1
|
Dagar N, Habshi T, Shelke V, Jadhav HR, Gaikwad AB. Esculetin and Phloretin Combination Mitigates Acute Kidney Injury-Diabetes Comorbidity via Regulating Mitophagy and Inflammation: A Dual-Pronged Approach. Phytother Res 2025. [PMID: 40159308 DOI: 10.1002/ptr.8489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 07/29/2024] [Accepted: 11/17/2024] [Indexed: 04/02/2025]
Abstract
Induction of PINK1/Parkin-mediated mitophagy and reducing inflammation via targeting the TLR4/NF-κB axis simultaneously could be a promising therapy for the complex pathophysiology of AKI-diabetes comorbidity. Earlier, esculetin by mitophagy activation and phloretin by inhibiting inflammation have shown promising renoprotection. Therefore, we aimed to evaluate the synergistic renoprotective ability of esculetin and phloretin combination against AKI-diabetes comorbidity. AKI-diabetes comorbidity was mimicked in vivo by bilateral ischemia/reperfusion injury (IRI) in diabetic rats and in vitro by sodium azide-induced hypoxia/reperfusion injury (HRI) under hyperglycemic conditions. The cells were pretreated with esculetin (50 μM) and phloretin (50 μM) for 24 h. Similarly, the diabetic AKI rats received esculetin (50 mg/kg/day, p.o.) and phloretin (50 mg/kg/day, p.o.) pretreatment for 4 days and 1 h before surgery. Further, the obtained samples were utilized for different experiments. Esculetin and phloretin in diabetic AKI rats preserved kidney function and prevented kidney injury, indicated by reduced plasma creatinine, blood urea nitrogen, and kidney injury molecule 1. Esculetin improved mitophagy, indicated by increased mitophagosome formation, increased PINK1, Parkin, LC3B, and decreased p62 expression. Similarly, phloretin suppressed the diabetic AKI-related increased expression of inflammatory mediators including NF-κB, TLR4, TNF-α, and MCP-1. Moreover, combination therapy showed a more pronounced effect via synergistically improving mitophagy, maintaining ΔΨm, preventing mitochondrial dysfunction, reducing inflammation, and apoptosis. Esculetin and phloretin combination ameliorated AKI-diabetes comorbidity more effectively than their monotherapies. Esculetin upregulated the PINK1/Parkin-mediated mitophagy, and phloretin reduced inflammation by inhibiting the TLR4/NF-κB axis, thereby synergistically preventing kidney dysfunction.
Collapse
Affiliation(s)
- Neha Dagar
- Department of Pharmacy, Birla Institute of Technology and Science, Pilani, Pilani Campus, Pilani, Rajasthan, India
| | - Tahib Habshi
- Department of Pharmacy, Birla Institute of Technology and Science, Pilani, Pilani Campus, Pilani, Rajasthan, India
| | - Vishwadeep Shelke
- Department of Pharmacy, Birla Institute of Technology and Science, Pilani, Pilani Campus, Pilani, Rajasthan, India
| | - Hemant R Jadhav
- Department of Pharmacy, Birla Institute of Technology and Science, Pilani, Pilani Campus, Pilani, Rajasthan, India
| | - Anil Bhanudas Gaikwad
- Department of Pharmacy, Birla Institute of Technology and Science, Pilani, Pilani Campus, Pilani, Rajasthan, India
| |
Collapse
|
2
|
Tan RZ, Bai QX, Jia LH, Wang YB, Li T, Lin JY, Liu J, Su HW, Kantawong F, Wang L. Epigenetic regulation of macrophage function in kidney disease: New perspective on the interaction between epigenetics and immune modulation. Biomed Pharmacother 2025; 183:117842. [PMID: 39809127 DOI: 10.1016/j.biopha.2025.117842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2024] [Revised: 01/01/2025] [Accepted: 01/10/2025] [Indexed: 01/16/2025] Open
Abstract
The interaction between renal intrinsic cells and macrophages plays a crucial role in the onset and progression of kidney diseases. In recent years, epigenetic mechanisms such as DNA methylation, histone modification, and non-coding RNA regulation have become essential windows for understanding these processes. This review focuses on how renal intrinsic cells (including tubular epithelial cells, podocytes, and endothelial cells), renal cancer cells, and mesenchymal stem cells influence the function and polarization status of macrophages through their own epigenetic alterations, and how the epigenetic regulation of macrophages themselves responds to kidney damage, thus participating in renal inflammation, fibrosis, and repair. Moreover, therapeutic studies targeting these epigenetic interaction mechanisms have found that the application of histone deacetylase inhibitors, histone methyltransferase inhibitors, various nanomaterials, and locked nucleic acids against non-coding RNA have positive effects on the treatment of multiple kidney diseases. This review summarizes the latest research advancements in these epigenetic regulatory mechanisms and therapies, providing a theoretical foundation for further elucidating the pathogenesis of kidney diseases and the development of novel therapeutic strategies.
Collapse
Affiliation(s)
- Rui-Zhi Tan
- Research Center of Integrated Traditional Chinese and Western Medicine, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou 646000, China; Department of Medical Technology, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai 50200, Thailand; Institute of Integrated Chinese and Western Medicine, Southwest Medical University, Luzhou 646000, China; Institute of Integrated Chinese and Western Medicine, Southwest Medical University, Luzhou 646000, China
| | - Qiu-Xiang Bai
- Research Center of Integrated Traditional Chinese and Western Medicine, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou 646000, China
| | - Long-Hao Jia
- Research Center of Integrated Traditional Chinese and Western Medicine, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou 646000, China
| | - Yi-Bing Wang
- Department of Medical Imaging, Southwest Medical University, Luzhou 646000, China
| | - Tong Li
- Research Center of Integrated Traditional Chinese and Western Medicine, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou 646000, China
| | - Jing-Yi Lin
- Research Center of Integrated Traditional Chinese and Western Medicine, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou 646000, China
| | - Jian Liu
- Department of Nephrology, the Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou 646000, China
| | - Hong-Wei Su
- Department of Urology, the Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou 646000, China
| | - Fahsai Kantawong
- Department of Medical Technology, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai 50200, Thailand.
| | - Li Wang
- Research Center of Integrated Traditional Chinese and Western Medicine, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou 646000, China; Institute of Integrated Chinese and Western Medicine, Southwest Medical University, Luzhou 646000, China; Institute of Integrated Chinese and Western Medicine, Southwest Medical University, Luzhou 646000, China.
| |
Collapse
|
3
|
Dagar N, Jadhav HR, Gaikwad AB. Network pharmacology combined with molecular docking and dynamics to assess the synergism of esculetin and phloretin against acute kidney injury-diabetes comorbidity. Mol Divers 2025; 29:1-19. [PMID: 38578376 DOI: 10.1007/s11030-024-10829-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Accepted: 02/21/2024] [Indexed: 04/06/2024]
Abstract
Acute kidney injury (AKI) is a global health concern with high incidence and mortality, where diabetes further worsens the condition. The available treatment options are not uniformly effective against the complex pathogenesis of AKI-diabetes comorbidity. Hence, combination therapies based on the multicomponent, multitarget approach can tackle more than one pathomechanism and can aid in AKI-diabetes comorbidity management. This study aimed to investigate the therapeutic potential of esculetin and phloretin combination against AKI-diabetes comorbidity by network pharmacology followed by validation by molecular docking and dynamics. The curative targets for diabetes, AKI, esculetin, and phloretin were obtained from DisGeNET, GeneCards, SwissTargetPrediction database. Further, the protein-protein interaction of the potential targets of esculetin and phloretin against AKI-diabetes comorbidity was investigated using the STRING database. Gene ontology and pathway enrichment analysis were performed with the help of the DAVID and KEGG databases, followed by network construction and analysis via Cytoscape. Molecular docking and dynamic simulations were performed to validate the targets of esculetin and phloretin against AKI-diabetes comorbidity. We obtained 6341 targets for AKI-diabetes comorbidity. Further, a total of 54 and 44 targets of esculetin and phloretin against AKI-diabetes comorbidity were retrieved. The top 10 targets for esculetin selected based on the degree value were AKR1B1, DAO, ESR1, PLK1, CA3, CA2, CCNE1, PRKN, HDAC2, and MAOA. Similarly, phloretin's 10 key targets were ACHE, CDK1, MAPK14, APP, CDK5R1, CCNE1, MAOA, MAOB, HDAC6, and PRKN. These targets were enriched in 58 pathways involved in the pathophysiology of AKI-diabetes comorbidity. Further, esculetin and phloretin showed an excellent binding affinity for these critical targets. The findings of this study suggest that esculetin and phloretin combination as a multicomponent multitarget therapy has the potential to prevent AKI-diabetes comorbidity.
Collapse
Affiliation(s)
- Neha Dagar
- Department of Pharmacy, Birla Institute of Technology and Science, Pilani Campus, Pilani, 333031, Rajasthan, India
| | - Hemant R Jadhav
- Department of Pharmacy, Birla Institute of Technology and Science, Pilani Campus, Pilani, 333031, Rajasthan, India
| | - Anil Bhanudas Gaikwad
- Department of Pharmacy, Birla Institute of Technology and Science, Pilani Campus, Pilani, 333031, Rajasthan, India.
| |
Collapse
|
4
|
Xiong W, Tang J, Yu H, Luo Y, Yu M, Li Y. Emodin inhibits M1 macrophage activation that related to acute and chronic kidney injury through EGFR/MAPK pathway. Funct Integr Genomics 2024; 24:131. [PMID: 39078513 DOI: 10.1007/s10142-024-01407-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 07/02/2024] [Accepted: 07/11/2024] [Indexed: 07/31/2024]
Abstract
BACKGROUND Macrophages are the main inflammatory cells involved in kidney injury and play a significant role in the development of acute kidney injury (AKI) and progression of chronic kidney disease (CKD). Emodin is believed to stabilize macrophage homeostasis under pathological conditions. The objective of this study aimed to explore the underlying mechanisms and effects of Emodin on M1 macrophages. METHODS Network pharmacology methods were used to predict target proteins associated with renal injury and identify the pathways affected by emodin. RAW264.7 macrophages were induced into M1 polarization using LPS and then treated with emodin at 20, 40, and 80 µM. The effects of emodin on cell viability, cytokines (IL-1β, IL-6, TNF-α), M1 macrophage markers (F4/80 + CD86+), and the EGFR/MAPK pathway were evaluated. Additionally, we transfected RAW264.7 cells with an EGFR shRNA interference lentivirus to assess its effects on RAW264.7 cells function and MAPK pathway. After RAW264.7 cells were passaged to expanded culture and transfected with EGFR-interfering plasmid, macrophages were induced to polarize towards M1 with LPS and then treated with 80 µM emodin. CKD modeling was performed to test how emodin is regulated during CKD. RESULTS There are 15 common targets between emodin and kidney injury, of which the EGFR/MAPK pathway is the pathway through which emodin affects macrophage function. Emodin significantly reduced the levels of IL-6, IL-1β and TNF-α (p < 0.05) and the ratio of M1 macrophage surface markers F4/80 + CD86+ (p < 0.01) in the supernatant of RAW264.7 cells in a dose-dependent manner. Furthermore, the inhibitory effect of emodin on RAW264.7 cells was achieved by interfering with the EGFR/MAPK pathway. Moreover, emodin also affected the mRNA and protein expression of EGFR and Ras, leading to a decrease in the rate of M1 macrophages, thus inhibiting the pro-inflammatory effect of M1 macrophages. The addition of emodin reduced the rate of M1 macrophages in CKD and inhibited the further polarization of M1 macrophages, thus maintaining the pro-inflammatory and anti-inflammatory homeostasis in CKD, and these effects were achieved by emodin through the control of the EGRF/ERK pathway. CONCLUSION Emodin attenuates M1 macrophage polarization and pro-inflammatory responses via the EGFR/MAPK signalling pathway. And the addition of emodin maintains pro- and anti-inflammatory homeostasis, which is important for maintaining organ function and tissue repair.
Collapse
Affiliation(s)
- Weijian Xiong
- Department of Nephrology, Chongqing Traditional Chinese Medicine Hospital, No.6 Panxi Road, Jiangbei District, Chongqing, 400021, China
| | - Jing Tang
- Department of Nephrology, Chongqing Traditional Chinese Medicine Hospital, No.6 Panxi Road, Jiangbei District, Chongqing, 400021, China
| | - Hangxing Yu
- Department of Nephrology, Chongqing Traditional Chinese Medicine Hospital, No.6 Panxi Road, Jiangbei District, Chongqing, 400021, China
| | - Yan Luo
- Department of Nephrology, Chongqing Traditional Chinese Medicine Hospital, No.6 Panxi Road, Jiangbei District, Chongqing, 400021, China
| | - Minghuan Yu
- Department of Nephrology, Chongqing Traditional Chinese Medicine Hospital, No.6 Panxi Road, Jiangbei District, Chongqing, 400021, China
| | - Ying Li
- Department of Nephrology, Chongqing Traditional Chinese Medicine Hospital, No.6 Panxi Road, Jiangbei District, Chongqing, 400021, China.
| |
Collapse
|
5
|
Fu Y, Tao J, Gu Y, Liu Y, Qiu J, Su D, Wang R, Luo W, Liu T, Zhang F, Zhang T, Zhao Y. Multiomics integration reveals NETosis heterogeneity and TLR2 as a prognostic biomarker in pancreatic cancer. NPJ Precis Oncol 2024; 8:109. [PMID: 38769374 PMCID: PMC11106236 DOI: 10.1038/s41698-024-00586-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Accepted: 03/28/2024] [Indexed: 05/22/2024] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is a highly malignant neoplasm characterized by a poor prognosis and limited therapeutic strategy. The PDAC tumor microenvironment presents a complex heterogeneity, where neutrophils emerge as the predominant constituents of the innate immune cell population. Leveraging the power of single-cell RNA-seq, spatial RNA-seq, and multi-omics approaches, we included both published datasets and our in-house patient cohorts, elucidating the inherent heterogeneity in the formation of neutrophil extracellular traps (NETs) and revealed the correlation between NETs and immune suppression. Meanwhile, we constructed a multi-omics prognostic model that suggested the patients exhibiting downregulated expression of NETs may have an unfavorable outcome. We also confirmed TLR2 as a potent prognosis factor and patients with low TLR2 expression had more effective T cells and an overall survival extension for 6 months. Targeting TLR2 might be a promising strategy to reverse immunosuppression and control tumor progression for an improved prognosis.
Collapse
Affiliation(s)
- Yifan Fu
- General Surgery Department, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China
- 4 + 4 Medical Doctor Program, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China
| | - Jinxin Tao
- General Surgery Department, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China
| | - Yani Gu
- General Surgery Department, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China
- State Key Laboratory of Common Mechanism Research for Major Diseases, Department of Biochemistry and Molecular Biology, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking, Union Medical College, Beijing, 100005, China
| | - Yueze Liu
- General Surgery Department, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China
| | - Jiangdong Qiu
- General Surgery Department, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China
| | - Dan Su
- General Surgery Department, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China
| | - Ruobing Wang
- General Surgery Department, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China
| | - Wenhao Luo
- General Surgery Department, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China
| | - Tao Liu
- General Surgery Department, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China
| | - Feifan Zhang
- Department of Computer Science, University College London, London, UK
| | - Taiping Zhang
- General Surgery Department, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China.
- Clinical Immunology Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China.
| | - Yupei Zhao
- General Surgery Department, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China.
| |
Collapse
|
6
|
Xu J, Liu LY, Zhi FJ, Song YJ, Zhang ZH, Li B, Zheng FY, Gao PC, Zhang SZ, Zhang YY, Zhang Y, Qiu Y, Jiang B, Li YQ, Peng C, Chu YF. DDX5 inhibits inflammation by modulating m6A levels of TLR2/4 transcripts during bacterial infection. EMBO Rep 2024; 25:770-795. [PMID: 38182816 PMCID: PMC10897170 DOI: 10.1038/s44319-023-00047-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Revised: 12/14/2023] [Accepted: 12/20/2023] [Indexed: 01/07/2024] Open
Abstract
DExD/H-box helicases are crucial regulators of RNA metabolism and antiviral innate immune responses; however, their role in bacteria-induced inflammation remains unclear. Here, we report that DDX5 interacts with METTL3 and METTL14 to form an m6A writing complex, which adds N6-methyladenosine to transcripts of toll-like receptor (TLR) 2 and TLR4, promoting their decay via YTHDF2-mediated RNA degradation, resulting in reduced expression of TLR2/4. Upon bacterial infection, DDX5 is recruited to Hrd1 at the endoplasmic reticulum in an MyD88-dependent manner and is degraded by the ubiquitin-proteasome pathway. This process disrupts the DDX5 m6A writing complex and halts m6A modification as well as degradation of TLR2/4 mRNAs, thereby promoting the expression of TLR2 and TLR4 and downstream NF-κB activation. The role of DDX5 in regulating inflammation is also validated in vivo, as DDX5- and METTL3-KO mice exhibit enhanced expression of inflammatory cytokines. Our findings show that DDX5 acts as a molecular switch to regulate inflammation during bacterial infection and shed light on mechanisms of quiescent inflammation during homeostasis.
Collapse
Affiliation(s)
- Jian Xu
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Li-Yuan Liu
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Fei-Jie Zhi
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Yin-Juan Song
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Zi-Hui Zhang
- National Key Laboratory of Veterinary Public Health, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Bin Li
- College of Veterinary Medicine, Xinjiang Agricultural University, Urumqi, China
| | - Fu-Ying Zheng
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Peng-Cheng Gao
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Su-Zi Zhang
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Yu-Yu Zhang
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
- College of Veterinary Medicine, Xinjiang Agricultural University, Urumqi, China
| | - Ying Zhang
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Ying Qiu
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Bo Jiang
- Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| | - Yong-Qing Li
- Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| | - Chen Peng
- National Key Laboratory of Veterinary Public Health, College of Veterinary Medicine, China Agricultural University, Beijing, China.
| | - Yue-Feng Chu
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China.
| |
Collapse
|
7
|
Shelke V, Dagar N, Gaikwad AB. Phloretin as an add-on therapy to losartan attenuates diabetes-induced AKI in rats: A potential therapeutic approach targeting TLR4-induced inflammation. Life Sci 2023; 332:122095. [PMID: 37722590 DOI: 10.1016/j.lfs.2023.122095] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 09/12/2023] [Accepted: 09/13/2023] [Indexed: 09/20/2023]
Abstract
AIM Targeting Toll-like receptor 4 (TLR4) and Angiotensin II type 1 receptor (AT1R) could provide renoprotection during acute kidney injury (AKI) mainly by regulating inflammation, oxidative stress, mitochondrial dysfunction, and apoptosis. Phloretin (TLR4 inhibitor) as an add-on therapy to losartan (AT1R inhibitor) could provide more therapeutic benefits against AKI under diabetic condition. We aimed to study the effect of phloretin as an add-on therapy to losartan against AKI under diabetic condition. MAIN METHODS To mimic diabetic AKI condition, bilateral ischemia-reperfusion injury (BIRI) was done in diabetic male Wistar rats, and sodium azide treatment was given to high glucose NRK52E cells to mimic hypoxia-reperfusion injury. In diabetic rats, phloretin (50 mg/kg/per os (p.o.)) and losartan (10 mg/kg/p.o.) treatment was given for 4 days and 1 h prior to surgery while in NRK52E cells, both drugs (phloretin 50 μM and losartan 10 μM) were given 24 h prior to the hypoxia condition. The in vivo and in vitro samples were further used for different experiments. KEY FINDINGS Treatment with phloretin and losartan decreased diabetic and AKI biomarkers such as plasma creatinine, blood urea nitrogen (BUN), and kidney injury molecular 1 (KIM1). Moreover, a combination of phloretin and losartan significantly preserved ΔΨm and kidney morphology potentially by inhibiting TLR4-associated inflammation and AT1R-associated mitochondrial dysfunction, thereby oxidative stress. SIGNIFICANCE Combination therapy of phloretin and losartan was more effective than monotherapies. Both drugs target TLR4/MyD88/NF-κB pathway and reduce inflammation and mitochondrial dysfunction in AKI under diabetic condition.
Collapse
Affiliation(s)
- Vishwadeep Shelke
- Department of Pharmacy, Birla Institute of Technology and Science Pilani, Pilani Campus, Rajasthan 333031, India
| | - Neha Dagar
- Department of Pharmacy, Birla Institute of Technology and Science Pilani, Pilani Campus, Rajasthan 333031, India
| | - Anil Bhanudas Gaikwad
- Department of Pharmacy, Birla Institute of Technology and Science Pilani, Pilani Campus, Rajasthan 333031, India.
| |
Collapse
|
8
|
Lan T, Tang T, Li Y, Duan Y, Yuan Q, Liu W, Ren Y, Li N, Liu X, Zhang Y, Li X, Jin G, Wang S, Guo J. FTZ polysaccharides ameliorate kidney injury in diabetic mice by regulating gut-kidney axis. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2023; 118:154935. [PMID: 37364420 DOI: 10.1016/j.phymed.2023.154935] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2023] [Revised: 05/26/2023] [Accepted: 06/19/2023] [Indexed: 06/28/2023]
Abstract
BACKGROUND The Fufang-zhenzhu-tiaozhi formula (FTZ), a traditional Chinese medicine (TCM) commonly used to treat metabolic diseases, potentially impacts the microbial ecosystem. Increasing evidence suggests that polysaccharides, bioactive components of TCMs, have great potential on kinds of diseases such as DKD by regulating intestinal flora. PURPOSE This study aimed to investigate whether the polysaccharide components in FTZ (FTZPs) have beneficial effects in DKD mice via the gut-kidney axis. STUDY DESIGN AND METHODS The DKD model in mice was established by streptozotocin combined with a high-fat diet (STZ/HFD). Losartan was used as a positive control, and FTZPs were administered at doses of 100 and 300 mg/kg daily. Renal histological changes were measured by H&E and Masson staining. Western blotting, quantitative real-time polymerase chain reaction (q-PCR) and immunohistochemistry were performed to analyze the effects of FTZPs on renal inflammation and fibrosis, which were further confirmed using RNA sequencing. Immunofluorescence was used to analyze the effects of FTZPs on colonic barrier function in DKD mice. Faecal microbiota transplantation (FMT) was used to evaluate the contribution of intestinal flora. 16S rRNA sequencing was utilized to analyze the composition of intestinal bacteria, and UPLC-QTOF-MS-based untargeted metabolomics was used to identify the metabolite profiles. RESULTS Treatment with FTZPs attenuated kidney injury, as indicated by the decreased urinary albumin/creatinine ratio and improved renal architecture. FTZPs downregulated the expression of renal genes associated with inflammation, fibrosis, and systematically blunted related pathways. FTZPs also restored the colonic mucosal barrier and increased the expression of tight junction proteins (E-cadherin). The FMT experiment confirmed the substantial contribution of the FTZPs-reshaped microbiota to relieving DKD symptoms. Moreover, FTZPs elevated the content of short-chain fatty acids (propionic acid and butanoic acid) and increased the level of the SCFAs transporter Slc22a19. Intestinal flora disorders caused by diabetes, including the growth of the genera Weissella, Enterococcus and Akkermansia, were inhibited by FTZPs treatment. Spearman's analysis revealed that these bacteria were positively correlated with indicators of renal damage. CONCLUSION These results show that oral administration of FTZPs, by altering SCFAs levels and the gut microbiome, is a therapeutic strategy for the treatment of DKD.
Collapse
Affiliation(s)
- Tian Lan
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine, Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education; Guangdong TCM Key Laboratory for Metabolic Diseases, Guangzhou Higher Education Mega Center, Institute of Chinese Medicine, Guangdong Pharmaceutical University, 280 Wai Huan Dong Road, Guangzhou 510006, China.
| | - Tang Tang
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine, Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education; Guangdong TCM Key Laboratory for Metabolic Diseases, Guangzhou Higher Education Mega Center, Institute of Chinese Medicine, Guangdong Pharmaceutical University, 280 Wai Huan Dong Road, Guangzhou 510006, China
| | - Ying Li
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine, Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education; Guangdong TCM Key Laboratory for Metabolic Diseases, Guangzhou Higher Education Mega Center, Institute of Chinese Medicine, Guangdong Pharmaceutical University, 280 Wai Huan Dong Road, Guangzhou 510006, China
| | - Yingling Duan
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine, Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education; Guangdong TCM Key Laboratory for Metabolic Diseases, Guangzhou Higher Education Mega Center, Institute of Chinese Medicine, Guangdong Pharmaceutical University, 280 Wai Huan Dong Road, Guangzhou 510006, China
| | - Qin Yuan
- State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Macao, China
| | - Wen Liu
- State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Macao, China
| | - Yuqing Ren
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine, Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education; Guangdong TCM Key Laboratory for Metabolic Diseases, Guangzhou Higher Education Mega Center, Institute of Chinese Medicine, Guangdong Pharmaceutical University, 280 Wai Huan Dong Road, Guangzhou 510006, China
| | - Ning Li
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine, Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education; Guangdong TCM Key Laboratory for Metabolic Diseases, Guangzhou Higher Education Mega Center, Institute of Chinese Medicine, Guangdong Pharmaceutical University, 280 Wai Huan Dong Road, Guangzhou 510006, China
| | - Xuenan Liu
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine, Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education; Guangdong TCM Key Laboratory for Metabolic Diseases, Guangzhou Higher Education Mega Center, Institute of Chinese Medicine, Guangdong Pharmaceutical University, 280 Wai Huan Dong Road, Guangzhou 510006, China
| | - Yu Zhang
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine, Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education; Guangdong TCM Key Laboratory for Metabolic Diseases, Guangzhou Higher Education Mega Center, Institute of Chinese Medicine, Guangdong Pharmaceutical University, 280 Wai Huan Dong Road, Guangzhou 510006, China
| | - Xinglong Li
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine, Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education; Guangdong TCM Key Laboratory for Metabolic Diseases, Guangzhou Higher Education Mega Center, Institute of Chinese Medicine, Guangdong Pharmaceutical University, 280 Wai Huan Dong Road, Guangzhou 510006, China
| | - Guifang Jin
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Shengpeng Wang
- State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Macao, China
| | - Jiao Guo
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine, Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education; Guangdong TCM Key Laboratory for Metabolic Diseases, Guangzhou Higher Education Mega Center, Institute of Chinese Medicine, Guangdong Pharmaceutical University, 280 Wai Huan Dong Road, Guangzhou 510006, China.
| |
Collapse
|
9
|
Gao HH, Li W, Shou XY, Mao JH. Correlation between Toll-like Receptor Gene Polymorphisms and Idiopathic Nephrotic Syndrome in Chinese Children. Curr Med Sci 2023:10.1007/s11596-023-2728-3. [PMID: 37115397 DOI: 10.1007/s11596-023-2728-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Accepted: 02/21/2023] [Indexed: 04/29/2023]
Abstract
OBJECTIVE Idiopathic nephrotic syndrome (INS) is the most common glomerular disease in children. Toll-like receptors (TLRs) have been reported to be associated with response to steroid treatment in children with INS. Nevertheless, the correlation between TLR genes and the progression of INS has not yet been clarified. The present study aimed to investigate the association of single-nucleotide polymorphisms (SNPs) in TLR2, TLR4, and TLR9 with susceptibility to INS as well as the clinical phenotyping of steroid responsiveness in Chinese children with INS. METHODS A total of 183 pediatric inpatients with INS were included and given standard steroid therapy. Based on their clinical response to steroids, the patients were classified into three groups: steroid-sensitive nephrotic syndrome (SSNS), steroid-dependent nephrotic syndrome (SDNS), and steroid-resistant nephrotic syndrome (SRNS). A total of 100 healthy children were employed as controls. The blood genome DNA was extracted from each participant. Six SNPs (rs11536889, rs1927914, rs7869402, rs11536891, rs352140, and rs3804099) in TLR2, TLR4, and TLR9 were selected and detected by multiplex polymerase chain reaction with next-generation sequencing to assess TLR gene polymorphisms. RESULTS Among the 183 patients with INS, 89 (48.6%) had SSNS, 73 (39.9%) had SDNS, and 21 (11.5%) had SRNS. No significant difference was found in the genotype distribution between healthy children and patients with INS. However, the genotype and allele frequencies of TLR4 rs7869402 were significantly different between SRNS and SSNS. Compared with patients with the C allele and CC genotype, patients with the T allele and CT genotype had an increased risk of SRNS. CONCLUSION TLR4 rs7869402 affected the steroid response in Chinese children with INS. It might be a predictor for the early detection of SRNS in this population.
Collapse
Affiliation(s)
- Hui-Hui Gao
- Department of Pediatric and Adolescent, Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, 310052, China
| | - Wei Li
- Department of Clinical Laboratory, Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, 310052, China
| | - Xin-Yi Shou
- Department of Clinical Laboratory, Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, 310052, China
| | - Jian-Hua Mao
- Department of Nephrology, Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, 310052, China.
| |
Collapse
|
10
|
Deng YX, Liu K, Qiu QX, Tang ZY, Que RM, Li DK, Gu XR, Zhou GL, Wu YF, Zhou LY, Yin WJ, Zuo XC. Identification and validation of hub genes in drug induced acute kidney injury basing on integrated transcriptomic analysis. Front Immunol 2023; 14:1126348. [PMID: 37063876 PMCID: PMC10090697 DOI: 10.3389/fimmu.2023.1126348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2022] [Accepted: 03/14/2023] [Indexed: 03/31/2023] Open
Abstract
BackgroundDrug-induced acute kidney damage (DI-AKI) is a clinical phenomenon of rapid loss of kidney function over a brief period of time as a consequence of the using of medicines. The lack of a specialized treatment and the instability of traditional kidney injury markers to detect DI-AKI frequently result in the development of chronic kidney disease. Thus, it is crucial to continue screening for DI-AKI hub genes and specific biomarkers.MethodsDifferentially expressed genes (DEGs) of group iohexol, cisplatin, and vancomycin’s were analyzed using Limma package, and the intersection was calculated. DEGs were then put into String database to create a network of protein-protein interactions (PPI). Ten algorithms are used in the Cytohubba plugin to find the common hub genes. Three DI-AKI models’ hub gene expression was verified in vivo and in vitro using PCR and western blot. To investigate the hub gene’s potential as a biomarker, protein levels of mouse serum and urine were measured by ELISA kits. The UUO, IRI and aristolochic acid I-induced nephrotoxicity (AAN) datasets in the GEO database were utilized for external data verification by WGCNA and Limma package. Finally, the Elisa kit was used to identify DI-AKI patient samples.Results95 up-regulated common DEGs and 32 down-regulated common DEGs were obtained using Limma package. A PPI network with 84 nodes and 24 edges was built with confidence >0.4. Four hub genes were obtained by Algorithms of Cytohubba plugin, including TLR4, AOC3, IRF4 and TNFAIP6. Then, we discovered that the protein and mRNA levels of four hub genes were significantly changed in the DI-AKI model in vivo and in vitro. External data validation revealed that only the AAN model, which also belonged to DI-AKI model, had significant difference in these hub genes, whereas IRI and UUO did not. Finally, we found that plasma TLR4 levels were higher in patients with DI-AKI, especially in vancomycin-induced AKI.ConclusionThe immune system and inflammation are key factors in DI-AKI. We discovered the immunological and inflammatory-related genes TLR4, AOC3, IRF4, and TNFAIP6, which may be promising specific biomarkers and essential hub genes for the prevention and identification of DI-AKI.
Collapse
Affiliation(s)
- Yi-Xuan Deng
- Department of Pharmacy, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Kun Liu
- Department of Pharmacy, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Qun-Xiang Qiu
- Department of Hematology, The Third Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Zhi-Yao Tang
- Department of Pharmacy, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Rui-Man Que
- Department of Pharmacy, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Dian-Ke Li
- Department of Pharmacy, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Xu-Rui Gu
- Department of Pharmacy, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Guang-Liang Zhou
- Department of Pharmacy, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Yi-Feng Wu
- Department of Pharmacy, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Ling-Yun Zhou
- Department of Pharmacy, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Wen-Jun Yin
- Department of Pharmacy, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Xiao-Cong Zuo
- Department of Pharmacy, The Third Xiangya Hospital, Central South University, Changsha, China
- *Correspondence: Xiao-Cong Zuo,
| |
Collapse
|