1
|
Zhou B, Sui R, Yu L, Qi D, Fu S, Luo Y, Qi H, Li X, Zhao K, Liu S, Tian F. Transcriptomics and proteomics provide insights into the adaptative strategies of Tibetan naked carps (Gymnocypris przewalskii) to saline-alkaline variations. BMC Genomics 2025; 26:162. [PMID: 39972273 PMCID: PMC11837439 DOI: 10.1186/s12864-025-11336-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Accepted: 02/07/2025] [Indexed: 02/21/2025] Open
Abstract
Gymnocypris przewalskii is an exclusively cyprinid fish that inhabits Lake Qinghai, which is characterized by high salinity and alkalinity. To elucidate the molecular basis of the adaptation of G. przewalskii to a wide range of salinity‒alkalinity conditions, we performed morphological, biochemical, transcriptomic and proteomic analyses of the major osmoregulatory organs of the gills and kidney. Morphological examination revealed that mitochondria-rich cells were replaced by mucus cells in the gills during the transition of G. przewalskii from freshwater to lake water. In the kidney, the tight junction formed dense structure in the renal tubules under lake water condition compared with the loose structure in freshwater. The results of the biochemical assays revealed an increased content of total amino acids, indicating their potential roles as osmolytes and energy supplies in freshwater. The decreased urea concentration suggested that urea synthesis might not be involved in the detoxicity of ammonia. The transcriptomic and proteomic data revealed that genes involved in ion absorption and ammonia excretion were activated in freshwater and that genes involved in cell junction and glutamine synthesis were induced in lake water, which was consistent with the morphological and biochemical observations. Together with the higher levels of glutamine and glutamate, we proposed that G. przewalskii alleviated the toxic effect of ammonia direct excretion through gills under freshwater and the activation of the conversion of glutamate to glutamine under high saline-alkaline condition. Our results revealed different expression profiles of genes involved in metabolic pathways, including the upregulation of genes involved in energy production in freshwater and the induction of genes involved in the synthesis of acetylneuramic acid and sphingolipid in soda lake water. In conclusion, the appearance of mitochondria-rich cells and increased energy production might contribute to ion absorption in G. przewalskii to maintain ion and solute homeostasis in freshwater. The existence of mucus cells and dense junctions, which are associated with increased gene expression, might be related to the adaptation of G. przewalskii to high salinity-alkalinity.
Collapse
Affiliation(s)
- Bingzheng Zhou
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Qinghai Key Laboratory of Animal Ecological Genomics, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, No. 23 Xinning Road, Xining, 810008, China
- State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, Xining, 810006, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Ruichen Sui
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Qinghai Key Laboratory of Animal Ecological Genomics, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, No. 23 Xinning Road, Xining, 810008, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Luxian Yu
- Qinghai Provincial Key Laboratory of Breeding and Protection of Gymnocypris Przewalskii, The Rescue Center of Qinghai Lake Naked Carp, Xining, 810006, China
| | - Delin Qi
- State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, Xining, 810006, China
| | - Shengyun Fu
- Qinghai Provincial Key Laboratory of Breeding and Protection of Gymnocypris Przewalskii, The Rescue Center of Qinghai Lake Naked Carp, Xining, 810006, China
| | - Ying Luo
- Qinghai Provincial Key Laboratory of Breeding and Protection of Gymnocypris Przewalskii, The Rescue Center of Qinghai Lake Naked Carp, Xining, 810006, China
| | - Hongfang Qi
- Qinghai Provincial Key Laboratory of Breeding and Protection of Gymnocypris Przewalskii, The Rescue Center of Qinghai Lake Naked Carp, Xining, 810006, China
| | - Xiaohuan Li
- State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, Xining, 810006, China
| | - Kai Zhao
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Qinghai Key Laboratory of Animal Ecological Genomics, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, No. 23 Xinning Road, Xining, 810008, China
| | - Sijia Liu
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Qinghai Key Laboratory of Animal Ecological Genomics, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, No. 23 Xinning Road, Xining, 810008, China.
| | - Fei Tian
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Qinghai Key Laboratory of Animal Ecological Genomics, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, No. 23 Xinning Road, Xining, 810008, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
2
|
Wisniewski P, Gangnus T, Burckhardt BB. Recent advances in the discovery and development of drugs targeting the kallikrein-kinin system. J Transl Med 2024; 22:388. [PMID: 38671481 PMCID: PMC11046790 DOI: 10.1186/s12967-024-05216-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Accepted: 04/16/2024] [Indexed: 04/28/2024] Open
Abstract
BACKGROUND The kallikrein-kinin system is a key regulatory cascade involved in blood pressure maintenance, hemostasis, inflammation and renal function. Currently, approved drugs remain limited to the rare disease hereditary angioedema. However, growing interest in this system is indicated by an increasing number of promising drug candidates for further indications. METHODS To provide an overview of current drug development, a two-stage literature search was conducted between March and December 2023 to identify drug candidates with targets in the kallikrein-kinin system. First, drug candidates were identified using PubMed and Clinicaltrials.gov. Second, the latest publications/results for these compounds were searched in PubMed, Clinicaltrials.gov and Google Scholar. The findings were categorized by target, stage of development, and intended indication. RESULTS The search identified 68 drugs, of which 10 are approved, 25 are in clinical development, and 33 in preclinical development. The three most studied indications included diabetic retinopathy, thromboprophylaxis and hereditary angioedema. The latter is still an indication for most of the drug candidates close to regulatory approval (3 out of 4). For the emerging indications, promising new drug candidates in clinical development are ixodes ricinus-contact phase inhibitor for thromboprophylaxis and RZ402 and THR-149 for the treatment of diabetic macular edema (all phase 2). CONCLUSION The therapeutic impact of targeting the kallikrein-kinin system is no longer limited to the treatment of hereditary angioedema. Ongoing research on other diseases demonstrates the potential of therapeutic interventions targeting the kallikrein-kinin system and will provide further treatment options for patients in the future.
Collapse
Affiliation(s)
- Petra Wisniewski
- Individualized Pharmacotherapy, Institute of Pharmaceutical and Medicinal Chemistry, University of Münster, Corrensstr. 48, 48149, Münster, Germany
| | - Tanja Gangnus
- Individualized Pharmacotherapy, Institute of Pharmaceutical and Medicinal Chemistry, University of Münster, Corrensstr. 48, 48149, Münster, Germany
| | - Bjoern B Burckhardt
- Individualized Pharmacotherapy, Institute of Pharmaceutical and Medicinal Chemistry, University of Münster, Corrensstr. 48, 48149, Münster, Germany.
| |
Collapse
|
3
|
Duan L, Calhoun SJ, Perez RE, Macias V, Mir F, Gattuso P, Maki CG. Prolylcarboxypeptidase promotes IGF1R/HER3 signaling and is a potential target to improve endocrine therapy response in estrogen receptor positive breast cancer. Cancer Biol Ther 2022; 23:1-10. [PMID: 36332175 PMCID: PMC9639567 DOI: 10.1080/15384047.2022.2142008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Prolylcarboxypeptidase (PRCP) is a lysosomal serine protease that cleaves peptide substrates when the penultimate amino acid is proline. Previous studies have linked PRCP to blood-pressure and appetite control through its ability to cleave peptide substrates such as angiotensin II and α-MSH. A potential role for PRCP in cancer has to date not been widely appreciated. Endocrine therapy resistance in breast cancer is an enduring clinical problem mediated in part by aberrant receptor tyrosine kinase (RTK) signaling. We previously found PRCP overexpression promoted 4-hydroxytamoxifen (4-OHT) resistance in estrogen receptor-positive (ER+) breast cancer cells. Currently, we tested the potential association between PRCP with breast cancer patient outcome and RTK signaling, and tumor responsiveness to endocrine therapy. We found high PRCP protein levels in ER+ breast tumors associates with worse outcome and earlier recurrence in breast cancer patients, including patients treated with TAM. We found a PRCP specific inhibitor (PRCPi) enhanced the response of ER+ PDX tumors and MCF7 tumors to endoxifen, an active metabolite of TAM in mice. We found PRCP increased IGF1R/HER3 signaling and AKT activation in ER+ breast cancer cells that was blocked by PRCPi. Thus, PRCP is an adverse prognostic marker in breast cancer and a potential target to improve endocrine therapy in ER+ breast cancers.
Collapse
Affiliation(s)
- Lei Duan
- Department of Anatomy and Cell biology, Rush University Medical Center, Chicago, IL, 60612, USA,CONTACT Lei Duan
| | - Sarah J. Calhoun
- Department of Anatomy and Cell biology, Rush University Medical Center, Chicago, IL, 60612, USA
| | - Ricardo E. Perez
- Department of Anatomy and Cell biology, Rush University Medical Center, Chicago, IL, 60612, USA
| | - Virgilia Macias
- Department of Pathology, University of Illinois at Chicago, Chicago, IL, 60612, USA
| | - Fatima Mir
- Department of Pathology, Rush University Medical Center, Chicago, IL, 60612, USA
| | - Paolo Gattuso
- Department of Pathology, Rush University Medical Center, Chicago, IL, 60612, USA
| | - Carl G. Maki
- Department of Anatomy and Cell biology, Rush University Medical Center, Chicago, IL, 60612, USA,Carl G. Maki Department of Anatomy and Cell biology, Rush University Medical Center, 1705 W Harrison St, Jelke Bldg R1306, Chicago, IL, 60612, USA
| |
Collapse
|
4
|
Duan L, Calhoun S, Perez RE, Macias V, Mir F, Pergande MR, Gattuso P, Borgia JA, Maki CG. Prolyl Carboxypeptidase Maintains Receptor Tyrosine Kinase Signaling and Is a Potential Therapeutic Target in Triple Negative Breast Cancer. Cancers (Basel) 2022; 14:cancers14030739. [PMID: 35159006 PMCID: PMC8833515 DOI: 10.3390/cancers14030739] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 01/20/2022] [Accepted: 01/26/2022] [Indexed: 12/15/2022] Open
Abstract
Simple Summary Triple negative breast cancer (TNBC) is an aggressive cancer type with limited treatment options and poor prognosis. Our research has revealed that a protein called prolylcarboxypeptidase (PRCP) is a potential therapy target for TNBC. We found that high levels of PRCP in tumors coincides with worse prognosis in TNBC patients. Inhibition of PRCP with a small molecule inhibitor blocked TNBC cell and tumor growth and inhibited the activity of several receptor tyrosine kinases (RTKs), proteins that are located on the surface of cells and that are important for cancer development and progression. Our findings suggest that PRCP is a novel prognostic factor for TNBC and that specific inhibitors of PRCP could be developed for TNBC treatment. Abstract TNBC is an aggressive cancer sub-type with limited treatment options and poor prognosis. New therapeutic targets are needed to improve outcomes in TNBC patients. PRCP is a lysosomal serine protease that cleaves peptide substrates when the penultimate amino acid is proline. A role for PRCP in TNBC or other cancers, and its potential as a therapy target has not yet been tested. In the current study, we found high tumor expression of PRCP associates with worse outcome and earlier recurrence in TNBC patients. Knockdown of PRCP or treatment with a small molecule PRCP inhibitor blocked proliferation and survival in TNBC cell lines and inhibited growth of TNBC tumors in mice. Mechanistically, we found PRCP maintains signaling from multiple receptor tyrosine kinases (RTKs), potentially by promoting crosstalk between RTKs and G-protein coupled receptors (GPCRs). Lastly, we found that the PRCP inhibitor caused synergistic killing of TNBC cells when combined with the EGFR and ErbB2 inhibitor lapatinib. Our results suggest that PRCP is potential prognostic marker for TNBC patient outcome and a novel therapeutic target for TNBC treatment.
Collapse
Affiliation(s)
- Lei Duan
- Department of Anatomy and Cell Biology, Rush University Medical Center, 600 S. Paulina Ave, AcFac 507, Chicago, IL 60612, USA; (L.D.); (S.C.); (R.E.P.); (M.R.P.); (J.A.B.)
| | - Sarah Calhoun
- Department of Anatomy and Cell Biology, Rush University Medical Center, 600 S. Paulina Ave, AcFac 507, Chicago, IL 60612, USA; (L.D.); (S.C.); (R.E.P.); (M.R.P.); (J.A.B.)
| | - Ricardo E. Perez
- Department of Anatomy and Cell Biology, Rush University Medical Center, 600 S. Paulina Ave, AcFac 507, Chicago, IL 60612, USA; (L.D.); (S.C.); (R.E.P.); (M.R.P.); (J.A.B.)
| | - Virgilia Macias
- Department of Pathology, University of Illinois at Chicago, 909 S. Wolcott St, Rm 6128, Chicago, IL 60612, USA;
| | - Fatima Mir
- Department of Pathology, Rush University Medical Center, Chicago, IL 60612, USA; (F.M.); (P.G.)
| | - Melissa R. Pergande
- Department of Anatomy and Cell Biology, Rush University Medical Center, 600 S. Paulina Ave, AcFac 507, Chicago, IL 60612, USA; (L.D.); (S.C.); (R.E.P.); (M.R.P.); (J.A.B.)
| | - Paolo Gattuso
- Department of Pathology, Rush University Medical Center, Chicago, IL 60612, USA; (F.M.); (P.G.)
| | - Jeffrey A. Borgia
- Department of Anatomy and Cell Biology, Rush University Medical Center, 600 S. Paulina Ave, AcFac 507, Chicago, IL 60612, USA; (L.D.); (S.C.); (R.E.P.); (M.R.P.); (J.A.B.)
| | - Carl G. Maki
- Department of Anatomy and Cell Biology, Rush University Medical Center, 600 S. Paulina Ave, AcFac 507, Chicago, IL 60612, USA; (L.D.); (S.C.); (R.E.P.); (M.R.P.); (J.A.B.)
- Correspondence: ; Tel.: +312-563-3380
| |
Collapse
|
5
|
Roganović JR. microRNA-146a and -155, upregulated by periodontitis and type 2 diabetes in oral fluids, are predicted to regulate SARS-CoV-2 oral receptor genes. J Periodontol 2021; 92:35-43. [PMID: 33336412 DOI: 10.1002/jper.20-0623] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Revised: 10/31/2020] [Accepted: 12/14/2020] [Indexed: 12/22/2022]
Abstract
BACKGROUND Type 2 diabetes and periodontitis predispose to a higher risk of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection. Recent studies show upregulation of innate immuno-regulatory microRNA-146a and -155 in oral fluids of patients with type 2 diabetes as well as of patients with periodontitis. The aim was to investigate whether upregulation of these microRNAs may relate to patient susceptibility to the infection via modulation of SARS-CoV-2 cellular entry factors expression. METHODS Due to limited experimental feasibility and health risks in Coronavirus Disease 2019, bioinformatic analyses combining with system biology were used as initial investigation of interaction between microRNA-146 and -155 and genes encoding SARS-CoV-2 entry factors. RESULTS SARS-CoV-2 cellular entry factors are expressed in salivary glands and masticatory mucosa (tongue) at different expression levels, comparable with those measured in lungs and tonsil. MicroRNA-146 and -155 are widely involved in the regulation of SARS-CoV-2 oral cellular entry factors and may enhance expression of ACE2 and modulate genes involved in host immunity. CONCLUSIONS Diabetes- and periodontitis-induced increase in microRNA-146a and -155 in oral cavity is predicted to upregulate angiotensin-converting enzyme 2 expression, essential SARS-CoV-2 entry receptors, and modulate host antiviral response. As it could suggest increased infectivity of diabetes and periodontitis patients, additional protective measures for periodontists are recommended.
Collapse
Affiliation(s)
- Jelena R Roganović
- Department of Pharmacology in Dentistry, School of Dental Medicine, University of Belgrade, Belgrade, Serbia
| |
Collapse
|
6
|
Roganović JR. microRNA‐146a and ‐155, upregulated by periodontitis and type 2 diabetes in oral fluids, are predicted to regulate SARS‐CoV‐2 oral receptor genes. J Periodontol 2021. [DOI: 10.1002/jper.20-0623 doi:10.1002/jper.20-0623] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
- Jelena R. Roganović
- Department of Pharmacology in Dentistry School of Dental Medicine University of Belgrade Belgrade Serbia
| |
Collapse
|
7
|
Wu Y, Pan X, Jin X. Haplotype-based association study between PRCP gene polymorphisms and essential hypertension in Hani minority group from a remote region of China. J Renin Angiotensin Aldosterone Syst 2020; 21:1470320320981316. [PMID: 33319614 PMCID: PMC7745576 DOI: 10.1177/1470320320981316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Objective: Prolylcarboxypeptidase (PRCP) is both involved in the Kallikrein-Kinin system (KKS) and renin-angiotensin-aldosterone system (RAAS). This study aimed to determine the genetic impact of PRCP gene polymorphisms on essential hypertension (EH) in an isolated population from a remote region of China. Methods: A haplotype-based study was investigated in 346 EH patients and 346 normal subjects and all samples were Hani minority residents in Southwest China. A total of 11 tag single nucleotide polymorphisms (SNPs) in PRCP gene were tested by polymerase chain reaction-restriction fragment length polymorphism method. Results: Single site analysis found that PRCP gene 3′UTR SNP rs3750931 was associated with EH. The minor allele G of rs3750931 was more prevalent in the EH patients compared to control subjects after Bonferroni correction (p < 0.05). Moreover, the rs3750931 G allele carriers showed higher average blood pressure (BP) level among the subjects. The H2 (GAGCACTAACA) haplotype without rs3750931 G allele showed the protective effect for EH (OR = 0.68, 95 CI 0.54–0.85, p = 0.001). Conclusion: The present study indicated PRCP gene rs3750931 was associated with the risk of EH. This SNP G allele could be considered as one of risk markers for EH in Hani population.
Collapse
Affiliation(s)
- Yanrui Wu
- School of Basic Medical Sciences, Kunming Medical University, Kunming, Yunnan Province, P. R. China
| | - Xingming Pan
- Human Resources Department of Kunming Medical University, Kunming, Yunnan Province, P. R. China
| | - Xiaoxiao Jin
- School of Basic Medical Sciences, Kunming Medical University, Kunming, Yunnan Province, P. R. China
| |
Collapse
|
8
|
Wu Y, Yang H, Xiao C. Genetic association study of prolylcarboxypeptidase polymorphisms with susceptibility to essential hypertension in the Yi minority of China: A case-control study based on an isolated population. J Renin Angiotensin Aldosterone Syst 2020; 21:1470320320919586. [PMID: 32448049 PMCID: PMC7249571 DOI: 10.1177/1470320320919586] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Objective: Prolylcarboxypeptidase (PRCP) is a negative regulator of the pressor actions of the renin–angiotensin–aldosterone system. It is also involved in the kallikrein–kinin system. This gene has an important role in blood pressure (BP) regulation. Methods: A case–control study was performed for 615 Yi participants (303 cases and 312 controls) from a remote mountainous area in Yunnan Province of China. For the PRCP gene, 11 tag single-nucleotide polymorphisms were genotyped using the polymerase chain reaction-restriction fragment length polymorphism method. Results: The PRCP gene rs12290550 was associated with the occurrence of essential hypertension (EH) and BP traits. Logistic regression analysis indicated that the rs12290550 T allele was significantly linked to the risk of EH (odds ratio (OR) = 1.85, 95% confidence interval (CI) 1.44–2.39, p = 0.2 × 10−5). Under Bonferroni correction, the H7 TAGCACTAACA haplotype containing the risk allele rs12290550 T increased the risk of EH (OR = 4.53, 95% CI 2.29–8.93, p = 0.2×10−5). Conclusions: The findings of this study demonstrate the strong association of the PRCP gene with EH. rs12290550 may be a useful genetic predictor of EH in the Yi minority.
Collapse
Affiliation(s)
- Yanrui Wu
- Cell Biology and Genetics Department, Kunming Medical University, China.,School of Medicine, Yunnan University, China
| | - Hongju Yang
- The First Affiliated Hospital of Kunming Medical University, Kunming Medical University, China
| | | |
Collapse
|