1
|
New Specimens of Reigitherium bunodontum from the Late Cretaceous La Colonia Formation, Patagonia, Argentina and Meridiolestidan Diversity in South America. J MAMM EVOL 2021. [DOI: 10.1007/s10914-021-09585-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
2
|
Shaheen J, Mudd AB, Diekwisch TGH, Abramyan J. Pseudogenized Amelogenin Reveals Early Tooth Loss in True Toads (Anura: Bufonidae). Integr Comp Biol 2021; 61:1933-1945. [PMID: 33905504 PMCID: PMC8699095 DOI: 10.1093/icb/icab039] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Extant anurans (frogs and toads) exhibit reduced dentition, ranging from a lack of mandibular teeth to complete edentulation, as observed in the true toads of the family Bufonidae. The evolutionary time line of these reductions remains vague due to a poor fossil record. Previous studies have demonstrated an association between the lack of teeth in edentulous vertebrates and the pseudogenization of the major tooth enamel gene amelogenin (AMEL) through accumulation of deleterious mutations and the disruption of its coding sequence. In this study, we have harnessed the pseudogenization of AMEL as a molecular dating tool to correlate loss of dentition with genomic mutation patterns during the rise of the family Bufonidae. Specifically, we have utilized AMEL pseudogenes in three members of the family as a tool to estimate the putative date of edentulation in true toads. Comparison of AMEL sequences from Rhinella marina, Bufo gargarizans and Bufo bufo, with nine extant, dentulous frogs, revealed mutations confirming AMEL inactivation in Bufonidae. AMEL pseudogenes in modern bufonids also exhibited remarkably high 86-93% sequence identity among each other, with only a slight increase in substitution rate and relaxation of selective pressure, in comparison with functional copies in other anurans. Moreover, using selection intensity estimates and synonymous substitution rates, analysis of functional and pseudogenized AMEL resulted in an estimated inactivation window of 46-60 million years ago in the lineage leading to modern true toads, a time line that coincides with the rise of the family Bufonidae.
Collapse
Affiliation(s)
- John Shaheen
- Department of Natural Sciences, University of Michigan-Dearborn, Dearborn, MI 48128, USA
| | - Austin B Mudd
- Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720, USA
| | - Thomas G H Diekwisch
- Center for Craniofacial Research and Diagnosis, Texas A&M University, Dallas, TX 75246, USA
| | - John Abramyan
- Department of Natural Sciences, University of Michigan-Dearborn, Dearborn, MI 48128, USA
| |
Collapse
|
3
|
Mu Y, Huang X, Liu R, Gai Y, Liang N, Yin D, Shan L, Xu S, Yang G. ACPT gene is inactivated in mammalian lineages that lack enamel or teeth. PeerJ 2021; 9:e10219. [PMID: 33552707 PMCID: PMC7831365 DOI: 10.7717/peerj.10219] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Accepted: 09/29/2020] [Indexed: 12/31/2022] Open
Abstract
Loss of tooth or enamel is widespread in multiple mammal lineages. Although several studies have been reported, the evolutionary mechanisms of tooth/enamel loss are still unclear. Most previous studies have found that some tooth-related genes have been inactivated in toothless and/or enamel-less mammals, such as ENAM, ODAM, C4orf26, AMBN, AMTN, DSPP, etc. Here, we conducted evolutionary analyses on ACPT playing a key role in amelogenesis, to interrogate the mechanisms. We obtained the ACPT sequences from 116 species, including edentulous and enamel-less mammals. The results shows that variant ORF-disrupting mutations were detected in ACPT coding region among nine edentulous baleen whales and three enamel-less taxa (pygmy sperm whale, aardvark, nine-banded armadillo). Furtherly, selective pressure uncovered that the selective constraints have been relaxed among all toothless and enamel-less lineages. Moreover, our results support the hypothesis that mineralized teeth were lost or degenerated in the common ancestor of crown Mysticeti through two shared single-base sites deletion in exon 4 and 5 of ACPT among all living baleen whales. DN/dS values on transitional branches were used to estimate ACPT inactivation records. In the case of aardvark, inactivation of ACPT was estimated at ~23.60–28.32 Ma, which is earlier than oldest aardvark fossil record (Orycteropus minutus, ~19 Ma), suggesting that ACPT inactivation may result in degeneration or loss of enamel. Conversely, the inactivation time of ACPT estimated in armadillo (~10.18–11.30 Ma) is later than oldest fossil record, suggesting that inactivation of ACPT may result from degeneration or loss of enamel in these mammals. Our findings suggested that different mechanisms of degeneration of tooth/enamel might exist among toothless and enamel-less lineages during evolution. Our study further considered that ACPT is a novel gene for studying tooth evolution.
Collapse
Affiliation(s)
- Yuan Mu
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, Jiangsu, China
| | - Xin Huang
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, Jiangsu, China
| | - Rui Liu
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, Jiangsu, China
| | - Yulin Gai
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, Jiangsu, China
| | - Na Liang
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, Jiangsu, China
| | - Daiqing Yin
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, Jiangsu, China
| | - Lei Shan
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, Jiangsu, China
| | - Shixia Xu
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, Jiangsu, China
| | - Guang Yang
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, Jiangsu, China
| |
Collapse
|
4
|
Ciancio MR, Vieytes EC, Castro MC, Carlini AA. Dental enamel structure in long-nosed armadillos (Xenarthra: Dasypus) and its evolutionary implications. Zool J Linn Soc 2020. [DOI: 10.1093/zoolinnean/zlaa119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Abstract
Most xenarthrans have a reduced and simplified dentition that lacks enamel. However, the presence of prismatic enamel has been recorded in the Eocene armadillos Utaetus buccatus (Euphractinae) and Astegotherium dichotomus (Astegotheriini). Among extant xenarthrans, the occurrence of enamel has been recognized only in the long-nosed armadillo, Dasypus novemcinctus (Dasypodinae), but its microstructure has never been described. In this contribution, we analyse the enamel microstructure in deciduous and permanent teeth of four Dasypus species. In deciduous molariform teeth of some species, we identify an apical cap of vestigial enamel (without crystalline structure), interpreted as an amorphous ameloblastic secretion. In permanent teeth, a thin layer of true enamel is found in the apical portion of unworn molariforms. The enamel is prismatic in D. novemcinctus, but in Dasypus hybridus, Dasypus sabanicola and Dasypus punctatus it is prismless. Taking into account the Eocene species of armadillos, the ancestral condition of enamel in cingulates could have been more complex (as in other placentals) and undergone progressive reduction, as shown in the Dasypus lineage. In light of previous genetic and developmental studies, we review and briefly discuss the processes that can account for the reduction/loss of enamel in extant and extinct armadillos. The retention of enamel and the fact that this genus is the only living xenarthran with two functional generations of teeth support the early divergence of the Dasypus lineage among living cingulates. This is in agreement with morphological and molecular analyses.
Collapse
Affiliation(s)
- Martín R Ciancio
- Laboratorio de Morfología Evolutiva y Desarrollo (MORPHOS) y División Paleontología Vertebrados, Museo de La Plata, CONICET, Facultad de Ciencias Naturales y Museo, Universidad Nacional de La Plata, Paseo del Bosque s/n, B1900FWA, La Plata, Argentina
- Cátedra Anatomía Comparada, Facultad de Ciencias Naturales y Museo, Universidad Nacional de La Plata, Paseo del Bosque s/n, B1900FWA, La Plata, Argentina
| | - Emma C Vieytes
- Cátedra Anatomía Comparada, Facultad de Ciencias Naturales y Museo, Universidad Nacional de La Plata, Paseo del Bosque s/n, B1900FWA, La Plata, Argentina
- División Zoología Vertebrados, Museo de La Plata, CONICET, Facultad de Ciencias Naturales y Museo, Universidad Nacional de La Plata, Paseo del Bosque s/n, B1900FWA, La Plata, Argentina
| | - Mariela C Castro
- Departamento de Ciências Biológicas, IBiotec, Universidade Federal de Catalão, Avenida Dr. Lamartine Pinto de Avelar, 1120, 75704-020, Catalão, Brazil
| | - Alfredo A Carlini
- Laboratorio de Morfología Evolutiva y Desarrollo (MORPHOS) y División Paleontología Vertebrados, Museo de La Plata, CONICET, Facultad de Ciencias Naturales y Museo, Universidad Nacional de La Plata, Paseo del Bosque s/n, B1900FWA, La Plata, Argentina
- Cátedra Anatomía Comparada, Facultad de Ciencias Naturales y Museo, Universidad Nacional de La Plata, Paseo del Bosque s/n, B1900FWA, La Plata, Argentina
| |
Collapse
|
5
|
Melo TP, Ribeiro AM, Martinelli AG, Soares MB. Early evidence of molariform hypsodonty in a Triassic stem-mammal. Nat Commun 2019; 10:2841. [PMID: 31253810 PMCID: PMC6598982 DOI: 10.1038/s41467-019-10719-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Accepted: 05/22/2019] [Indexed: 11/29/2022] Open
Abstract
Hypsodonty, the occurrence of high-crowned teeth, is widespread among mammals with diets rich in abrasive material, such as plants or soil, because it increases the durability of dentitions against wear. Hypsodont postcanine teeth evolved independently in multiple mammalian lineages and in the closely related mammaliaforms since the Jurassic period. Here, we report the oldest record, to our knowledge, of hypsodont postcanines in the non-mammaliaform stem-mammal, Menadon besairiei, from the early Late Triassic. The postcanines are long and columnar, with open roots. They were not replaced in older individuals and remained functional after the total wear of the crown enamel. Dental histology suggests that, convergently to hypsodont mammals, wear was compensated by the prolonged growth of each postcanine, resulting in dentine hypsodont teeth most similar to extant xenarthran mammals. These findings highlight the constraints imposed by limited tooth replacement and tooth wear in the evolutionary trajectories of herbivorous mammals and stem-mammals. Hypsodonty is a durable pattern of dentition seen in mammals with abrasive diets. Here, Melo and colleagues describe new fossils of the stem-mammal Menadon besairiei from the Late Triassic, which show the convergent evolution of hypsodonty before mammals.
Collapse
Affiliation(s)
- Tomaz P Melo
- Programa de Pós-Graduação em Geociências, Instituto de Geociências, Universidade Federal do Rio Grande do Sul, Av. Bento Gonçalves, 9500, 91501-970, Bairro Agronomia, Porto Alegre, Rio Grande do Sul, Brazil.
| | - Ana Maria Ribeiro
- Museu de Ciências Naturais, Fundação Zoobotânica do Rio Grande do Sul, Rua Dr Salvador França, 1427, 90690-000, Porto Alegre, Rio Grande do Sul, Brazil
| | - Agustín G Martinelli
- CONICET- Sección Paleontología de Vertebrados, Museo Argentino de Ciencias Naturales "Bernardino Rivadavia", Ave. Ángel Gallardo 470, C1405DJR CABA, Buenos Aires, Argentina
| | - Marina Bento Soares
- Departamento de Paleontologia e Estratigrafia, Instituto de Geociências, Universidade Federal do Rio Grande do Sul, Av. Bento Gonçalves, 9500, 91501-970, Bairro Agronomia, Porto Alegre, Rio Grande do Sul, Brazil
| |
Collapse
|
6
|
Halliday TJD, dos Reis M, Tamuri AU, Ferguson-Gow H, Yang Z, Goswami A. Rapid morphological evolution in placental mammals post-dates the origin of the crown group. Proc Biol Sci 2019; 286:20182418. [PMID: 30836875 PMCID: PMC6458320 DOI: 10.1098/rspb.2018.2418] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2018] [Accepted: 02/12/2019] [Indexed: 12/28/2022] Open
Abstract
Resolving the timing and pattern of early placental mammal evolution has been confounded by conflict among divergence date estimates from interpretation of the fossil record and from molecular-clock dating studies. Despite both fossil occurrences and molecular sequences favouring a Cretaceous origin for Placentalia, no unambiguous Cretaceous placental mammal has been discovered. Investigating the differing patterns of evolution in morphological and molecular data reveals a possible explanation for this conflict. Here, we quantified the relationship between morphological and molecular rates of evolution. We show that, independent of divergence dates, morphological rates of evolution were slow relative to molecular evolution during the initial divergence of Placentalia, but substantially increased during the origination of the extant orders. The rapid radiation of placentals into a highly morphologically disparate Cenozoic fauna is thus not associated with the origin of Placentalia, but post-dates superordinal origins. These findings predict that early members of major placental groups may not be easily distinguishable from one another or from stem eutherians on the basis of skeleto-dental morphology. This result supports a Late Cretaceous origin of crown placentals with an ordinal-level adaptive radiation in the early Paleocene, with the high relative rate permitting rapid anatomical change without requiring unreasonably fast molecular evolutionary rates. The lack of definitive Cretaceous placental mammals may be a result of morphological similarity among stem and early crown eutherians, providing an avenue for reconciling the fossil record with molecular divergence estimates for Placentalia.
Collapse
Affiliation(s)
- Thomas J. D. Halliday
- Department of Genetics, Evolution, and Environment, University College London, Gower Street, London WC1E 6BT, UK
- School of Geography, Earth, and Environmental Science, University of Birmingham, Edgbaston B15 2TT, UK
| | - Mario dos Reis
- School of Biological and Chemical Sciences, Queen Mary University London, Mile End Road, London E1 4NS, UK
| | - Asif U. Tamuri
- Research IT Services, University College London, Gower Street, London WC1E 6BT, UK
- European Molecular Biology Laboratory, European Bioinformatics, Wellcome Genome Campus, Hinxton, Cambridgeshire CB10 1SD, UK
| | - Henry Ferguson-Gow
- Department of Genetics, Evolution, and Environment, University College London, Gower Street, London WC1E 6BT, UK
| | - Ziheng Yang
- Department of Genetics, Evolution, and Environment, University College London, Gower Street, London WC1E 6BT, UK
| | - Anjali Goswami
- Department of Genetics, Evolution, and Environment, University College London, Gower Street, London WC1E 6BT, UK
- Department of Earth Sciences, University College London, Gower Street, London WC1E 6BT, UK
- Faculty of Life Sciences, Natural History Museum, Cromwell Road, London SW9 5DJ, UK
| |
Collapse
|
7
|
Castro MC, Goin FJ, Ortiz-Jaureguizar E, Vieytes EC, Tsukui K, Ramezani J, Batezelli A, Marsola JCA, Langer MC. A Late Cretaceous mammal from Brazil and the first radioisotopic age for the Bauru Group. ROYAL SOCIETY OPEN SCIENCE 2018; 5:180482. [PMID: 29892465 PMCID: PMC5990825 DOI: 10.1098/rsos.180482] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/23/2018] [Accepted: 04/23/2018] [Indexed: 06/08/2023]
Abstract
In the last three decades, records of tribosphenidan mammals from India, continental Africa, Madagascar and South America have challenged the notion of a strictly Laurasian distribution of the group during the Cretaceous. Here, we describe a lower premolar from the Late Cretaceous Adamantina Formation, São Paulo State, Brazil. It differs from all known fossil mammals, except for a putative eutherian from the same geologic unity and Deccanolestes hislopi, from the Maastrichtian of India. The incompleteness of the material precludes narrowing down its taxonomic attribution further than Tribosphenida, but it is larger than most coeval mammals and shows a thin layer of parallel crystallite enamel. The new taxon helps filling two major gaps in the fossil record: the paucity of Mesozoic mammals in more northern parts of South America and of tribosphenidans in the Cretaceous of that continent. In addition, high-precision U-Pb geochronology provided a post-Turonian maximal age (≤87.8 Ma) for the type stratum, which is overlain by the dinosaur-bearing Marília Formation, constraining the age of the Adamantina Formation at the site to late Coniacian-late Maastrichtian. This represents the first radioisotopic age for the Bauru Group, a key stratigraphic unit for the study of Cretaceous tetrapods in Gondwana.
Collapse
Affiliation(s)
- Mariela C. Castro
- Laboratório de Paleontologia, FFCLRP, Universidade de São Paulo, Ribeirão Preto-SP 14040-901, Brazil
| | - Francisco J. Goin
- División Paleontología Vertebrados, Facultad de Ciencias Naturales y Museo, Universidad Nacional de La Plata, Paseo del Bosque S/N°, B1900FWA La Plata, Argentina
- CONICET, Buenos Aires, Argentina
| | - Edgardo Ortiz-Jaureguizar
- LASBE, Facultad de Ciencias Naturales y Museo, Universidad Nacional de La Plata, Paseo del Bosque S/N°, B1900FWA La Plata, Argentina
- CONICET, Buenos Aires, Argentina
| | - E. Carolina Vieytes
- División Zoología Vertebrados, Facultad de Ciencias Naturales y Museo, Universidad Nacional de La Plata, Paseo del Bosque S/N°, B1900FWA La Plata, Argentina
- CONICET, Buenos Aires, Argentina
| | - Kaori Tsukui
- Department of Earth, Atmospheric and Planetary Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Jahandar Ramezani
- Department of Earth, Atmospheric and Planetary Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Alessandro Batezelli
- Department of Geology and Natural Resources, IG, Universidade Estadual de Campinas, Campinas-SP, Brazil
| | - Júlio C. A. Marsola
- Laboratório de Paleontologia, FFCLRP, Universidade de São Paulo, Ribeirão Preto-SP 14040-901, Brazil
| | - Max C. Langer
- Laboratório de Paleontologia, FFCLRP, Universidade de São Paulo, Ribeirão Preto-SP 14040-901, Brazil
| |
Collapse
|
8
|
A New Eocene Dasypodid with Caniniforms (Mammalia, Xenarthra, Cingulata) from Northwest Argentina. J MAMM EVOL 2016. [DOI: 10.1007/s10914-016-9345-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
9
|
|
10
|
Green JL, Kalthoff DC. Xenarthran dental microstructure and dental microwear analyses, with new data forMegatherium americanum(Megatheriidae). J Mammal 2015. [DOI: 10.1093/jmammal/gyv045] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
11
|
McAfee RK, Green JL. The role of bite force in the formation of orthodentine microwear in tree sloths (Mammalia: Xenarthra: Folivora): Implications for feeding ecology. Arch Oral Biol 2014; 60:181-92. [PMID: 25455133 DOI: 10.1016/j.archoralbio.2014.09.014] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2014] [Revised: 09/27/2014] [Accepted: 09/29/2014] [Indexed: 11/26/2022]
Abstract
OBJECTIVES The purpose of this investigation was to explore the role and interplay that bite force has on the formation of microwear features upon the dentition of two- and three-fingered tree sloths (Choloepus and Bradypus, respectively), with the hypothesis that increasing relative bite force would correlate with an increase in frequency of microwear features. DESIGN Microwear patterns were assessed by counting features (e.g. scratches, pits) seen within a standardized field of view on the mesio-labial facets casts of upper molariform series from sloth specimens using Scanning Electron Microscopy. Relative bite force was estimated using a geometric model to quantify the muscular inputs of the temporalis and masseter muscles with respect to the mandible at the centre of each lower tooth. RESULTS Although relative bite force increases posteriorly along the toothrow, there is not a significant increase in frequency of scratches or pits in either sloth. Scratch width increases significantly as bite force increases in Choloepus. CONCLUSIONS We reject the hypothesis that higher magnitude of bite force is correlated with an increased number of microwear features in tree sloths. Results here suggest that other endogenous variables (such as chewing direction, manipulation of food during mastication, amount of food ingested) play a more significant role in the formation of microwear in sloths than orthal closure force. This further supports the formation of microwear on teeth as an intricate process that has multiple influences beyond the texture of food particles.
Collapse
Affiliation(s)
- Robert K McAfee
- Ohio Northern University, Department of Biological & Allied Health Sciences, 525 S. Main Street, Ada, OH 45810, USA.
| | - Jeremy L Green
- Kent State University at Tuscarawas, Department of Geology, 330 University Drive NE, New Philadelphia, OH 44663, USA.
| |
Collapse
|
12
|
Vizcaíno SF, Bargo MS. Loss of Ancient Diversity of Xenarthrans and the Value of Protecting Extant Armadillos, Sloths and Anteaters. ACTA ACUST UNITED AC 2014. [DOI: 10.5537/020.015.0111] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|