1
|
Lee SA, Kim MK. The Effect of Transcranial Direct Current Stimulation Combined with Visual Cueing Training on Motor Function, Balance, and Gait Ability of Patients with Parkinson's Disease. MEDICINA (KAUNAS, LITHUANIA) 2021; 57:medicina57111146. [PMID: 34833364 PMCID: PMC8617912 DOI: 10.3390/medicina57111146] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 10/14/2021] [Accepted: 10/18/2021] [Indexed: 01/10/2023]
Abstract
Background and Objectives: The purpose of this study was to investigate the effects of transcranial direct current stimulation (tDCS) on motor function, balance and gait ability in patients with Parkinson’s disease (PD). Materials and Methods: For the experiment, 30 patients with PD were randomly assigned to the experimental group (n = 15) and the control group (n = 15). Visual cueing training was commonly applied to both groups, the experimental group applied tDCS simultaneously with visual training, and the control group applied sham tDCS simultaneously with visual training. All subjects were pre-tested before the first intervention, post-tested after completing all 4 weeks of intervention, and followed-up tested 2 weeks after the completing intervention. The tests used the Unified Parkinson’s Disease Rating Scale (UPDRS) for motor function assessment, Functional Gait Assessment (FGA) for balance assessment, Freezing of Gait Questionnaire (FOG-Q) and the GAITRite system for gait ability assessment. Among the data obtained through the GAITRite system, gait velocity, cadence, step time, double support time, and stride length were analyzed. Results: The experimental group showed a significant decrease in UPDRS and a significant increase in FGA and cadence after the intervention. In addition, UPDRS and cadence showed a significant difference in the follow-up test compared to the pre-intervention test. Conclusions: This study suggests that the application of tDCS to the supplementary motor area of PD patients is useful as an adjuvant therapy for rehabilitation training of PD patients.
Collapse
Affiliation(s)
- Si-A Lee
- Department of Rehabilitation Sciences, Graduate School, Daegu University, Jillyang, Gyeongsan, Gyeongbuk 712-714, Korea
| | - Myoung-Kwon Kim
- Department of Physical Therapy, College of Rehabilitation Sciences, Daegu University, Jillyang, Gyeongsan, Gyeongbuk 712-714, Korea
| |
Collapse
|
3
|
Lefaucheur JP, André-Obadia N, Antal A, Ayache SS, Baeken C, Benninger DH, Cantello RM, Cincotta M, de Carvalho M, De Ridder D, Devanne H, Di Lazzaro V, Filipović SR, Hummel FC, Jääskeläinen SK, Kimiskidis VK, Koch G, Langguth B, Nyffeler T, Oliviero A, Padberg F, Poulet E, Rossi S, Rossini PM, Rothwell JC, Schönfeldt-Lecuona C, Siebner HR, Slotema CW, Stagg CJ, Valls-Sole J, Ziemann U, Paulus W, Garcia-Larrea L. Evidence-based guidelines on the therapeutic use of repetitive transcranial magnetic stimulation (rTMS). Clin Neurophysiol 2014; 125:2150-2206. [PMID: 25034472 DOI: 10.1016/j.clinph.2014.05.021] [Citation(s) in RCA: 1339] [Impact Index Per Article: 121.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2014] [Revised: 05/09/2014] [Accepted: 05/13/2014] [Indexed: 12/11/2022]
Abstract
A group of European experts was commissioned to establish guidelines on the therapeutic use of repetitive transcranial magnetic stimulation (rTMS) from evidence published up until March 2014, regarding pain, movement disorders, stroke, amyotrophic lateral sclerosis, multiple sclerosis, epilepsy, consciousness disorders, tinnitus, depression, anxiety disorders, obsessive-compulsive disorder, schizophrenia, craving/addiction, and conversion. Despite unavoidable inhomogeneities, there is a sufficient body of evidence to accept with level A (definite efficacy) the analgesic effect of high-frequency (HF) rTMS of the primary motor cortex (M1) contralateral to the pain and the antidepressant effect of HF-rTMS of the left dorsolateral prefrontal cortex (DLPFC). A Level B recommendation (probable efficacy) is proposed for the antidepressant effect of low-frequency (LF) rTMS of the right DLPFC, HF-rTMS of the left DLPFC for the negative symptoms of schizophrenia, and LF-rTMS of contralesional M1 in chronic motor stroke. The effects of rTMS in a number of indications reach level C (possible efficacy), including LF-rTMS of the left temporoparietal cortex in tinnitus and auditory hallucinations. It remains to determine how to optimize rTMS protocols and techniques to give them relevance in routine clinical practice. In addition, professionals carrying out rTMS protocols should undergo rigorous training to ensure the quality of the technical realization, guarantee the proper care of patients, and maximize the chances of success. Under these conditions, the therapeutic use of rTMS should be able to develop in the coming years.
Collapse
Affiliation(s)
- Jean-Pascal Lefaucheur
- Department of Physiology, Henri Mondor Hospital, Assistance Publique - Hôpitaux de Paris, Créteil, France; EA 4391, Nerve Excitability and Therapeutic Team, Faculty of Medicine, Paris Est Créteil University, Créteil, France.
| | - Nathalie André-Obadia
- Neurophysiology and Epilepsy Unit, Pierre Wertheimer Neurological Hospital, Hospices Civils de Lyon, Bron, France; Inserm U 1028, NeuroPain Team, Neuroscience Research Center of Lyon (CRNL), Lyon-1 University, Bron, France
| | - Andrea Antal
- Department of Clinical Neurophysiology, Georg-August University, Göttingen, Germany
| | - Samar S Ayache
- Department of Physiology, Henri Mondor Hospital, Assistance Publique - Hôpitaux de Paris, Créteil, France; EA 4391, Nerve Excitability and Therapeutic Team, Faculty of Medicine, Paris Est Créteil University, Créteil, France
| | - Chris Baeken
- Department of Psychiatry and Medical Psychology, Ghent Experimental Psychiatry (GHEP) Lab, Ghent University, Ghent, Belgium; Department of Psychiatry, University Hospital (UZBrussel), Brussels, Belgium
| | - David H Benninger
- Neurology Service, Department of Clinical Neurosciences, Centre Hospitalier Universitaire Vaudois, Lausanne, Switzerland
| | - Roberto M Cantello
- Department of Translational Medicine, Section of Neurology, University of Piemonte Orientale "A. Avogadro", Novara, Italy
| | | | - Mamede de Carvalho
- Institute of Physiology, Institute of Molecular Medicine, Faculty of Medicine, University of Lisbon, Portugal
| | - Dirk De Ridder
- Brai(2)n, Tinnitus Research Initiative Clinic Antwerp, Belgium; Department of Neurosurgery, University Hospital Antwerp, Belgium
| | - Hervé Devanne
- Department of Clinical Neurophysiology, Lille University Hospital, Lille, France; ULCO, Lille-Nord de France University, Lille, France
| | - Vincenzo Di Lazzaro
- Department of Neurosciences, Institute of Neurology, Campus Bio-Medico University, Rome, Italy
| | - Saša R Filipović
- Department of Neurophysiology, Institute for Medical Research, University of Belgrade, Beograd, Serbia
| | - Friedhelm C Hummel
- Brain Imaging and Neurostimulation (BINS) Laboratory, Department of Neurology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Satu K Jääskeläinen
- Department of Clinical Neurophysiology, Turku University Hospital, University of Turku, Turku, Finland
| | - Vasilios K Kimiskidis
- Laboratory of Clinical Neurophysiology, AHEPA Hospital, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Giacomo Koch
- Non-Invasive Brain Stimulation Unit, Neurologia Clinica e Comportamentale, Fondazione Santa Lucia IRCCS, Rome, Italy
| | - Berthold Langguth
- Department of Psychiatry and Psychotherapy, University of Regensburg, Regensburg, Germany
| | - Thomas Nyffeler
- Perception and Eye Movement Laboratory, Department of Neurology, University Hospital, Inselspital, University of Bern, Bern, Switzerland
| | - Antonio Oliviero
- FENNSI Group, Hospital Nacional de Parapléjicos, SESCAM, Toledo, Spain
| | - Frank Padberg
- Department of Psychiatry and Psychotherapy, Ludwig Maximilian University, Munich, Germany
| | - Emmanuel Poulet
- Department of Emergency Psychiatry, CHU Lyon, Edouard Herriot Hospital, Hospices Civils de Lyon, Lyon, France; EAM 4615, Lyon-1 University, Bron, France
| | - Simone Rossi
- Brain Investigation & Neuromodulation Lab, Unit of Neurology and Clinical Neurophysiology, Department of Neuroscience, University of Siena, Siena, Italy
| | - Paolo Maria Rossini
- Brain Connectivity Laboratory, IRCCS San Raffaele Pisana, Rome, Italy; Institute of Neurology, Catholic University, Rome, Italy
| | - John C Rothwell
- Sobell Department of Motor Neuroscience and Movement Disorders, Institute of Neurology, University College London, London, United Kingdom
| | | | - Hartwig R Siebner
- Department of Neurology, Copenhagen University Hospital Bispebjerg, Copenhagen, Denmark; Danish Research Centre for Magnetic Resonance, Centre for Functional and Diagnostic Imaging and Research, Copenhagen University Hospital Hvidovre, Hvidovre, Denmark
| | | | - Charlotte J Stagg
- Oxford Centre for Functional MRI of the Brain (FMRIB), Department of Clinical Neurosciences, University of Oxford, United Kingdom
| | - Josep Valls-Sole
- EMG Unit, Neurology Service, Hospital Clinic, Department of Medicine, University of Barcelona, August Pi i Sunyer Biomedical Research Institute (IDIBAPS), Barcelona, Spain
| | - Ulf Ziemann
- Department of Neurology & Stroke, and Hertie Institute for Clinical Brain Research, Eberhard Karls University, Tübingen, Germany
| | - Walter Paulus
- Department of Clinical Neurophysiology, Georg-August University, Göttingen, Germany
| | - Luis Garcia-Larrea
- Inserm U 1028, NeuroPain Team, Neuroscience Research Center of Lyon (CRNL), Lyon-1 University, Bron, France; Pain Unit, Pierre Wertheimer Neurological Hospital, Hospices Civils de Lyon, Bron, France
| |
Collapse
|
6
|
Najib U, Bashir S, Edwards D, Rotenberg A, Pascual-Leone A. Transcranial brain stimulation: clinical applications and future directions. Neurosurg Clin N Am 2011; 22:233-51, ix. [PMID: 21435574 PMCID: PMC3547606 DOI: 10.1016/j.nec.2011.01.002] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Noninvasive brain stimulation is a valuable investigative tool and has potential therapeutic applications in cognitive neuroscience, neurophysiology, psychiatry, and neurology. Transcranial magnetic stimulation (TMS) is particularly useful to establish and map causal brain-behavior relations in motor and nonmotor cortical areas. Neuronavigated TMS is able to provide precise information related to the individual's functional anatomy that can be visualized and used during surgical interventions and critically aid in presurgical planning, reducing the need for riskier and more cumbersome intraoperative or invasive mapping procedures. This article reviews methodological aspects, clinical applications, and future directions of TMS-based mapping.
Collapse
Affiliation(s)
- Umer Najib
- Department of Neurology, Berenson-Allen Center for Noninvasive Brain Stimulation, Beth Israel Deaconess Medical Center, Harvard Medical School, 330 Brookline Avenue, Boston, MA 02215, USA
| | - Shahid Bashir
- Department of Neurology, Berenson-Allen Center for Noninvasive Brain Stimulation, Beth Israel Deaconess Medical Center, Harvard Medical School, 330 Brookline Avenue, Boston, MA 02215, USA
| | - Dylan Edwards
- Department of Neurology, Berenson-Allen Center for Noninvasive Brain Stimulation, Beth Israel Deaconess Medical Center, Harvard Medical School, 330 Brookline Avenue, Boston, MA 02215, USA
- Non-Invasive Brain Stimulation and the Human Motor Control Laboratory, Burke Medical Research Institute, Inc, 785 Mamaroneck Avenue, White Plains, NY 10605, USA
| | - Alexander Rotenberg
- Department of Neurology, Berenson-Allen Center for Noninvasive Brain Stimulation, Beth Israel Deaconess Medical Center, Harvard Medical School, 330 Brookline Avenue, Boston, MA 02215, USA
- Division of Epilepsy and Clinical Neurophysiology, Department of Neurology, Children’s Hospital, Harvard Medical School, 300 Longwood Avenue, Boston, MA 02115, USA
| | - Alvaro Pascual-Leone
- Department of Neurology, Berenson-Allen Center for Noninvasive Brain Stimulation, Beth Israel Deaconess Medical Center, Harvard Medical School, 330 Brookline Avenue, Boston, MA 02215, USA
- Institut Guttman de Neurorehabilitació, Institut Universitari, Universitat Autonoma de Barcelona, Camí de Can Ruti s/n, 08916 Badalona, Spain
| |
Collapse
|