1
|
Cantalapiedra CP, Contreras-Moreira B, Silvar C, Perovic D, Ordon F, Gracia MP, Igartua E, Casas AM. A Cluster of Nucleotide-Binding Site-Leucine-Rich Repeat Genes Resides in a Barley Powdery Mildew Resistance Quantitative Trait Loci on 7HL. THE PLANT GENOME 2016; 9. [PMID: 27898833 DOI: 10.3835/plantgenome2015.10.0101] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Powdery mildew causes severe yield losses in barley production worldwide. Although many resistance genes have been described, only a few have already been cloned. A strong QTL (quantitative trait locus) conferring resistance to a wide array of powdery mildew isolates was identified in a Spanish barley landrace on the long arm of chromosome 7H. Previous studies narrowed down the QTL position, but were unable to identify candidate genes or physically locate the resistance. In this study, the exome of three recombinant lines from a high-resolution mapping population was sequenced and analyzed, narrowing the position of the resistance down to a single physical contig. Closer inspection of the region revealed a cluster of closely related NBS-LRR (nucleotide-binding site-leucine-rich repeat containing protein) genes. Large differences were found between the resistant lines and the reference genome of cultivar Morex, in the form of PAV (presence-absence variation) in the composition of the NBS-LRR cluster. Finally, a template-guided assembly was performed and subsequent expression analysis revealed that one of the new assembled candidate genes is transcribed. In summary, the results suggest that NBS-LRR genes, absent from the reference and the susceptible genotypes, could be functional and responsible for the powdery mildew resistance. The procedure followed is an example of the use of NGS (next-generation sequencing) tools to tackle the challenges of gene cloning when the target gene is absent from the reference genome.
Collapse
|
2
|
Silvar C, Martis MM, Nussbaumer T, Haag N, Rauser R, Keilwagen J, Korzun V, Mayer KFX, Ordon F, Perovic D. Assessing the Barley Genome Zipper and Genomic Resources for Breeding Purposes. THE PLANT GENOME 2015; 8:eplantgenome2015.06.0045. [PMID: 33228270 DOI: 10.3835/plantgenome2015.06.0045] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2015] [Accepted: 08/31/2015] [Indexed: 06/11/2023]
Abstract
The aim of this study was to estimate the accuracy and convergence of newly developed barley (Hordeum vulgare L.) genomic resources, primarily genome zipper (GZ) and population sequencing (POPSEQ), at the genome-wide level and to assess their usefulness in applied barley breeding by analyzing seven known loci. Comparison of barley GZ and POPSEQ maps to a newly developed consensus genetic map constructed with data from 13 individual linkage maps yielded an accuracy of 97.8% (GZ) and 99.3% (POPSEQ), respectively, regarding the chromosome assignment. The percentage of agreement in marker position indicates that on average only 3.7% GZ and 0.7% POPSEQ positions are not in accordance with their centimorgan coordinates in the consensus map. The fine-scale comparison involved seven genetic regions on chromosomes 1H, 2H, 4H, 6H, and 7H, harboring major genes and quantitative trait loci (QTL) for disease resistance. In total, 179 GZ loci were analyzed and 64 polymorphic markers were developed. Entirely, 89.1% of these were allocated within the targeted intervals and 84.2% followed the predicted order. Forty-four markers showed a match to a POPSEQ-anchored contig, the percentage of collinearity being 93.2%, on average. Forty-four markers allowed the identification of twenty-five fingerprinted contigs (FPCs) and a more clear delimitation of the physical regions containing the traits of interest. Our results demonstrate that an increase in marker density of barley maps by using new genomic data significantly improves the accuracy of GZ. In addition, the combination of different barley genomic resources can be considered as a powerful tool to accelerate barley breeding.
Collapse
Affiliation(s)
- Cristina Silvar
- Julius Kühn-Institute (JKI), Federal Research Institute for Cultivated Plants, Institute for Resistance Research and Stress Tolerance, 06484, Quedlinburg, Germany
- Grupo de Investigación en Bioloxía Evolutiva, Departamento de Bioloxía Animal, Bioloxía Vexetal e Ecoloxía, Universidade da Coruna, 15071, A Coruña, Spain
| | - Mihaela M Martis
- Plant Genome and System Biology (PGSB), Helmholtz Center Munich, 85764, Neuherberg, Germany
- BILS (Bioinformatics Infrastructure for Life Sciences), Division of Cell Biology, Faculty of Health Sciences, Linköping Univ., SE-581 85, Linköping, Sweden
| | - Thomas Nussbaumer
- Plant Genome and System Biology (PGSB), Helmholtz Center Munich, 85764, Neuherberg, Germany
- Division of Computational Systems Biology, Dep. of Microbiology and Ecosystem Science, Univ. of Vienna, 1090, Vienna, Austria
| | - Nicolai Haag
- Julius Kühn-Institute (JKI), Federal Research Institute for Cultivated Plants, Institute for Resistance Research and Stress Tolerance, 06484, Quedlinburg, Germany
- Julius Kühn-Institute (JKI), Federal Research Institute for Cultivated Plants, Institute for Plant Protection in Fruit Crops and Viticulture, 76833, Siebeldingen, Germany
| | - Ruben Rauser
- Julius Kühn-Institute (JKI), Federal Research Institute for Cultivated Plants, Institute for Resistance Research and Stress Tolerance, 06484, Quedlinburg, Germany
| | - Jens Keilwagen
- Julius Kühn-Institute (JKI), Federal Research Institute for Cultivated Plants, Institute for Biosafety in Plant Biotechnology, 06484, Quedlinburg, Germany
| | | | - Klaus F X Mayer
- Plant Genome and System Biology (PGSB), Helmholtz Center Munich, 85764, Neuherberg, Germany
| | - Frank Ordon
- Julius Kühn-Institute (JKI), Federal Research Institute for Cultivated Plants, Institute for Resistance Research and Stress Tolerance, 06484, Quedlinburg, Germany
| | - Dragan Perovic
- Julius Kühn-Institute (JKI), Federal Research Institute for Cultivated Plants, Institute for Resistance Research and Stress Tolerance, 06484, Quedlinburg, Germany
| |
Collapse
|