1
|
Sawai S, Fujikawa S, Ohsumi C, Ushio R, Tamura K, Yamamoto R, Kai Y, Murata S, Shima K, Nakano H. Effects of neurofeedback on standing postural control task with combined imagined and executed movements. Front Neurosci 2023; 17:1199398. [PMID: 37483338 PMCID: PMC10360181 DOI: 10.3389/fnins.2023.1199398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Accepted: 06/16/2023] [Indexed: 07/25/2023] Open
Abstract
Introduction Motor imagery (MI) is a method of imagining movement without actual movement, and its use in combination with motor execution (ME) enhances the effects of motor learning. Neurofeedback (NFB) is another method that promotes the effects of MI. This study aimed to investigate the effects of NFB on combined MI and ME (MIME) training in a standing postural control task. Methods Sixteen participants were randomly divided into MIME and MIME + NFB groups and performed 10 trials of a postural control task on an unstable board, with nine trials of MI in between. Electroencephalogram was assessed during MI, and the MIME + NFB group received neurofeedback on the degree of MI via auditory stimulation. A postural control task using an unstable board was performed before and after the MIME task, during which postural instability was evaluated. Results Postural instability was reduced after the MIME task in both groups. In addition, the root mean square, which indicates the sway of the unstable board, was significantly reduced in the MIME + NFB group compared to that in the MIME group. Conclusion Our results indicate that MIME training is effective for motor learning of standing postural control. Furthermore, when MI and ME are combined, the feedback on the degree of MI enhances the learning effect.
Collapse
Affiliation(s)
- Shun Sawai
- Graduate School of Health Sciences, Kyoto Tachibana University, Kyoto, Japan
- Department of Rehabilitation, Kyoto Kuno Hospital, Kyoto, Japan
| | - Shoya Fujikawa
- Department of Physical Therapy, Faculty of Health Sciences, Kyoto Tachibana University, Kyoto, Japan
| | - Chihiro Ohsumi
- Department of Physical Therapy, Faculty of Health Sciences, Kyoto Tachibana University, Kyoto, Japan
| | - Ryu Ushio
- Department of Physical Therapy, Faculty of Health Sciences, Kyoto Tachibana University, Kyoto, Japan
| | - Kosuke Tamura
- Department of Physical Therapy, Faculty of Health Sciences, Kyoto Tachibana University, Kyoto, Japan
| | - Ryosuke Yamamoto
- Department of Rehabilitation, Tesseikai Neurosurgical Hospital, Shijonawate, Japan
| | - Yoshihiro Kai
- Graduate School of Health Sciences, Kyoto Tachibana University, Kyoto, Japan
- Department of Physical Therapy, Faculty of Health Sciences, Kyoto Tachibana University, Kyoto, Japan
| | - Shin Murata
- Graduate School of Health Sciences, Kyoto Tachibana University, Kyoto, Japan
- Department of Physical Therapy, Faculty of Health Sciences, Kyoto Tachibana University, Kyoto, Japan
| | - Keisuke Shima
- Graduate School of Environment and Information Sciences, Yokohama National University, Yokohama, Japan
| | - Hideki Nakano
- Graduate School of Health Sciences, Kyoto Tachibana University, Kyoto, Japan
- Department of Physical Therapy, Faculty of Health Sciences, Kyoto Tachibana University, Kyoto, Japan
| |
Collapse
|
2
|
Sawai S, Murata S, Fujikawa S, Yamamoto R, Shima K, Nakano H. Effects of neurofeedback training combined with transcranial direct current stimulation on motor imagery: A randomized controlled trial. Front Neurosci 2023; 17:1148336. [PMID: 36937688 PMCID: PMC10017549 DOI: 10.3389/fnins.2023.1148336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Accepted: 02/16/2023] [Indexed: 03/06/2023] Open
Abstract
Introduction Neurofeedback (NFB) training and transcranial direct current stimulation (tDCS) have been shown to individually improve motor imagery (MI) abilities. However, the effect of combining both of them with MI has not been verified. Therefore, the aim of this study was to examine the effect of applying tDCS directly before MI with NFB. Methods Participants were divided into an NFB group (n = 10) that performed MI with NFB and an NFB + tDCS group (n = 10) that received tDCS for 10 min before MI with NFB. Both groups performed 60 MI trials with NFB. The MI task was performed 20 times without NFB before and after training, and μ-event-related desynchronization (ERD) and vividness MI were evaluated. Results μ-ERD increased significantly in the NFB + tDCS group compared to the NFB group. MI vividness significantly increased before and after training. Discussion Transcranial direct current stimulation and NFB modulate different processes with respect to MI ability improvement; hence, their combination might further improve MI performance. The results of this study indicate that the combination of NFB and tDCS for MI is more effective in improving MI abilities than applying them individually.
Collapse
Affiliation(s)
- Shun Sawai
- Graduate School of Health Sciences, Kyoto Tachibana University, Kyoto, Japan
- Department of Rehabilitation, Kyoto Kuno Hospital, Kyoto, Japan
| | - Shin Murata
- Graduate School of Health Sciences, Kyoto Tachibana University, Kyoto, Japan
- Department of Physical Therapy, Faculty of Health Sciences, Kyoto Tachibana University, Kyoto, Japan
| | - Shoya Fujikawa
- Department of Physical Therapy, Faculty of Health Sciences, Kyoto Tachibana University, Kyoto, Japan
| | - Ryosuke Yamamoto
- Department of Rehabilitation, Tesseikai Neurosurgical Hospital, Shijonawate, Japan
| | - Keisuke Shima
- Graduate School of Environment and Information Sciences, Yokohama National University, Yokohama, Japan
| | - Hideki Nakano
- Graduate School of Health Sciences, Kyoto Tachibana University, Kyoto, Japan
- Department of Physical Therapy, Faculty of Health Sciences, Kyoto Tachibana University, Kyoto, Japan
- *Correspondence: Hideki Nakano,
| |
Collapse
|
3
|
Stefano Filho CA, Costa TBS, S Uribe LF, Rodrigues PG, Soriano DC, Attux R, Castellano G. On the (in)efficacy of motor imagery training without feedback and event-related desynchronizations considerations. Biomed Phys Eng Express 2020; 6:035030. [PMID: 33438675 DOI: 10.1088/2057-1976/ab8992] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Motor imagery (MI) constitutes a recurrent strategy for signals generation in brain-computer interfaces (BCIs) - systems that aim to control external devices by directly associating brain responses to distinct commands. Although great improvement has been achieved in MI-BCIs performance over recent years, they still suffer from inter- and intra-subject variability issues. As an attempt to cope with this, some studies have suggested that MI training should aid users to appropriately modulate their response for BCI usage: generally, this training is performed based on the sensorimotor rhythms' modulation over the primary sensorimotor cortex (PMC), with the signal being feedbacked to the user. Nonetheless, recent studies have revisited the actual involvement of the PMC into MI, and little to no attention has been devoted to understanding the participation of other cortical areas into training protocols. Therefore, in this work, our aim was to analyze the response induced by hands MI of 10 healthy subjects in the form of event-related desynchronizations (ERDs) and to assess whether features from beyond the PMC might be useful for hands MI classification. We investigated how this response occurs for distinct frequency intervals between 7-30 Hz, and ex0plored changes in their evocation pattern across 12 MI training sessions without feedback. Overall, we found that ERD patterns occur differently for the frequencies encompassed by the μ and β bands, with its evocation being favored for the first band. Over time, the no-feedback approach was inefficient to aid in enhancing ERD evocation (EO). Moreover, to some extent, EO tends to decrease over blocks within a given run, and runs within an MI session, but remains stable within an MI block. We also found that the C3/C4 pair is not necessarily optimal for data classification, and both spectral and spatial subjects' specificities should be considered when designing training protocols.
Collapse
Affiliation(s)
- C A Stefano Filho
- Neurophysics Group, 'Gleb Wataghin' Physics Institute, University of Campinas (UNICAMP), Brazil. Brazilian Institute of Neuroscience and Neurotechnology (BRAINN), Brazil
| | | | | | | | | | | | | |
Collapse
|
4
|
Semprini M, Laffranchi M, Sanguineti V, Avanzino L, De Icco R, De Michieli L, Chiappalone M. Technological Approaches for Neurorehabilitation: From Robotic Devices to Brain Stimulation and Beyond. Front Neurol 2018; 9:212. [PMID: 29686644 PMCID: PMC5900382 DOI: 10.3389/fneur.2018.00212] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2017] [Accepted: 03/16/2018] [Indexed: 12/30/2022] Open
Abstract
Neurological diseases causing motor/cognitive impairments are among the most common causes of adult-onset disability. More than one billion of people are affected worldwide, and this number is expected to increase in upcoming years, because of the rapidly aging population. The frequent lack of complete recovery makes it desirable to develop novel neurorehabilitative treatments, suited to the patients, and better targeting the specific disability. To date, rehabilitation therapy can be aided by the technological support of robotic-based therapy, non-invasive brain stimulation, and neural interfaces. In this perspective, we will review the above methods by referring to the most recent advances in each field. Then, we propose and discuss current and future approaches based on the combination of the above. As pointed out in the recent literature, by combining traditional rehabilitation techniques with neuromodulation, biofeedback recordings and/or novel robotic and wearable assistive devices, several studies have proven it is possible to sensibly improve the amount of recovery with respect to traditional treatments. We will then discuss the possible applied research directions to maximize the outcome of a neurorehabilitation therapy, which should include the personalization of the therapy based on patient and clinician needs and preferences.
Collapse
Affiliation(s)
| | | | - Vittorio Sanguineti
- Department of Informatics, Bioengineering, Robotics and Systems Engineering (DIBRIS), University of Genova, Genova, Italy
| | - Laura Avanzino
- Section of Human Physiology, Department of Experimental Medicine (DIMES), University of Genova, Genova, Italy
| | - Roberto De Icco
- Department of Neurology and Neurorehabilitation, Istituto Neurologico Nazionale C. Mondino, Pavia, Italy.,Department of Brain and Behavioral Sciences, University of Pavia, Pavia, Italy
| | | | | |
Collapse
|