1
|
Wang C, Wang C, Ren Y, Zhang R, Ai L, Wu Y, Ran X, Wang M, Hu H, Shen J, Zhao Z, Yang Y, Ren W, Yu Y. Multi feature fusion network for schizophrenia classification and abnormal brain network recognition. Brain Res Bull 2024; 206:110848. [PMID: 38104673 DOI: 10.1016/j.brainresbull.2023.110848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 12/06/2023] [Accepted: 12/13/2023] [Indexed: 12/19/2023]
Abstract
Schizophrenia classification and abnormal brain network recognition have an important research significance. Researchers have proposed many classification methods based on machine learning and deep learning. However, fewer studies utilized the advantages of complementary information from multi feature to learn the best representation of schizophrenia. In this study, we proposed a multi-feature fusion network (MFFN) using functional network connectivity (FNC) and time courses (TC) to distinguish schizophrenia patients from healthy controls. DNN backbone was adopted to learn the feature map of functional network connectivity, C-RNNAM backbone was designed to learn the feature map of time courses, and Deep SHAP was applied to obtain the most discriminative brain networks. We proved the effectiveness of this proposed model using the combining two public datasets and evaluated this model quantitatively using the evaluation indexes. The results showed that the functional network connectivity generated by independent component analysis has advantage in schizophrenia classification by comparing static and dynamic functional connections. This method obtained the best classification accuracy (ACC=87.30%, SPE=89.28%, SEN=85.71%, F1 =88.23%, and AUC=0.9081), and it demonstrated the superiority of this proposed model by comparing state-of-the-art methods. Ablation experiment also demonstrated that multi feature fusion and attention module can improve classification accuracy. The most discriminative brain networks showed that default mode network and visual network of schizophrenia patients have aberrant connections in brain networks. In conclusion, this method can identify schizophrenia effectively and visualize the abnormal brain network, and it has important clinical application value.
Collapse
Affiliation(s)
- Chang Wang
- The Second Affiliated Hospital of Xinxiang Medical University, Xinxiang, China; Henan Key Laboratory of Biological Psychiatry, Xinxiang, China; School of Medical Engineering, Xinxiang Medical University, Xinxiang, China; Engineering Technology Research Center of Neurosense and Control of Henan Province, Xinxiang, China; Xinxiang Engineering Technology Research Center of Intelligent Medical Imaging Diagnosis, Xinxiang, China
| | - Chen Wang
- The Second Affiliated Hospital of Xinxiang Medical University, Xinxiang, China; Henan Key Laboratory of Biological Psychiatry, Xinxiang, China; School of Medical Engineering, Xinxiang Medical University, Xinxiang, China; Engineering Technology Research Center of Neurosense and Control of Henan Province, Xinxiang, China; Xinxiang Engineering Technology Research Center of Intelligent Medical Imaging Diagnosis, Xinxiang, China
| | - Yaning Ren
- The Second Affiliated Hospital of Xinxiang Medical University, Xinxiang, China; Henan Key Laboratory of Biological Psychiatry, Xinxiang, China; School of Medical Engineering, Xinxiang Medical University, Xinxiang, China; Engineering Technology Research Center of Neurosense and Control of Henan Province, Xinxiang, China; Xinxiang Engineering Technology Research Center of Intelligent Medical Imaging Diagnosis, Xinxiang, China
| | - Rui Zhang
- The Second Affiliated Hospital of Xinxiang Medical University, Xinxiang, China; Henan Key Laboratory of Biological Psychiatry, Xinxiang, China; School of Medical Engineering, Xinxiang Medical University, Xinxiang, China; Engineering Technology Research Center of Neurosense and Control of Henan Province, Xinxiang, China; Xinxiang Engineering Technology Research Center of Intelligent Medical Imaging Diagnosis, Xinxiang, China
| | - Lunpu Ai
- The Second Affiliated Hospital of Xinxiang Medical University, Xinxiang, China; Henan Key Laboratory of Biological Psychiatry, Xinxiang, China; School of Medical Engineering, Xinxiang Medical University, Xinxiang, China; Engineering Technology Research Center of Neurosense and Control of Henan Province, Xinxiang, China
| | - Yang Wu
- The Second Affiliated Hospital of Xinxiang Medical University, Xinxiang, China; Henan Key Laboratory of Biological Psychiatry, Xinxiang, China; School of Medical Engineering, Xinxiang Medical University, Xinxiang, China; Engineering Technology Research Center of Neurosense and Control of Henan Province, Xinxiang, China; Xinxiang Engineering Technology Research Center of Intelligent Medical Imaging Diagnosis, Xinxiang, China
| | - Xiangying Ran
- The Second Affiliated Hospital of Xinxiang Medical University, Xinxiang, China; Henan Key Laboratory of Biological Psychiatry, Xinxiang, China; School of Medical Engineering, Xinxiang Medical University, Xinxiang, China; Engineering Technology Research Center of Neurosense and Control of Henan Province, Xinxiang, China
| | - Mengke Wang
- The Second Affiliated Hospital of Xinxiang Medical University, Xinxiang, China; Henan Key Laboratory of Biological Psychiatry, Xinxiang, China; School of Medical Engineering, Xinxiang Medical University, Xinxiang, China; Engineering Technology Research Center of Neurosense and Control of Henan Province, Xinxiang, China
| | - Heshun Hu
- The Second Affiliated Hospital of Xinxiang Medical University, Xinxiang, China; Henan Key Laboratory of Biological Psychiatry, Xinxiang, China; School of Medical Engineering, Xinxiang Medical University, Xinxiang, China; Engineering Technology Research Center of Neurosense and Control of Henan Province, Xinxiang, China
| | - Jiefen Shen
- School of Medical Engineering, Xinxiang Medical University, Xinxiang, China; Engineering Technology Research Center of Neurosense and Control of Henan Province, Xinxiang, China; Xinxiang Engineering Technology Research Center of Intelligent Medical Imaging Diagnosis, Xinxiang, China
| | - Zongya Zhao
- The Second Affiliated Hospital of Xinxiang Medical University, Xinxiang, China; Henan Key Laboratory of Biological Psychiatry, Xinxiang, China; School of Medical Engineering, Xinxiang Medical University, Xinxiang, China; Engineering Technology Research Center of Neurosense and Control of Henan Province, Xinxiang, China
| | - Yongfeng Yang
- The Second Affiliated Hospital of Xinxiang Medical University, Xinxiang, China; Henan Key Laboratory of Biological Psychiatry, Xinxiang, China
| | - Wenjie Ren
- The Second Affiliated Hospital of Xinxiang Medical University, Xinxiang, China; Engineering Technology Research Center of Neurosense and Control of Henan Province, Xinxiang, China
| | - Yi Yu
- The Second Affiliated Hospital of Xinxiang Medical University, Xinxiang, China; Henan Key Laboratory of Biological Psychiatry, Xinxiang, China; School of Medical Engineering, Xinxiang Medical University, Xinxiang, China; Engineering Technology Research Center of Neurosense and Control of Henan Province, Xinxiang, China.
| |
Collapse
|