt vascular calcification. The present brief review addresses the beneficial effects of bicarbonate, carbonic anhydrase inhibition, magnesium supplementation, mineralocorticoid receptor (MR) blockage, and ammonium salts. The case is made that bicarbonate is mainly effective by decreasing intestinal phosphate absorption, and that carbonic anhydrase inhibition leads to metabolic acidosis, which counteracts calcium-phosphate precipitation and VSMC transdifferentiation. Magnesium supplementation, MR blockage and ammonium salts are mainly effective by interference with osteo-/chondrogenic signaling in VSMCs. It should be pointed out that the, by far, most efficient substances are ammonium salts, which may virtually prevent vascular calcification. Future research will probably uncover further therapeutic options and, most importantly, reveal whether these observations in mice can be translated into treatment of patients suffering from vascular calcification, such as patients with CKD.
Collapse
Affiliation(s)
- Florian Lang
- Department of Physiology I, Eberhard Karls-University, Tübingen, Germany
- *Correspondence: Florian Lang,
| | - Christina Leibrock
- Department of Physiology I, Eberhard Karls-University, Tübingen, Germany
- Fresenius Kabi Deutschland GmbH, Bad Homburg, Germany
| | - Lisann Pelzl
- Department of Physiology I, Eberhard Karls-University, Tübingen, Germany
| | - Meinrad Gawaz
- Department of Internal Medicine III, Eberhard Karls-University, Tübingen, Germany
| | - Burkert Pieske
- Department of Internal Medicine and Cardiology, Charité-Universität Medizin Berlin, Berlin, Germany
- Berlin Institute of Health (BIH), Berlin, Germany
- Partner Site Berlin, German Centre for Cardiovascular Research (DZHK), Berlin, Germany
| | - Ioana Alesutan
- Department of Internal Medicine and Cardiology, Charité-Universität Medizin Berlin, Berlin, Germany
- Berlin Institute of Health (BIH), Berlin, Germany
- Partner Site Berlin, German Centre for Cardiovascular Research (DZHK), Berlin, Germany
| | - Jakob Voelkl
- Department of Internal Medicine and Cardiology, Charité-Universität Medizin Berlin, Berlin, Germany
- Partner Site Berlin, German Centre for Cardiovascular Research (DZHK), Berlin, Germany
| |
Collapse
|
5
|
Nehme A, Zibara K. Efficiency and specificity of RAAS inhibitors in cardiovascular diseases: how to achieve better end-organ protection? Hypertens Res 2017; 40:903-909. [DOI: 10.1038/hr.2017.65] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2016] [Revised: 02/26/2017] [Accepted: 03/28/2017] [Indexed: 11/09/2022]
|
6
|
Nehme A, Zibara K. Cellular distribution and interaction between extended renin-angiotensin-aldosterone system pathways in atheroma. Atherosclerosis 2017; 263:334-342. [PMID: 28600074 DOI: 10.1016/j.atherosclerosis.2017.05.029] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/02/2016] [Revised: 04/14/2017] [Accepted: 05/24/2017] [Indexed: 01/06/2023]
Abstract
The importance of the renin-angiotensin-aldosterone system (RAAS) in the development of atherosclerotic has been experimentally documented. In fact, RAAS components have been shown to be locally expressed in the arterial wall and to be differentially regulated during atherosclerotic lesion progression. RAAS transcripts and proteins were shown to be differentially expressed and to interact in the 3 main cells of atheroma: endothelial cells, vascular smooth muscle cells, and macrophages. This review describes the local expression and cellular distribution of extended RAAS components in the arterial wall and their differential regulation during atherosclerotic lesion development.
Collapse
Affiliation(s)
- Ali Nehme
- EA4173, Functional Genomics of Arterial Hypertension, Hôpital Nord-Ouest, Villefranche-sur-Saône, Université Lyon1, Lyon, France; ER045, Laboratory of Stem Cells, Department of Biology, Faculty of Sciences, Lebanese University, Beirut, Lebanon
| | - Kazem Zibara
- ER045, Laboratory of Stem Cells, Department of Biology, Faculty of Sciences, Lebanese University, Beirut, Lebanon.
| |
Collapse
|
7
|
Alesutan I, Voelkl J, Feger M, Kratschmar DV, Castor T, Mia S, Sacherer M, Viereck R, Borst O, Leibrock C, Gawaz M, Kuro-O M, Pilz S, Tomaschitz A, Odermatt A, Pieske B, Wagner CA, Lang F. Involvement Of Vascular Aldosterone Synthase In Phosphate-Induced Osteogenic Transformation Of Vascular Smooth Muscle Cells. Sci Rep 2017; 7:2059. [PMID: 28515448 PMCID: PMC5435689 DOI: 10.1038/s41598-017-01882-2] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2016] [Accepted: 04/04/2017] [Indexed: 02/07/2023] Open
Abstract
Vascular calcification resulting from hyperphosphatemia is a major determinant of mortality in chronic kidney disease (CKD). Vascular calcification is driven by aldosterone-sensitive osteogenic transformation of vascular smooth muscle cells (VSMCs). We show that even in absence of exogenous aldosterone, silencing and pharmacological inhibition (spironolactone, eplerenone) of the mineralocorticoid receptor (MR) ameliorated phosphate-induced osteo-/chondrogenic transformation of primary human aortic smooth muscle cells (HAoSMCs). High phosphate concentrations up-regulated aldosterone synthase (CYP11B2) expression in HAoSMCs. Silencing and deficiency of CYP11B2 in VSMCs ameliorated phosphate-induced osteogenic reprogramming and calcification. Phosphate treatment was followed by nuclear export of APEX1, a CYP11B2 transcriptional repressor. APEX1 silencing up-regulated CYP11B2 expression and stimulated osteo-/chondrogenic transformation. APEX1 overexpression blunted the phosphate-induced osteo-/chondrogenic transformation and calcification of HAoSMCs. Cyp11b2 expression was higher in aortic tissue of hyperphosphatemic klotho-hypomorphic (kl/kl) mice than in wild-type mice. In adrenalectomized kl/kl mice, spironolactone treatment still significantly ameliorated aortic osteoinductive reprogramming. Our findings suggest that VSMCs express aldosterone synthase, which is up-regulated by phosphate-induced disruption of APEX1-dependent gene suppression. Vascular CYP11B2 may contribute to stimulation of VSMCs osteo-/chondrogenic transformation during hyperphosphatemia.
Collapse
Affiliation(s)
- Ioana Alesutan
- Department of Physiology, University of Tübingen, Tübingen, Germany
- Department of Internal Medicine and Cardiology, Charité University Medicine, Campus Virchow-Klinikum, Berlin, Germany
- Berlin Institute of Health (BIH), Berlin, Germany
| | - Jakob Voelkl
- Department of Physiology, University of Tübingen, Tübingen, Germany
- Department of Internal Medicine and Cardiology, Charité University Medicine, Campus Virchow-Klinikum, Berlin, Germany
| | - Martina Feger
- Department of Physiology, University of Tübingen, Tübingen, Germany
| | - Denise V Kratschmar
- Department of Pharmaceutical Sciences, and the National Center for Excellence in Research NCCR Kidney.CH, University of Basel, Basel, Switzerland
| | - Tatsiana Castor
- Department of Physiology, University of Tübingen, Tübingen, Germany
| | - Sobuj Mia
- Department of Physiology, University of Tübingen, Tübingen, Germany
| | - Michael Sacherer
- Div. of Cardiology, Medical University of Graz and Ludwig Boltzmann Institute for Translational Heart Failure Research, Graz, Austria
| | - Robert Viereck
- Department of Physiology, University of Tübingen, Tübingen, Germany
| | - Oliver Borst
- Department of Physiology, University of Tübingen, Tübingen, Germany
- Department of Cardiology and Cardiovascular Medicine, University of Tübingen, Tübingen, Germany
| | | | - Meinrad Gawaz
- Department of Cardiology and Cardiovascular Medicine, University of Tübingen, Tübingen, Germany
| | - Makoto Kuro-O
- Center for Molecular Medicine, Jichi Medical University, Shimotsuke, Japan
| | - Stefan Pilz
- Department of Internal Medicine, Division of Endocrinology and Metabolism, Medical University of Graz, Graz, Austria
| | - Andreas Tomaschitz
- Div. of Cardiology, Medical University of Graz and Ludwig Boltzmann Institute for Translational Heart Failure Research, Graz, Austria
- Bad Gleichenberg Clinic, Bad Gleichenberg, Austria
| | - Alex Odermatt
- Department of Pharmaceutical Sciences, and the National Center for Excellence in Research NCCR Kidney.CH, University of Basel, Basel, Switzerland
| | - Burkert Pieske
- Department of Internal Medicine and Cardiology, Charité University Medicine, Campus Virchow-Klinikum, Berlin, Germany
- Berlin Institute of Health (BIH), Berlin, Germany
- Department of Cardiology, University of Graz, Graz, Austria; Department of Internal Medicine and Cardiology, German Heart Center Berlin (DHZB), Berlin, Germany
| | - Carsten A Wagner
- Institute of Physiology, University of Zurich, and the National Center for Excellence in Research NCCR Kidney, Zurich, Switzerland
| | - Florian Lang
- Department of Physiology, University of Tübingen, Tübingen, Germany.
| |
Collapse
|
8
|
Atlas of tissue renin-angiotensin-aldosterone system in human: A transcriptomic meta-analysis. Sci Rep 2015; 5:10035. [PMID: 25992767 PMCID: PMC4445654 DOI: 10.1038/srep10035] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2014] [Accepted: 03/09/2015] [Indexed: 01/09/2023] Open
Abstract
Tissue renin-angiotensin-aldosterone system (RAAS) has attracted much attention because of its physiological and pharmacological implications; however, a clear definition of tissue RAAS is still missing. We aimed to establish a preliminary atlas for the organization of RAAS across 23 different normal human tissues. A set of 37 genes encoding classical and novel RAAS participants including gluco- and mineralo-corticoids were defined as extended RAAS (extRAAS) system. Microarray data sets containing more than 10 normal tissues were downloaded from the GEO database. R software was used to extract expression levels and construct dendrograms of extRAAS genes within each data set. Tissue co-expression modules were then extracted from reproducible gene clusters across data sets. An atlas of the maps of tissue-specific organization of extRAAS was constructed from gene expression and coordination data. Our analysis included 143 data sets containing 4933 samples representing 23 different tissues. Expression data provided an insight on the favored pathways in a given tissue. Gene coordination indicated the existence of tissue-specific modules organized or not around conserved core groups of transcripts. The atlas of tissue-specific organization of extRAAS will help better understand tissue-specific effects of RAAS. This will provide a frame for developing more effective and selective pharmaceuticals targeting extRAAS.
Collapse
|
9
|
Local Angiotensin Pathways in Human Carotid Atheroma: Towards a Systems Biology Approach. ACTA ACUST UNITED AC 2015. [DOI: 10.1155/2015/593086] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
We will summarize the data we have obtained in human carotid artery concerning the organization of an extended local renin angiotensin aldosterone system and its variations at different stages of atheroma. In a system view, we propose a model where concomitant increase in angiotensin and glucocorticoid signaling is induced and amplified in VSMC while vascular smooth muscle cells transdifferentiate toward a lipid storing phenotype.
Collapse
|