1
|
Tashima T. Mesenchymal Stem Cell (MSC)-Based Drug Delivery into the Brain across the Blood-Brain Barrier. Pharmaceutics 2024; 16:289. [PMID: 38399342 PMCID: PMC10891589 DOI: 10.3390/pharmaceutics16020289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 02/15/2024] [Accepted: 02/16/2024] [Indexed: 02/25/2024] Open
Abstract
At present, stem cell-based therapies using induced pluripotent stem cells (iPSCs) or mesenchymal stem cells (MSCs) are being used to explore the potential for regenerative medicine in the treatment of various diseases, owing to their ability for multilineage differentiation. Interestingly, MSCs are employed not only in regenerative medicine, but also as carriers for drug delivery, homing to target sites in injured or damaged tissues including the brain by crossing the blood-brain barrier (BBB). In drug research and development, membrane impermeability is a serious problem. The development of central nervous system drugs for the treatment of neurodegenerative diseases, such as Alzheimer's disease and Parkinson's disease, remains difficult due to impermeability in capillary endothelial cells at the BBB, in addition to their complicated pathogenesis and pathology. Thus, intravenously or intraarterially administered MSC-mediated drug delivery in a non-invasive way is a solution to this transendothelial problem at the BBB. Substances delivered by MSCs are divided into artificially included materials in advance, such as low molecular weight compounds including doxorubicin, and expected protein expression products of genetic modification, such as interleukins. After internalizing into the brain through the fenestration between the capillary endothelial cells, MSCs release their cargos to the injured brain cells. In this review, I introduce the potential and advantages of drug delivery into the brain across the BBB using MSCs as a carrier that moves into the brain as if they acted of their own will.
Collapse
Affiliation(s)
- Toshihiko Tashima
- Tashima Laboratories of Arts and Sciences, 1239-5 Toriyama-cho, Kohoku-ku, Yokohama 222-0035, Japan
| |
Collapse
|
2
|
Chao CJ, Zhang E, Zhao Z. Engineering cells for precision drug delivery: New advances, clinical translation, and emerging strategies. Adv Drug Deliv Rev 2023; 197:114840. [PMID: 37088403 DOI: 10.1016/j.addr.2023.114840] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 04/04/2023] [Accepted: 04/17/2023] [Indexed: 04/25/2023]
Abstract
Cells have emerged as a promising new form of drug delivery carriers owing to their distinguished advantages such as naturally bypassing immune recognition, intrinsic capability to navigate biological barriers, and access to hard-to-reach tissues via onboarding sensing and active motility. Over the past two decades, a large body of work has focused on understanding the ability of cell carriers to breach biological barriers and to modulate drug pharmacokinetics and pharmacodynamics. These efforts have led to the engineering of various cells for tissue-specific drug delivery. Despite exciting advances, clinical translation of cell-based drug carriers demands a thorough understanding of the pressing challenges and potential strategies to overcome them. Here, we summarize recent advances and new concepts in cell-based drug carriers and their clinical translation. We also discuss key considerations and emerging strategies to engineering the next-generation cell-based delivery technologies for more precise, targeted drug delivery.
Collapse
Affiliation(s)
- Chih-Jia Chao
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Illinois Chicago, Chicago, IL 60612, USA
| | - Endong Zhang
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Illinois Chicago, Chicago, IL 60612, USA
| | - Zongmin Zhao
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Illinois Chicago, Chicago, IL 60612, USA; Translational Oncology Program, University of Illinois Cancer Center, Chicago, IL 60612.
| |
Collapse
|
3
|
Tesiye MR, Gol M, Fadardi MR, Kani SNM, Costa AM, Ghasemi-Kasman M, Biagini G. Therapeutic Potential of Mesenchymal Stem Cells in the Treatment of Epilepsy and Their Interaction with Antiseizure Medications. Cells 2022; 11:cells11244129. [PMID: 36552892 PMCID: PMC9777461 DOI: 10.3390/cells11244129] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2022] [Revised: 12/11/2022] [Accepted: 12/15/2022] [Indexed: 12/24/2022] Open
Abstract
Epilepsy is a life-threatening neurological disease that affects approximately 70 million people worldwide. Although the vast majority of patients may be successfully managed with currently used antiseizure medication (ASM), the search for alternative therapies is still necessary due to pharmacoresistance in about 30% of patients with epilepsy. Here, we review the effects of ASMs on stem cell treatment when they could be, as expected, co-administered. Indeed, it has been reported that ASMs produce significant effects on the differentiation and determination of stem cell fate. In addition, we discuss more recent findings on mesenchymal stem cells (MSCs) in pre-clinical and clinical investigations. In this regard, their ability to differentiate into various cell types, reach damaged tissues and produce and release biologically active molecules with immunomodulatory/anti-inflammatory and regenerative properties make them a high-potential therapeutic tool to address neuroinflammation in different neurological disorders, including epilepsy. Overall, the characteristics of MSCs to be genetically engineered, in order to replace dysfunctional elements with the aim of restoring normal tissue functioning, suggested that these cells could be good candidates for the treatment of epilepsy refractory to ASMs. Further research is required to understand the potential of stem cell treatment in epileptic patients and its interaction with ASMs.
Collapse
Affiliation(s)
- Maryam Rahimi Tesiye
- Faculty of Life Science and Biotechnology, Shahid Beheshti University, Tehran 19839-69411, Iran
| | - Mohammad Gol
- Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy
- PhD School of Clinical and Experimental Medicine (CEM), University of Modena and Reggio Emilia, 41125 Modena, Italy
| | | | | | - Anna-Maria Costa
- Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy
| | - Maryam Ghasemi-Kasman
- Cellular and Molecular Biology Research Center, Health Research Institute, Babol University of Medical Sciences, Babol 47176-47745, Iran
- Department of Physiology, School of Medical Sciences, Babol University of Medical Sciences, Babol 47176-47745, Iran
- Correspondence: (M.G.-K.); (G.B.)
| | - Giuseppe Biagini
- Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy
- Correspondence: (M.G.-K.); (G.B.)
| |
Collapse
|
4
|
Liu T, Gao C, Gu D, Tang H. Cell-based carrier for targeted hitchhiking delivery. Drug Deliv Transl Res 2022; 12:2634-2648. [PMID: 35499717 DOI: 10.1007/s13346-022-01149-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/07/2022] [Indexed: 12/15/2022]
Abstract
Drug delivery systems aim at improving drug transport efficiency and therapeutic efficacy by rational design, and current research on conventional delivery systems brings new developments for disease treatment. Recently, studies on cell-based drug delivery systems are rapidly emerging, which shows great advantages in comparison to conventional drug delivery system. The system uses cells as carriers to delivery conventional drugs or nanomedicines and shows good biocompatibility and enhanced targeting efficiency, beneficial from self component and its physiological function. The construction methodology of cell-based carrier determines the effect on the physiological functions of transporting cell and affects its clinical application. There are different strategies to prepare cell-based carrier, such as direct internalization or surface conjugation of drugs or drug loaded materials. Thus, it is necessary to fully understand the advantages and disadvantages of different strategies for constructing cell-based carrier and then to seek the appropriate construction methodology for achieving better therapeutic results based on disease characterization. We here summarize the application of different types of cell-based carriers reported in recent years and further discuss their applications in disease therapy and the dilemmas faced in clinical translation. We hope that this summary can accelerate the process of clinical translation by promoting the technology development of cell-based carrier.
Collapse
Affiliation(s)
- Tonggong Liu
- Department of Preventive Medicine, School of Public Health, Dongguan Key Laboratory of Environmental Medicine, Guangdong Medical University, Dongguan, 523808, China.,Department of Laboratory Medicine, Shenzhen Institute of Translational Medicine, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital, Shenzhen, 518035, China
| | - Cheng Gao
- Department of Laboratory Medicine, Shenzhen Institute of Translational Medicine, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital, Shenzhen, 518035, China.,Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Dayong Gu
- Department of Laboratory Medicine, Shenzhen Institute of Translational Medicine, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital, Shenzhen, 518035, China.
| | - Huanwen Tang
- Department of Preventive Medicine, School of Public Health, Dongguan Key Laboratory of Environmental Medicine, Guangdong Medical University, Dongguan, 523808, China.
| |
Collapse
|
5
|
Chan AML, Sampasivam Y, Lokanathan Y. Biodistribution of mesenchymal stem cells (MSCs) in animal models and implied role of exosomes following systemic delivery of MSCs: a systematic review. Am J Transl Res 2022; 14:2147-2161. [PMID: 35559383 PMCID: PMC9091132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Accepted: 03/17/2022] [Indexed: 06/15/2023]
Abstract
Mesenchymal stem cells (MSC) are promising candidates to combat the growing rates of chronic degenerative diseases. These cells provide regeneration and/or differentiation into other cell types, and secrete various trophic factors that participate in migration, proliferation, and immunomodulation. However, the novelty of MSC research has noticeably declined as common barriers and unresolved challenges prevent further progress. A common issue is the low survivability and migration of systemically infused MSC towards targeted regions. Nevertheless, successful clinical treatment of various chronic diseases suggests that the MSCs may have an alternative mechanism. Recent advancements have shown labelling and imaging techniques to be a reliable source of data. These data not only illustrate the biodistribution but can be referenced to either support and/or improve the specificities of the cellular therapy construct. In this review, we compile recent studies between 2017 and 2021 to determine the homing and migration of MSCs by specific and peripherally-targeted organs. We also compare the different cell-tracking assays with the safety and efficacy of their therapeutic construct. We found that the common route of MSCs occurred in the lungs, liver, kidney and spleen. Furthermore, MSCs were also able to home and migrate towards targeted or injured organs such as the heart and lymph nodes. Although the MSCs were not detectable by the end of the study, the tested animals had significantly improved in terms of the disease symptoms and their related comorbidities. Thus, we hypothesize that the secretion of exosomes had contributed to this phenomenon.
Collapse
Affiliation(s)
- Alvin Man Lung Chan
- Centre for Tissue Engineering and Regenerative Medicine, Faculty of Medicine, University Kebangsaan MalaysiaJalan Yaacob Latif, Kuala Lumpur 56000, Malaysia
| | - Yashirdisai Sampasivam
- Faculty of Science and Technology, University Kebangsaan MalaysiaBangi 43600, Selangor, Malaysia
| | - Yogeswaran Lokanathan
- Centre for Tissue Engineering and Regenerative Medicine, Faculty of Medicine, University Kebangsaan MalaysiaJalan Yaacob Latif, Kuala Lumpur 56000, Malaysia
| |
Collapse
|
6
|
Xue Y, Baig R, Dong Y. Recent advances of biomaterials in stem cell therapies. NANOTECHNOLOGY 2022; 33:10.1088/1361-6528/ac4520. [PMID: 34933291 PMCID: PMC10068913 DOI: 10.1088/1361-6528/ac4520] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Accepted: 12/21/2021] [Indexed: 06/14/2023]
Abstract
Stem cells have been utilized as 'living drugs' in clinics for decades. Their self-renewal, differentiation, and immunomodulating properties provide potential solutions for a variety of malignant diseases and disorders. However, the pathological environment may diminish the therapeutic functions and survival of the transplanted stem cells, causing failure in clinical translation. To overcome these challenges, researchers have developed biomaterial-based strategies that facilitatein vivotracking, functional engineering, and protective delivery of stem cells, paving the way for next-generation stem cell therapies. In this perspective, we briefly overview different types of stem cells and the major clinical challenges and summarize recent progress of biomaterials applied to boost stem cell therapies.
Collapse
Affiliation(s)
- Yonger Xue
- Division of Pharmaceutics & Pharmacology, College of Pharmacy, The Ohio State University, Columbus, OH 43210, United States of America
| | - Rafia Baig
- Division of Pharmaceutics & Pharmacology, College of Pharmacy, The Ohio State University, Columbus, OH 43210, United States of America
| | - Yizhou Dong
- Division of Pharmaceutics & Pharmacology, College of Pharmacy, The Ohio State University, Columbus, OH 43210, United States of America
- Department of Biomedical Engineering, The Ohio State University, Columbus, OH 43210, United States of America
- The Center for Clinical and Translational Science, The Ohio State University, Columbus, OH 43210, United States of America
- The Comprehensive Cancer Center, The Ohio State University, Columbus, OH 43210, United States of America
- Dorothy M. Davis Heart & Lung Research Institute, The Ohio State University, Columbus, OH 43210, United States of America
- Department of Radiation Oncology, The Ohio State University, Columbus, OH 43210, United States of America
| |
Collapse
|
7
|
Razeghian E, Margiana R, Chupradit S, Bokov DO, Abdelbasset WK, Marofi F, Shariatzadeh S, Tosan F, Jarahian M. Mesenchymal Stem/Stromal Cells as a Vehicle for Cytokine Delivery: An Emerging Approach for Tumor Immunotherapy. Front Med (Lausanne) 2021; 8:721174. [PMID: 34513882 PMCID: PMC8430327 DOI: 10.3389/fmed.2021.721174] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Accepted: 07/30/2021] [Indexed: 12/22/2022] Open
Abstract
Pro-inflammatory cytokines can effectively be used for tumor immunotherapy, affecting every step of the tumor immunity cycle. Thereby, they can restore antigen priming, improve the effector immune cell frequencies in the tumor microenvironment (TME), and eventually strengthen their cytolytic function. A renewed interest in the anticancer competencies of cytokines has resulted in a substantial promotion in the number of trials to address the safety and efficacy of cytokine-based therapeutic options. However, low response rate along with the high toxicity associated with high-dose cytokine for reaching desired therapeutic outcomes negatively affect their clinical utility. Recently, mesenchymal stem/stromal cells (MSCs) due to their pronounced tropism to tumors and also lower immunogenicity have become a promising vehicle for cytokine delivery for human malignancies. MSC-based delivery of the cytokine can lead to the more effective immune cell-induced antitumor response and provide sustained release of target cytokines, as widely evidenced in a myriad of xenograft models. In the current review, we offer a summary of the novel trends in cytokine immunotherapy using MSCs as a potent and encouraging carrier for antitumor cytokines, focusing on the last two decades' animal reports.
Collapse
Affiliation(s)
- Ehsan Razeghian
- Human Genetics Division, Medical Biotechnology Department, National Institute of Genetics Engineering and Biotechnology (NIGEB), Tehran, Iran
| | - Ria Margiana
- Department of Anatomy, Faculty of Medicine, Universitas Indonesia, Jakarta, Indonesia
- Cipto Mangunkusumo Hospital, The National Referral Hospital, Central Jakarta, Indonesia
- Master's Programme Biomedical Sciences, Faculty of Medicine, Universitas Indonesia, Jakarta, Indonesia
| | - Supat Chupradit
- Department of Occupational Therapy, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai, Thailand
| | - Dmitry O. Bokov
- Institute of Pharmacy, Sechenov First Moscow State Medical University, Moscow, Russia
- Laboratory of Food Chemistry, Federal Research Center of Nutrition, Biotechnology and Food Safety, Moscow, Russia
| | - Walid Kamal Abdelbasset
- Department of Health and Rehabilitation Sciences, College of Applied Medical Sciences, Prince Sattam bin Abdulaziz University, Al Kharj, Saudi Arabia
- Department of Physical Therapy, Kasr Al-Aini Hospital, Cairo University, Giza, Egypt
| | - Faroogh Marofi
- Immunology Research Center (IRC), Tabriz University of Medical Sciences, Tabriz, Iran
| | - Siavash Shariatzadeh
- Department of Pharmacology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Foad Tosan
- Student Research Committee, Semnan University of Medical Sciences, Semnan, Iran
| | - Mostafa Jarahian
- Toxicology and Chemotherapy Unit (G401), German Cancer Research Center, Heidelberg, Germany
| |
Collapse
|
8
|
Pozo D. Cell-based drug delivery harnesses inflammatory and autoimmune responses in neurodegeneration. J Mol Med (Berl) 2021; 99:673-674. [PMID: 33683375 PMCID: PMC7938677 DOI: 10.1007/s00109-021-02059-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 02/22/2021] [Accepted: 02/25/2021] [Indexed: 11/25/2022]
Affiliation(s)
- David Pozo
- Cellular and Molecular Neuroimmunology Laboratory, CABIMER, Andalusian Centre for Molecular Biology and Regenerative Medicine, CSIC-UPO-University of Seville, CABIMER Bldg. Av. Americo Vespucio, 24, Seville, Spain.
- Department of Medical Biochemistry, Molecular Biology and Immunology, University of Seville Medical School, Seville, Spain.
| |
Collapse
|