1
|
Pfeiffer F, Willer K, Viermetz M, Pfeiffer D. [Dark-field imaging and computed tomography : Novel X-ray-based contrast imaging modality with great promise for pulmonary imaging]. RADIOLOGIE (HEIDELBERG, GERMANY) 2023:10.1007/s00117-023-01161-4. [PMID: 37341743 DOI: 10.1007/s00117-023-01161-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Accepted: 05/03/2023] [Indexed: 06/22/2023]
Abstract
INTRODUCTION The spatial and contrast resolution of conventional planar or computed tomographic X‑ray techniques is not sufficient to investigate microstructures of tissues. Dark-field imaging with X‑rays is an emerging technology that recently provided the first clinical results and makes diagnostic use of interactions of the beams with tissue due to their wave character. APPLICATION Dark-field imaging can provide information about the microscopic structure or porosity of the tissue under investigation that is otherwise inaccessible. This makes it a valuable complement to conventional X‑ray imaging, which can only account for attenuation. Our results demonstrate that X‑ray dark-field imaging provides pictorial information about the underlying microstructure of the lung in humans. Given the close relationship between alveolar structure and the functional state of the lung, this is of great importance for diagnosis and therapy monitoring and may contribute to a better understanding of lung diseases in the future. In the early detection of chronic obstructive pulmonary disease, which is usually associated with structural impairment of the lung, this novel technique could help to facilitate its diagnosis. PERSPECTIVE The application of dark-field imaging to computed tomography is still under development because it is technically difficult. Meanwhile, a prototype for experimental application has been developed and is currently being tested on a variety of materials. Use in humans is conceivable especially for tissues whose microstructure favors characteristic interactions due to the wave nature of the X‑rays.
Collapse
Affiliation(s)
- Franz Pfeiffer
- Chair of Biomedical Physics, Department of Physics, School of Natural Sciences, Technical University of Munich, 85748, Garching, Deutschland.
- Munich Institute of Biomedical Engineering, Technical University of Munich, 85748, Garching, Deutschland.
- Department of Diagnostic and Interventional Radiology, School of Medicine, Klinikum rechts der Isar, Technical University of Munich, 81675, München, Deutschland.
| | - Konstantin Willer
- Chair of Biomedical Physics, Department of Physics, School of Natural Sciences, Technical University of Munich, 85748, Garching, Deutschland
- Munich Institute of Biomedical Engineering, Technical University of Munich, 85748, Garching, Deutschland
| | - Manuel Viermetz
- Chair of Biomedical Physics, Department of Physics, School of Natural Sciences, Technical University of Munich, 85748, Garching, Deutschland
- Munich Institute of Biomedical Engineering, Technical University of Munich, 85748, Garching, Deutschland
| | - Daniela Pfeiffer
- Department of Diagnostic and Interventional Radiology, School of Medicine, Klinikum rechts der Isar, Technical University of Munich, 81675, München, Deutschland
- Institute for Advanced Study, Technical University of Munich, 85748, Garching, Deutschland
| |
Collapse
|
2
|
Zhang L, Li L, Feng G, Fan T, Jiang H, Wang Z. Advances in CT Techniques in Vascular Calcification. Front Cardiovasc Med 2021; 8:716822. [PMID: 34660718 PMCID: PMC8511450 DOI: 10.3389/fcvm.2021.716822] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2021] [Accepted: 08/30/2021] [Indexed: 12/17/2022] Open
Abstract
Vascular calcification, a common pathological phenomenon in atherosclerosis, diabetes, hypertension, and other diseases, increases the incidence and mortality of cardiovascular diseases. Therefore, the prevention and detection of vascular calcification play an important role. At present, various techniques have been applied to the analysis of vascular calcification, but clinical examination mainly depends on non-invasive and invasive imaging methods to detect and quantify. Computed tomography (CT), as a commonly used clinical examination method, can analyze vascular calcification. In recent years, with the development of technology, in addition to traditional CT, some emerging types of CT, such as dual-energy CT and micro CT, have emerged for vascular imaging and providing anatomical information for calcification. This review focuses on the latest application of various CT techniques in vascular calcification.
Collapse
Affiliation(s)
- Lijie Zhang
- Department of Cardiology, Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Lihua Li
- Department of Pathology, Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Guoquan Feng
- Department of Radiology, Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Tingpan Fan
- Department of Cardiology, Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Han Jiang
- Department of Cardiology, Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Zhongqun Wang
- Department of Cardiology, Affiliated Hospital of Jiangsu University, Zhenjiang, China
| |
Collapse
|
3
|
Delorme S, Loose R. Evolution auf leisen Sohlen. Radiologe 2018; 58:192-193. [DOI: 10.1007/s00117-018-0366-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|