1
|
John D, Sureshkumar S, Raman M. Type‐2 diabetes and identification of major genetic determinants of glycemic index in rice‐ A review. STARCH-STARKE 2022. [DOI: 10.1002/star.202100277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Deepa John
- Department of Biotechnology Faculty of Ocean Science and Technology Kerala University of Fisheries and Ocean Studies Cochin Kerala 682506 India
| | - S Sureshkumar
- Faculty of Ocean Science and Technology Kerala University of Fisheries and Ocean Studies Cochin Kerala 682506 India
| | - Maya Raman
- Department of Food Science and Technology Faculty of Ocean Science and Technology Kerala University of Fisheries and Ocean Studies Cochin Kerala 682506 India
| |
Collapse
|
2
|
Zhang MZ, Fang JH, Yan X, Liu J, Bao JS, Fransson G, Andersson R, Jansson C, Åman P, Sun C. Molecular insights into how a deficiency of amylose affects carbon allocation--carbohydrate and oil analyses and gene expression profiling in the seeds of a rice waxy mutant. BMC PLANT BIOLOGY 2012; 12:230. [PMID: 23217057 PMCID: PMC3541260 DOI: 10.1186/1471-2229-12-230] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2012] [Accepted: 11/27/2012] [Indexed: 05/19/2023]
Abstract
BACKGROUND Understanding carbon partitioning in cereal seeds is of critical importance to develop cereal crops with enhanced starch yields for food security and for producing specified end-products high in amylose, β-glucan, or fructan, such as functional foods or oils for biofuel applications. Waxy mutants of cereals have a high content of amylopectin and have been well characterized. However, the allocation of carbon to other components, such as β-glucan and oils, and the regulation of the altered carbon distribution to amylopectin in a waxy mutant are poorly understood. In this study, we used a rice mutant, GM077, with a low content of amylose to gain molecular insight into how a deficiency of amylose affects carbon allocation to other end products and to amylopectin. We used carbohydrate analysis, subtractive cDNA libraries, and qPCR to identify candidate genes potentially responsible for the changes in carbon allocation in GM077 seeds. RESULTS Carbohydrate analysis indicated that the content of amylose in GM077 seeds was significantly reduced, while that of amylopectin significantly rose as compared to the wild type BP034. The content of glucose, sucrose, total starch, cell-wall polysaccharides and oil were only slightly affected in the mutant as compared to the wild type. Suppression subtractive hybridization (SSH) experiments generated 116 unigenes in the mutant on the wild-type background. Among the 116 unigenes, three, AGP, ISA1 and SUSIBA2-like, were found to be directly involved in amylopectin synthesis, indicating their possible roles in redirecting carbon flux from amylose to amylopectin. A bioinformatics analysis of the putative SUSIBA2-like binding elements in the promoter regions of the upregulated genes indicated that the SUSIBA2-like transcription factor may be instrumental in promoting the carbon reallocation from amylose to amylopectin. CONCLUSION Analyses of carbohydrate and oil fractions and gene expression profiling on a global scale in the rice waxy mutant GM077 revealed several candidate genes implicated in the carbon reallocation response to an amylose deficiency, including genes encoding AGPase and SUSIBA2-like. We believe that AGP and SUSIBA2 are two promising targets for classical breeding and/or transgenic plant improvement to control the carbon flux between starch and other components in cereal seeds.
Collapse
Affiliation(s)
- Ming-Zhou Zhang
- College of Life Science, China JiLiang University, Hangzhou, 310018, China
| | - Jie-Hong Fang
- College of Life Science, China JiLiang University, Hangzhou, 310018, China
| | - Xia Yan
- Department of Plant Biology & Forest Genetics, Uppsala BioCenter, Swedish University of Agricultural Sciences and Linnean Center for Plant Biology, P.O. Box 7080, SE, 75007, Uppsala, Sweden
- Heihe Key Laboratory of Ecohydrology and Integrated River Basin Science, Cold and Arid Regions Environmental and Engineering Institute, Chinese Academy of Sciences, 260 Donggang West Road, Lanzhou, 730000, China
| | - Jun Liu
- College of Life Science, China JiLiang University, Hangzhou, 310018, China
| | - Jin-Song Bao
- Institute of Nuclear Agricultural Sciences, Zhejiang University, Hangzhou, Zhejiang, 310029, China
| | - Gunnel Fransson
- Department of Food Science, Uppsala BioCenter, Swedish University of Agricultural Sciences, P.O. Box 7051, SE, 75007, Uppsala, Sweden
| | - Roger Andersson
- Department of Food Science, Uppsala BioCenter, Swedish University of Agricultural Sciences, P.O. Box 7051, SE, 75007, Uppsala, Sweden
| | - Christer Jansson
- Lawrence Berkeley National Laboratory, Earth Sciences Division, 1 Cyclotron Road, Berkeley, CA, 94720, U.S.A
| | - Per Åman
- Department of Food Science, Uppsala BioCenter, Swedish University of Agricultural Sciences, P.O. Box 7051, SE, 75007, Uppsala, Sweden
| | - Chuanxin Sun
- Department of Plant Biology & Forest Genetics, Uppsala BioCenter, Swedish University of Agricultural Sciences and Linnean Center for Plant Biology, P.O. Box 7080, SE, 75007, Uppsala, Sweden
| |
Collapse
|
3
|
Değirmenci Karataş D, Kunter B, Coppola G, Velasco R. Analysis of polymorphism based on SSCP markers in gamma-irradiated (Co60) grape (Vitis vinifera) varieties. GENETICS AND MOLECULAR RESEARCH 2010; 9:2357-63. [DOI: 10.4238/vol9-4gmr864] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
4
|
Jeng TL, Wang CS, Tseng TH, Wu MT, Sung JM. Nucleotide polymorphisms in the waxy gene of NaN3-induced waxy rice mutants. J Cereal Sci 2009. [DOI: 10.1016/j.jcs.2008.07.009] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
5
|
Mikami I, Uwatoko N, Ikeda Y, Yamaguchi J, Hirano HY, Suzuki Y, Sano Y. Allelic diversification at the wx locus in landraces of Asian rice. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2008; 116:979-89. [PMID: 18305920 DOI: 10.1007/s00122-008-0729-z] [Citation(s) in RCA: 93] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2007] [Accepted: 02/09/2008] [Indexed: 05/10/2023]
Abstract
To examine continuous variation of amylose levels in Asian rice (Oryza sativa) landraces, the five putative alleles (Wx a, Wx in, Wx b, Wx op, and wx) at the wx locus were investigated in near-isogenic lines (NILs). Apparent amylose levels ranged from 0.5 to 29.9% in the NILs, showing a positive relation with the levels of Wx gene product, granule-bound starch synthase (GBSS) as well as the enzymatic activity per milligram starch granule. Only opaque (Wx op) accessions had an enzymatic activity per GBSS that was reduced to half the level of the others. Nucleotide sequences in the Wx gene were compared among 18 accessions harboring the five different alleles. Each of the Wx alleles had a unique replacement, frame-shift or splice donor site mutation, suggesting that these nucleotide changes could be reflected in phenotype alterations. A molecular phylogenetic tree constructed using the Wx gene indicated that ssp. japonica forms a distinct clade, whereas ssp. indica forms different clades together with the wild progenitor. Unexpectedly, the wx allele of 160 (indica from Taiwan) joined the japonica lineage; however, comparisons using linked genes for two Taiwanese accessions revealed that the wx gene was the product of gene flow from japonica to indica. Therefore, the japonica lineage frequently included Wx in, Wx b and wx, while Wx a and Wx op were found in the other lineages, strongly suggesting that allelic diversification occurred after divergence of the two subspecies. The present results were discussed in relation to the maintenance of agronomically valuable genes in various landraces.
Collapse
Affiliation(s)
- I Mikami
- Graduate School of Agriculture, Hokkaido University, Sapporo 060-8589, Japan.
| | | | | | | | | | | | | |
Collapse
|
6
|
Collard BCY, Vera Cruz CM, McNally KL, Virk PS, Mackill DJ. Rice molecular breeding laboratories in the genomics era: Current status and future considerations. INTERNATIONAL JOURNAL OF PLANT GENOMICS 2008; 2008:524847. [PMID: 18528527 PMCID: PMC2408710 DOI: 10.1155/2008/524847] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2007] [Accepted: 03/15/2008] [Indexed: 05/20/2023]
Abstract
Using DNA markers in plant breeding with marker-assisted selection (MAS) could greatly improve the precision and efficiency of selection, leading to the accelerated development of new crop varieties. The numerous examples of MAS in rice have prompted many breeding institutes to establish molecular breeding labs. The last decade has produced an enormous amount of genomics research in rice, including the identification of thousands of QTLs for agronomically important traits, the generation of large amounts of gene expression data, and cloning and characterization of new genes, including the detection of single nucleotide polymorphisms. The pinnacle of genomics research has been the completion and annotation of genome sequences for indica and japonica rice. This information-coupled with the development of new genotyping methodologies and platforms, and the development of bioinformatics databases and software tools-provides even more exciting opportunities for rice molecular breeding in the 21st century. However, the great challenge for molecular breeders is to apply genomics data in actual breeding programs. Here, we review the current status of MAS in rice, current genomics projects and promising new genotyping methodologies, and evaluate the probable impact of genomics research. We also identify critical research areas to "bridge the application gap" between QTL identification and applied breeding that need to be addressed to realize the full potential of MAS, and propose ideas and guidelines for establishing rice molecular breeding labs in the postgenome sequence era to integrate molecular breeding within the context of overall rice breeding and research programs.
Collapse
Affiliation(s)
- Bert C. Y. Collard
- Hermitage Research Station, Queensland Department of Primary Industries & Fisheries, 604 Yangan Road, Warwick, Queensland 4370, Australia
| | - Casiana M. Vera Cruz
- International Rice Research Institute, DAPO Box 7777, Metro Manila, Philippines
- *Casiana M. Vera Cruz:
| | - Kenneth L. McNally
- International Rice Research Institute, DAPO Box 7777, Metro Manila, Philippines
| | - Parminder S. Virk
- International Rice Research Institute, DAPO Box 7777, Metro Manila, Philippines
| | - David J. Mackill
- International Rice Research Institute, DAPO Box 7777, Metro Manila, Philippines
| |
Collapse
|
7
|
Shirasawa K, Maeda H, Monna L, Kishitani S, Nishio T. The number of genes having different alleles between rice cultivars estimated by SNP analysis. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2007; 115:1067-74. [PMID: 17823787 DOI: 10.1007/s00122-007-0632-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2007] [Accepted: 08/10/2007] [Indexed: 05/17/2023]
Abstract
Identification of single nucleotide polymorphisms (SNPs) in a large number of genes will enable estimation of the number of genes having different alleles in a population. In the present study, SNPs between 21 rice cultivars including 17 Japanese cultivars, one upland rice, and three indica cultivars were analyzed by PCR-RF-SSCP. PCR-RF-SSCP analysis was found to be a more efficient method for detecting SNPs than mismatch-cleavage analysis, though both PCR-RF-SSCP and mismatch-cleavage are useful for screening SNPs. The number of DNA fragments showing polymorphism between Japanese cultivars was 134 in the 1,036 genes analyzed. In 137 genes, 638 DNA polymorphisms were identified. Out of 52 genes having polymorphisms in the exons, one had a frame-shift mutation, three had polymorphism causing amino acid insertions or deletions, and 16 genes had missense polymorphisms. The number of genes having frame-shift mutations and missense polymorphisms between the 17 Japanese cultivars was estimated to be 41 and 677 on average, respectively, and those between japonica and indica to be 425 and 6,977, respectively. Chromosomal regions of cultivars selected in rice breeding processes were identified by SNP analysis of genes.
Collapse
Affiliation(s)
- Kenta Shirasawa
- Graduate School of Agricultural Science, Tohoku University, Sendai 981-8555, Japan
| | | | | | | | | |
Collapse
|
8
|
Hori Y, Fujimoto R, Sato Y, Nishio T. A novel wx mutation caused by insertion of a retrotransposon-like sequence in a glutinous cultivar of rice (Oryza sativa). TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2007; 115:217-24. [PMID: 17492423 DOI: 10.1007/s00122-007-0557-6] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2006] [Accepted: 04/14/2007] [Indexed: 05/08/2023]
Abstract
DNA polymorphism of the Wx gene in glutinous rice cultivars was investigated by PCR-RF-SSCP and heteroduplex cleavage analysis using Brassica petiole extract, and the nucleotide sequence variations were identified. Most japonica-type glutinous rice was found to have a 23-bp duplication in the second exon, which causes loss of the function of granule-bound starch synthase (GBSS) encoded by the Wx gene. Without the 23-bp duplication, there was an insertion of 7,764 bp in the ninth exon of the wx allele of 'Oragamochi'. Expression analysis of the wx allele using RT-PCR and Northern blot analysis revealed that transcripts of the 'Oragamochi' wx allele are about 1-kb shorter and that the deduced amino acid sequence of the transcript lacks a motif important for GBSS. Therefore, this insertion was considered to be the cause of the glutinous trait of 'Oragamochi'. This 7,764-bp insertion had long terminal repeats, a primer binding site, and a polypurine tract, but no sequence homologous with gag and pol, suggesting that it is a non-autonomous element. Furthermore, it had a structure similar to Dasheng and may be a member of Dasheng.
Collapse
Affiliation(s)
- Y Hori
- Graduate School of Agricultural Science, Tohoku University, Tsutsumidori-Amamiyamachi 1-1, Aoba-ku, Sendai, 981-8555, Japan
| | | | | | | |
Collapse
|
9
|
HINTEN GN, HALE MC, GRATTEN J, MOSSMAN JA, LOWDER BV, MANN MK, SLATE J. TECHNICAL ARTICLE: SNP-SCALE: SNP scoring by colour and length exclusion. ACTA ACUST UNITED AC 2007. [DOI: 10.1111/j.1471-8286.2006.01648.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
10
|
Ip M, Chau SSL, Chi F, Qi A, Lai RWM. Rapid screening of fluoroquinolone resistance determinants in Streptococcus pneumoniae by PCR-restriction fragment length polymorphism and single-strand conformational polymorphism. J Clin Microbiol 2006; 44:970-5. [PMID: 16517885 PMCID: PMC1393157 DOI: 10.1128/jcm.44.3.970-975.2006] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
A rapid method, using PCR-restriction fragment length and single-strand conformation polymorphism (SSCP), was applied to screen for mutations of the fluoroquinolone resistance determinants in Streptococcus pneumoniae. One hundred nonduplicate Streptococcus pneumoniae isolates with ciprofloxacin MICs of > or = 4.0 microg/ml from the Prince of Wales Hospital, Hong Kong, years 2000 to 2003, were examined. For each isolate, PCR amplicons of quinolone resistance-determining regions (QRDRs) of gyrA, gyrB, parC, and parE genes were digested with AluI, HinfI, Sau3AI, and MspI, respectively, and analyzed by SSCP. Each SSCP pattern was given a number, and each isolate obtained a four-digit code, e.g., 1111, that represented the SSCP profile. The SSCP patterns were correlated to mutations characterized from sequence analyses of PCR amplicons. The most common SSCP profile obtained was no. 5232 (40%), which included strains with two amino acid substitutions in the ParC (Lys-137-Asn) and ParE (Ile-460-Val) genes, followed by the SSCP profile 5223 (17%), which included strains with amino acid substitutions in the ParE (Ile-460-Val) gene only. Ten isolates (10%) with amino acid substitutions at GyrA and ParE (+/-ParC) genes were resistant to levofloxacin with a MIC of > or = 16 microg/ml. Other SSCP profiles were unique in distinguishing the common amino acid substitutions in GyrA (Ser-81-Phe) and ParC (Lys-137-Asn, Ser-79-Phe plus Lys-137-Asn, Asp-83-Asn plus Lys-137-Asn, Ser-79-Phe, and Glu-96-Asp). SSCP analysis of restricted fragments generated patterns that were highly discriminative for mutations present in the QRDRs of gyrA, gyrB, parC, and parE. This method provides a database of high resolution profiles on these mutations and allows rapid screening for new mutations of the fluoroquinolone resistance genes.
Collapse
Affiliation(s)
- Margaret Ip
- Department of Microbiology, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, Hong Kong.
| | | | | | | | | |
Collapse
|
11
|
VAN HOUDT JKJ, CLEYN LDE, PERRETTI A, VOLCKAERT FAM. Discriminating glacial races of burbot (Lota lota) by means of PCR-RF-SSCP (PRS) analysis of the mitochondrial control region. ACTA ACUST UNITED AC 2006. [DOI: 10.1111/j.1471-8286.2006.01268.x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|