1
|
Wu WR, Cheng CS, Cheng QQ, Lao CC, Cui H, Tang ZY, Ouyang Y, Liu L, Zhou H. Novel SNP markers on ginsenosides biosynthesis functional gene for authentication of ginseng herbs and commercial products. Chin J Nat Med 2021; 18:770-778. [PMID: 33039056 DOI: 10.1016/s1875-5364(20)60017-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Indexed: 11/19/2022]
Abstract
Panax ginseng and Panax quinquefolius have similar bioactive components and morphological characteristics, but they are known to have different medicinal values, high-sensitive and accurate method is expected to identify the sources of ginseng products and evaluate the quality, but with a huge challenge. Our established UHPLC-TOF/MS method coupled with orthogonal partial least squares discriminant analysis (OPLS-DA) model based on 18 ginsenosides was applied to discriminate the sources of raw medicinal materials in ginseng products, and nested PCR strategy was used to discover 6 novel single nucleotide polymorphism (SNP) sites in functional dammarenediol synthase (DS) gene for genetic authentication of P. ginseng and P. quinquefolius for the first time. OPLS-DA model could identify the sources of raw ginseng materials are real or not. SNP markers were applied to identify ginseng fresh samples as well as commercial products, and proved to be successful. This established molecular method can tell exact source information of adulterants, and it was highly sensitive and specific even when total DNA amount was only 0.1 ng and the adulteration was as low as 1%. Therefore, this study made an attempt at the exploration of new type SNP marker for variety authentication and function regulation at the same time, and the combination of chemical and molecular discrimination methods provided the comprehensive evaluation and authentication for the sources of ginseng herbs and products.
Collapse
Affiliation(s)
- Wen-Ru Wu
- State Key Laboratory of Quality Research in Chinese Medicine, Faculty of Chinese Medicine, Macau University of Science and Technology, Macao 999078, China; School of Chinese Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou 510006, China
| | - Chun-Song Cheng
- State Key Laboratory of Quality Research in Chinese Medicine, Faculty of Chinese Medicine, Macau University of Science and Technology, Macao 999078, China
| | - Qi-Qing Cheng
- State Key Laboratory of Quality Research in Chinese Medicine, Faculty of Chinese Medicine, Macau University of Science and Technology, Macao 999078, China
| | - Chi-Chou Lao
- State Key Laboratory of Quality Research in Chinese Medicine, Faculty of Chinese Medicine, Macau University of Science and Technology, Macao 999078, China
| | - Hao Cui
- State Key Laboratory of Quality Research in Chinese Medicine, Faculty of Chinese Medicine, Macau University of Science and Technology, Macao 999078, China
| | - Zi-Yu Tang
- State Key Laboratory of Quality Research in Chinese Medicine, Faculty of Chinese Medicine, Macau University of Science and Technology, Macao 999078, China
| | - Yue Ouyang
- State Key Laboratory of Quality Research in Chinese Medicine, Faculty of Chinese Medicine, Macau University of Science and Technology, Macao 999078, China
| | - Liang Liu
- State Key Laboratory of Quality Research in Chinese Medicine, Faculty of Chinese Medicine, Macau University of Science and Technology, Macao 999078, China
| | - Hua Zhou
- State Key Laboratory of Quality Research in Chinese Medicine, Faculty of Chinese Medicine, Macau University of Science and Technology, Macao 999078, China; Joint Laboratory for Translational Cancer Research of Chinese Medicine of the Ministry of Education of the People's Republic of China, Macau University of Science and Technology, Macao 999078, China.
| |
Collapse
|
2
|
Wang J, Li R, Mao X, Jing R. Functional Analysis and Marker Development of TaCRT-D Gene in Common Wheat ( Triticum aestivum L.). FRONTIERS IN PLANT SCIENCE 2017; 8:1557. [PMID: 28955354 PMCID: PMC5601976 DOI: 10.3389/fpls.2017.01557] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2017] [Accepted: 08/25/2017] [Indexed: 05/16/2023]
Abstract
Calreticulin (CRT), an endoplasmic reticulum (ER)-localized Ca2+-binding/buffering protein, is highly conserved and extensively expressed in animal and plant cells. To understand the function of CRTs in wheat (Triticum aestivum L.), particularly their roles in stress tolerance, we cloned the full-length genomic sequence of the TaCRT-D isoform from D genome of common hexaploid wheat, and characterized its function by transgenic Arabidopsis system. TaCRT-D exhibited different expression patterns in wheat seedling under different abiotic stresses. Transgenic Arabidopsis plants overexpressing ORF of TaCRT-D displayed more tolerance to drought, cold, salt, mannitol, and other abiotic stresses at both seed germination and seedling stages, compared with the wild-type controls. Furthermore, DNA polymorphism analysis and gene mapping were employed to develop the functional markers of this gene for marker-assistant selection in wheat breeding program. One SNP, S440 (T→C) was detected at the TaCRT-D locus by genotyping a wheat recombinant inbred line (RIL) population (114 lines) developed from Opata 85 × W7984. The TaCRT-D was then fine mapped between markers Xgwm645 and Xgwm664 on chromosome 3DL, corresponding to genetic distances of 3.5 and 4.4 cM, respectively, using the RIL population and Chinese Spring nulli-tetrasomic lines. Finally, the genome-specific and allele-specific markers were developed for the TaCRT-D gene. These findings indicate that TaCRT-D function importantly in plant stress responses, providing a gene target for genetic engineering to increase plant stress tolerance and the functional markers of TaCRT-D for marker-assistant selection in wheat breeding.
Collapse
Affiliation(s)
- Jiping Wang
- College of Agronomy, Shanxi Agricultural UniversityJinzhong, China
| | - Runzhi Li
- College of Agronomy, Shanxi Agricultural UniversityJinzhong, China
| | - Xinguo Mao
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural SciencesBeijing, China
| | - Ruilian Jing
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural SciencesBeijing, China
| |
Collapse
|
3
|
Kushanov FN, Pepper AE, Yu JZ, Buriev ZT, Shermatov SE, Saha S, Ulloa M, Jenkins JN, Abdukarimov A, Abdurakhmonov IY. Development, genetic mapping and QTL association of cotton PHYA, PHYB, and HY5-specific CAPS and dCAPS markers. BMC Genet 2016; 17:141. [PMID: 27776497 PMCID: PMC5078887 DOI: 10.1186/s12863-016-0448-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2016] [Accepted: 10/13/2016] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND Among SNP markers that become increasingly valuable in molecular breeding of crop plants are the CAPS and dCAPS markers derived from the genes of interest. To date, the number of such gene-based markers is small in polyploid crop plants such as allotetraploid cotton that has A- and D-sub-genomes. The objective of this study was to develop and map new CAPS and dCAPS markers for cotton developmental-regulatory genes that are important in plant breeding programs. RESULTS Gossypium hirsutum and G. barbadense, are the two cultivated allotetraploid cotton species. These have distinct fiber quality and other agronomic traits. Using comparative sequence analysis of characterized GSTs of the PHYA1, PHYB, and HY5 genes of G. hirsutum and G. barbadense one PHYA1-specific Mbo I/Dpn II CAPS, one PHYB-specific Alu I dCAPS, and one HY5-specific Hinf I dCAPS cotton markers were developed. These markers have successfully differentiated the two allotetraploid genomes (AD1 and AD2) when tested in parental genotypes of 'Texas Marker-1' ('TM-1'), 'Pima 3-79' and their F1 hybrids. The genetic mapping and chromosome substitution line-based deletion analyses revealed that PHYA1 gene is located in A-sub-genome chromosome 11, PHYB gene is in A-sub-genome chromosome 10, and HY5 gene is in D-sub-genome chromosome 24, on the reference 'TM-1' x 'Pima 3-79' RIL genetic map. Further, it was found that genetic linkage map regions containing phytochrome and HY5-specific markers were associated with major fiber quality and flowering time traits in previously published QTL mapping studies. CONCLUSION This study detailed the genome mapping of three cotton phytochrome genes with newly developed CAPS and dCAPS markers. The proximity of these loci to fiber quality and other cotton QTL was demonstrated in two A-subgenome and one D-subgenome chromosomes. These candidate gene markers will be valuable for marker-assisted selection (MAS) programs to rapidly introgress G. barbadense phytochromes and/or HY5 gene (s) into G. hirsutum cotton genotypes or vice versa.
Collapse
Affiliation(s)
- Fakhriddin N. Kushanov
- Center of Genomics and Bioinformatics, Academy of Sciences of the Republic of Uzbekistan, University Street-2, Qibray region Tashkent District, 111215 Uzbekistan
| | - Alan E. Pepper
- Department of Biology, Texas A&M University, Colleges Station, TX 77843 USA
| | - John Z. Yu
- USDA-ARS, Southern Plains Agricultural Research Center, 2881 F&B Road, College Station, TX 77845 USA
| | - Zabardast T. Buriev
- Center of Genomics and Bioinformatics, Academy of Sciences of the Republic of Uzbekistan, University Street-2, Qibray region Tashkent District, 111215 Uzbekistan
| | - Shukhrat E. Shermatov
- Center of Genomics and Bioinformatics, Academy of Sciences of the Republic of Uzbekistan, University Street-2, Qibray region Tashkent District, 111215 Uzbekistan
| | - Sukumar Saha
- USDA-ARS, Crop Science Research Laboratory, Mississippi State, MS 39762 USA
| | - Mauricio Ulloa
- USDA-ARS, Plant Stress and Germplasm Development Research, 3810 4th Street, Lubbock, TX 79415 USA
| | - Johnie N. Jenkins
- USDA-ARS, Crop Science Research Laboratory, Mississippi State, MS 39762 USA
| | - Abdusattor Abdukarimov
- Center of Genomics and Bioinformatics, Academy of Sciences of the Republic of Uzbekistan, University Street-2, Qibray region Tashkent District, 111215 Uzbekistan
| | - Ibrokhim Y. Abdurakhmonov
- Center of Genomics and Bioinformatics, Academy of Sciences of the Republic of Uzbekistan, University Street-2, Qibray region Tashkent District, 111215 Uzbekistan
| |
Collapse
|
4
|
Molecular characterization and sequence diversity of genes encoding the large subunit of the ADP-glucose pyrophosphorylase in wheat (Triticum aestivum L.). J Appl Genet 2015; 57:15-25. [PMID: 26109252 DOI: 10.1007/s13353-015-0298-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2015] [Revised: 05/23/2015] [Accepted: 06/04/2015] [Indexed: 10/23/2022]
Abstract
The large subunit of ADP glucose pyrophosphorylase (AGPase), the rate limiting enzyme in starch biosynthesis in Triticum aestivum L., is encoded by the ADP glucose pyrophosphorylase large subunit (AGP-L) gene. This was the first report on the development of three genome-specific primer sets for isolating the complete genomic sequence of all three homoeologous AGP-L genes on group 1 chromosomes. All three AGP-L genes consisted of 15 introns and 15 exons. The lengths of the structural genes from start to stop codon were 3334 bp for AGP-L-A1, 3351 bp for AGP-L-B1, and 3340 bp for AGP-L-D1. The coding region was 1569 bases long in all three genomes. All three AGP-L genes encoded 522 amino acid residues including the transit peptide sequences with 62 amino acid residues and the mature protein with 460 amino acid residues. The mature protein of three AGP-L genes was highly conserved. Three AGP-L genes were sequenced in 47 diverse spring and winter wheat genotypes. One and two haplotypes were found for AGP-L-D1 and AGP-L-A1, respectively. In total, 67 SNPs (single nucleotide polymorphisms) and 13 indels (insertions or deletions) forming five haplotypes were identified for AGP-L-B1. All 13 indels and 58 of the 67 SNPs among the 47 genotypes were located in the non-coding regions, while the remaining nine SNPs were synonymous substitutions in the coding region. Significant LD was found among the 45 SNPs and ten indels located from intron 2 to intron 3. Association analysis indicated that four SNPs were strongly associated with seed number per spike and thousand kernel weight.
Collapse
|
5
|
Yue A, Li A, Mao X, Chang X, Li R, Jing R. Identification and development of a functional marker from 6- SFT- A2 associated with grain weight in wheat. MOLECULAR BREEDING : NEW STRATEGIES IN PLANT IMPROVEMENT 2015; 35:63. [PMID: 25653572 PMCID: PMC4311048 DOI: 10.1007/s11032-015-0266-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2014] [Accepted: 10/07/2014] [Indexed: 05/27/2023]
Abstract
As a class of water-soluble, fructose-based oligo- and polysaccharides, fructans are major nonstructural carbohydrates and an important carbon source for grain filling in wheat (Triticum aestivum L.). Four enzymes are involved in fructan synthesis in higher plants, and 6-SFT is a key enzyme in fructan biosynthesis. In this study, thirteen single nucleotide polymorphisms were detected in 6-SFT-A2 in 24 wheat accessions, forming three haplotypes. Two cleaved amplified polymorphic sequence markers developed based on polymorphisms at sites 1870(A-G) and 1951(A-G) distinguished the three haplotypes. 6-SFT-A2 was located on chromosome 4A, between markers P2454.3 and P3465.1 in a doubled haploid (DH) population derived from the cross Hanxuan 10 × Lumai 14. The DH population comprising 150 lines and a historical population consisting of 154 accessions were used in a 6-SFT-A2 marker-trait association analysis. The three haplotypes were significantly associated with thousand-grain weight (TGW) under rainfed conditions. HapIII had a significant positive effect on TGW. There were significant differences between the Hanxuan 10 and Lumai 14 genotypes in both rainfed and irrigated environments. The average TGW of Lumai 14 (HapIII) was higher than that of Hanxuan 10 (HapI). The frequencies of 6-SFT-A2HapIII in cultivars released at different periods showed that it had been strongly positively selected in breeding programs. The preferred HapIII for TGW occurred at higher frequencies in Gansu, Beijing, Shanxi, and Hebei than other regions in northern China.
Collapse
Affiliation(s)
- Aiqin Yue
- The National Key Facility for Crop Gene Resources and Genetic Improvement/Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, 100081 China
- Agronomy College, Shanxi Agricultural University, Taigu, 030801 China
| | - Ang Li
- The National Key Facility for Crop Gene Resources and Genetic Improvement/Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, 100081 China
| | - Xinguo Mao
- The National Key Facility for Crop Gene Resources and Genetic Improvement/Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, 100081 China
| | - Xiaoping Chang
- The National Key Facility for Crop Gene Resources and Genetic Improvement/Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, 100081 China
| | - Runzhi Li
- Agronomy College, Shanxi Agricultural University, Taigu, 030801 China
| | - Ruilian Jing
- The National Key Facility for Crop Gene Resources and Genetic Improvement/Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, 100081 China
| |
Collapse
|
6
|
Thyssen GN, Fang DD, Turley RB, Florane C, Li P, Naoumkina M. Next generation genetic mapping of the Ligon-lintless-2 (Li₂) locus in upland cotton (Gossypium hirsutum L.). TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2014; 127:2183-92. [PMID: 25119870 DOI: 10.1007/s00122-014-2372-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2014] [Accepted: 07/25/2014] [Indexed: 05/10/2023]
Abstract
Mapping-by-sequencing and novel subgenome-specific SNP markers were used to fine map the Ligon-lintless 2 ( Li 2 ) short-fiber gene in tetraploid cotton. These methodologies will accelerate gene identification in polyploid species. Next generation sequencing offers new ways to identify the genetic mechanisms that underlie mutant phenotypes. The release of a reference diploid Gossypium raimondii (D5) genome and bioinformatics tools to sort tetraploid reads into subgenomes has brought cotton genetic mapping into the genomics era. We used multiple high-throughput sequencing approaches to identify the relevant region of reference sequence and identify single nucleotide polymorphisms (SNPs) near the short-fiber mutant Ligon-lintless 2 (Li 2) gene locus. First, we performed RNAseq on 8-day post-anthesis (DPA) fiber cells from the Li 2 mutant and its wild type near isogenic line (NIL) Gossypium hirsutum cv. DP5690. We aligned sequence reads to the D5 genome, sorted the reads into A and D subgenomes with PolyCat and called SNPs with InterSNP. We then identified SNPs that would result in non-synonymous substitutions to amino acid sequences of annotated genes. This step allowed us to identify a 1-Mb region with 24 non-synonymous SNPs, representing the introgressed region that differentiates Li 2 from its NIL. Next, we sequenced total DNA from pools of F2 plants, using a super bulked segregant analysis sequencing (sBSAseq) approach. The sBSAseq predicted 82 non-synonymous SNPs among 3,494 SNPs in a 3-Mb region that includes the region identified by RNAseq. We designed subgenome-specific SNP markers and tested them in an F2 population of 1,733 individuals to construct a genetic map. Our resulting genetic interval contains only one gene, an aquaporin, which is highly expressed in wild-type fibers and is significantly under-expressed in elongating Li 2 fiber cells.
Collapse
Affiliation(s)
- Gregory N Thyssen
- Cotton Fiber Bioscience Research Unit, USDA-ARS-SRRC, 1100 Robert E. Lee Blvd, New Orleans, LA, 70124, USA
| | | | | | | | | | | |
Collapse
|
7
|
Characterization and evolutionary analysis of Brassica species-diverged sequences containing simple repeat units. Genes Genomics 2013. [DOI: 10.1007/s13258-013-0076-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
8
|
Hand ML, Cogan NOI, Forster JW. Genome-wide SNP identification in multiple morphotypes of allohexaploid tall fescue (Festuca arundinacea Schreb). BMC Genomics 2012; 13:219. [PMID: 22672128 PMCID: PMC3444928 DOI: 10.1186/1471-2164-13-219] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2012] [Accepted: 05/15/2012] [Indexed: 01/29/2023] Open
Abstract
BACKGROUND Single nucleotide polymorphisms (SNPs) provide essential tools for the advancement of research in plant genomics, and the development of SNP resources for many species has been accelerated by the capabilities of second-generation sequencing technologies. The current study aimed to develop and use a novel bioinformatic pipeline to generate a comprehensive collection of SNP markers within the agriculturally important pasture grass tall fescue; an outbreeding allopolyploid species displaying three distinct morphotypes: Continental, Mediterranean and rhizomatous. RESULTS A bioinformatic pipeline was developed that successfully identified SNPs within genotypes from distinct tall fescue morphotypes, following the sequencing of 414 polymerase chain reaction (PCR) - generated amplicons using 454 GS FLX technology. Equivalent amplicon sets were derived from representative genotypes of each morphotype, including six Continental, five Mediterranean and one rhizomatous. A total of 8,584 and 2,292 SNPs were identified with high confidence within the Continental and Mediterranean morphotypes respectively. The success of the bioinformatic approach was demonstrated through validation (at a rate of 70%) of a subset of 141 SNPs using both SNaPshot™ and GoldenGate™ assay chemistries. Furthermore, the quantitative genotyping capability of the GoldenGate™ assay revealed that approximately 30% of the putative SNPs were accessible to co-dominant scoring, despite the hexaploid genome structure. The sub-genome-specific origin of each SNP validated from Continental tall fescue was predicted using a phylogenetic approach based on comparison with orthologous sequences from predicted progenitor species. CONCLUSIONS Using the appropriate bioinformatic approach, amplicon resequencing based on 454 GS FLX technology is an effective method for the identification of polymorphic SNPs within the genomes of Continental and Mediterranean tall fescue. The GoldenGate™ assay is capable of high-throughput co-dominant SNP allele detection, and minimises the problems associated with SNP genotyping in a polyploid by effectively reducing the complexity to a diploid system. This SNP collection may now be refined and used in applications such as cultivar identification, genetic linkage map construction, genome-wide association studies and genomic selection in tall fescue. The bioinformatic pipeline described here represents an effective general method for SNP discovery within outbreeding allopolyploid species.
Collapse
Affiliation(s)
- Melanie L Hand
- Department of Primary Industries, Biosciences Research Division, Victorian AgriBiosciences Centre, 1 Park Drive, La Trobe University Research and Development Park, Bundoora, VIC 3083, Australia
| | | | | |
Collapse
|
9
|
Kaur S, Francki MG, Forster JW. Identification, characterization and interpretation of single-nucleotide sequence variation in allopolyploid crop species. PLANT BIOTECHNOLOGY JOURNAL 2012; 10:125-38. [PMID: 21831136 DOI: 10.1111/j.1467-7652.2011.00644.x] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
An understanding of nature and extent of nucleotide sequence variation is required for programmes of discovery and characterization of single nucleotide polymorphisms (SNPs), which provide the most versatile class of molecular genetic marker. A majority of higher plant species are polyploids, and allopolyploidy, because of hybrid formation between closely related taxa, is very common. Mutational variation may arise both between allelic (homologous) sequences within individual subgenomes and between homoeologous sequences among subgenomes, in addition to paralogous variation between duplicated gene copies. Successful SNP validation in allopolyploids depends on differentiation of the sequence variation classes. A number of biological factors influence the feasibility of discrimination, including degree of gene family complexity, inbreeding or outbreeding reproductive habit, and the level of knowledge concerning progenitor diploid species. In addition, developments in high-throughput DNA sequencing and associated computational analysis provide general solutions for the genetic analysis of allopolyploids. These issues are explored in the context of experience from a range of allopolyploid species, representing grain (wheat and canola), forage (pasture legumes and grasses), and horticultural (strawberry) crop. Following SNP discovery, detection in routine genotyping applications also presents challenges for allopolyploids. Strategies based on either design of subgenome-specific SNP assays through homoeolocus-targeted polymerase chain reaction (PCR) amplification, or detection of incremental changes in nucleotide variant dosage, are described.
Collapse
Affiliation(s)
- Sukhjiwan Kaur
- Department of Primary Industries, Biosciences Research Division, Victorian AgriBiosciences Centre, La Trobe University Research and Development Park, Bundoora, Victoria, Australia
| | | | | |
Collapse
|
10
|
Alo F, Furman BJ, Akhunov E, Dvorak J, Gepts P. Leveraging genomic resources of model species for the assessment of diversity and phylogeny in wild and domesticated lentil. ACTA ACUST UNITED AC 2011; 102:315-29. [PMID: 21454287 DOI: 10.1093/jhered/esr015] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Advances in comparative genomics have provided significant opportunities for analysis of genetic diversity in species with limited genomic resources, such as the genus Lens. Medicago truncatula expressed sequence tags (ESTs) were aligned with the Arabidopsis thaliana genome sequence to identify conserved exon sequences and splice sites in the ESTs. Conserved primers (CPs) based on M. truncatula EST sequences flanking one or more introns were then designed. A total of 22% of the CPs produced polymerase chain reaction amplicons in lentil and were used to sequence amplicons in 175 wild and 133 domesticated lentil accessions. Analysis of the sequences confirmed that L. nigricans and L. ervoides are well-defined species at the DNA sequence level. Lens culinaris subsp. odemensis, L. culinaris subsp. tomentosus, and L. lamottei may constitute a single taxon pending verification with crossability experiments. Lens culinaris subsp. orientalis is the progenitor of domesticated lentil, L. culinaris subsp. culinaris (as proposed before), but a more specific area of origin can be suggested in southern Turkey. We were also able to detect the divergence, following domestication, of the domesticated gene pool into overlapping large-seeded (megasperma) and small-seeded (microsperma) groups. Lentil domestication led to a loss of genetic diversity of approximately 40%. The approach followed in this research has allowed us to rapidly exploit sequence information from model plant species for the study of genetic diversity of a crop such as lentil with limited genomic resources.
Collapse
Affiliation(s)
- Fida Alo
- International Center for Agriculture in the Dry Areas, Aleppo, Syria
| | | | | | | | | |
Collapse
|
11
|
Wang J, Qi P, Wei Y, Liu D, Fedak G, Zheng Y. Molecular characterization and functional analysis of elite genes in wheat and its related species. J Genet 2011; 89:539-54. [PMID: 21273706 DOI: 10.1007/s12041-010-0074-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
The tribe Triticeae includes major cereal crops (bread wheat, durum wheat, triticale, barley and rye), as well as abundant forage and lawn grasses. Wheat and its wild related species possess numerous favourable genes for yield improvement, grain quality enhancement, biotic and abiotic stress resistance, and constitute a giant gene pool for wheat improvement. In recent years, significant progress on molecular characterization and functional analysis of elite genes in wheat and its related species have been achieved. In this paper, we review the cloned functional genes correlated with grain quality, biotic and abiotic stress resistance, photosystem and nutrition utilization in wheat and its related species.
Collapse
Affiliation(s)
- Jirui Wang
- Triticeae Research Institute, Sichuan Agricultural University, Yaan 625014, Sichuan, People's Republic of China
| | | | | | | | | | | |
Collapse
|
12
|
Akhunov ED, Akhunova AR, Anderson OD, Anderson JA, Blake N, Clegg MT, Coleman-Derr D, Conley EJ, Crossman CC, Deal KR, Dubcovsky J, Gill BS, Gu YQ, Hadam J, Heo H, Huo N, Lazo GR, Luo MC, Ma YQ, Matthews DE, McGuire PE, Morrell PL, Qualset CO, Renfro J, Tabanao D, Talbert LE, Tian C, Toleno DM, Warburton ML, You FM, Zhang W, Dvorak J. Nucleotide diversity maps reveal variation in diversity among wheat genomes and chromosomes. BMC Genomics 2010; 11:702. [PMID: 21156062 PMCID: PMC3022916 DOI: 10.1186/1471-2164-11-702] [Citation(s) in RCA: 138] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2010] [Accepted: 12/14/2010] [Indexed: 01/19/2023] Open
Abstract
BACKGROUND A genome-wide assessment of nucleotide diversity in a polyploid species must minimize the inclusion of homoeologous sequences into diversity estimates and reliably allocate individual haplotypes into their respective genomes. The same requirements complicate the development and deployment of single nucleotide polymorphism (SNP) markers in polyploid species. We report here a strategy that satisfies these requirements and deploy it in the sequencing of genes in cultivated hexaploid wheat (Triticum aestivum, genomes AABBDD) and wild tetraploid wheat (Triticum turgidum ssp. dicoccoides, genomes AABB) from the putative site of wheat domestication in Turkey. Data are used to assess the distribution of diversity among and within wheat genomes and to develop a panel of SNP markers for polyploid wheat. RESULTS Nucleotide diversity was estimated in 2114 wheat genes and was similar between the A and B genomes and reduced in the D genome. Within a genome, diversity was diminished on some chromosomes. Low diversity was always accompanied by an excess of rare alleles. A total of 5,471 SNPs was discovered in 1791 wheat genes. Totals of 1,271, 1,218, and 2,203 SNPs were discovered in 488, 463, and 641 genes of wheat putative diploid ancestors, T. urartu, Aegilops speltoides, and Ae. tauschii, respectively. A public database containing genome-specific primers, SNPs, and other information was constructed. A total of 987 genes with nucleotide diversity estimated in one or more of the wheat genomes was placed on an Ae. tauschii genetic map, and the map was superimposed on wheat deletion-bin maps. The agreement between the maps was assessed. CONCLUSIONS In a young polyploid, exemplified by T. aestivum, ancestral species are the primary source of genetic diversity. Low effective recombination due to self-pollination and a genetic mechanism precluding homoeologous chromosome pairing during polyploid meiosis can lead to the loss of diversity from large chromosomal regions. The net effect of these factors in T. aestivum is large variation in diversity among genomes and chromosomes, which impacts the development of SNP markers and their practical utility. Accumulation of new mutations in older polyploid species, such as wild emmer, results in increased diversity and its more uniform distribution across the genome.
Collapse
Affiliation(s)
- Eduard D Akhunov
- Department of Plant Sciences, University of California, Davis, CA 95616, USA
- Department of Plant Pathology, KSU, Manhattan, KS 66506, USA
| | - Alina R Akhunova
- Department of Plant Sciences, University of California, Davis, CA 95616, USA
- Department of Plant Pathology, KSU, Manhattan, KS 66506, USA
| | - Olin D Anderson
- Genomics and Gene Discovery Unit, USDA/ARS Western Regional Research Center, Albany, CA 94710, USA
| | - James A Anderson
- Department of Agronomy and Plant Genetics, University of Minnesota, St. Paul, MN 55108, USA
| | - Nancy Blake
- Department of Plant Sciences and Plant Pathology, Montana State University, Bozeman, MT 59717, USA
| | - Michael T Clegg
- Department of Ecology and Evolutionary Biology, University of California, Irvine, CA 92697, USA
| | - Devin Coleman-Derr
- Genomics and Gene Discovery Unit, USDA/ARS Western Regional Research Center, Albany, CA 94710, USA
| | - Emily J Conley
- Department of Agronomy and Plant Genetics, University of Minnesota, St. Paul, MN 55108, USA
| | - Curt C Crossman
- Genomics and Gene Discovery Unit, USDA/ARS Western Regional Research Center, Albany, CA 94710, USA
| | - Karin R Deal
- Department of Plant Sciences, University of California, Davis, CA 95616, USA
| | - Jorge Dubcovsky
- Department of Plant Sciences, University of California, Davis, CA 95616, USA
| | - Bikram S Gill
- Department of Plant Pathology, Kansas State University, Manhattan KS 66506, USA
| | - Yong Q Gu
- Genomics and Gene Discovery Unit, USDA/ARS Western Regional Research Center, Albany, CA 94710, USA
| | - Jakub Hadam
- Department of Plant Pathology, Kansas State University, Manhattan KS 66506, USA
| | - Hwayoung Heo
- Department of Plant Sciences and Plant Pathology, Montana State University, Bozeman, MT 59717, USA
| | - Naxin Huo
- Genomics and Gene Discovery Unit, USDA/ARS Western Regional Research Center, Albany, CA 94710, USA
| | - Gerard R Lazo
- Genomics and Gene Discovery Unit, USDA/ARS Western Regional Research Center, Albany, CA 94710, USA
| | - Ming-Cheng Luo
- Department of Plant Sciences, University of California, Davis, CA 95616, USA
| | - Yaqin Q Ma
- Department of Plant Sciences, University of California, Davis, CA 95616, USA
- Department of Botany and Plant Sciences, University of California, Riverside, CA 92521, USA
| | | | - Patrick E McGuire
- Department of Plant Sciences, University of California, Davis, CA 95616, USA
| | - Peter L Morrell
- Department of Agronomy and Plant Genetics, University of Minnesota, St. Paul, MN 55108, USA
| | - Calvin O Qualset
- Department of Plant Sciences, University of California, Davis, CA 95616, USA
| | - James Renfro
- Genomics and Gene Discovery Unit, USDA/ARS Western Regional Research Center, Albany, CA 94710, USA
| | - Dindo Tabanao
- Department of Agronomy and Plant Genetics, University of Minnesota, St. Paul, MN 55108, USA
- Philippine Rice Research Institute, Maligaya, Nueva Ecija, Philippines
| | - Luther E Talbert
- Department of Plant Sciences and Plant Pathology, Montana State University, Bozeman, MT 59717, USA
| | - Chao Tian
- Department of Plant Sciences, University of California, Davis, CA 95616, USA
| | - Donna M Toleno
- Department of Ecology and Evolutionary Biology, University of California, Irvine, CA 92697, USA
| | - Marilyn L Warburton
- The International Maize and Wheat Improvement Center (CIMMYT), 06600 Mexico, D.F., Mexico
- Corn Host Plant Research Resistance Unit, USDA/ARS MSU MS 39762, USA
| | - Frank M You
- Department of Plant Sciences, University of California, Davis, CA 95616, USA
| | - Wenjun Zhang
- Department of Plant Sciences, University of California, Davis, CA 95616, USA
| | - Jan Dvorak
- Department of Plant Sciences, University of California, Davis, CA 95616, USA
| |
Collapse
|
13
|
Akhunov ED, Akhunova AR, Anderson OD, Anderson JA, Blake N, Clegg MT, Coleman-Derr D, Conley EJ, Crossman CC, Deal KR, Dubcovsky J, Gill BS, Gu YQ, Hadam J, Heo H, Huo N, Lazo GR, Luo MC, Ma YQ, Matthews DE, McGuire PE, Morrell PL, Qualset CO, Renfro J, Tabanao D, Talbert LE, Tian C, Toleno DM, Warburton ML, You FM, Zhang W, Dvorak J. Nucleotide diversity maps reveal variation in diversity among wheat genomes and chromosomes. BMC Genomics 2010. [PMID: 21156062 DOI: 10.1186/1471‐2164‐11‐702] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND A genome-wide assessment of nucleotide diversity in a polyploid species must minimize the inclusion of homoeologous sequences into diversity estimates and reliably allocate individual haplotypes into their respective genomes. The same requirements complicate the development and deployment of single nucleotide polymorphism (SNP) markers in polyploid species. We report here a strategy that satisfies these requirements and deploy it in the sequencing of genes in cultivated hexaploid wheat (Triticum aestivum, genomes AABBDD) and wild tetraploid wheat (Triticum turgidum ssp. dicoccoides, genomes AABB) from the putative site of wheat domestication in Turkey. Data are used to assess the distribution of diversity among and within wheat genomes and to develop a panel of SNP markers for polyploid wheat. RESULTS Nucleotide diversity was estimated in 2114 wheat genes and was similar between the A and B genomes and reduced in the D genome. Within a genome, diversity was diminished on some chromosomes. Low diversity was always accompanied by an excess of rare alleles. A total of 5,471 SNPs was discovered in 1791 wheat genes. Totals of 1,271, 1,218, and 2,203 SNPs were discovered in 488, 463, and 641 genes of wheat putative diploid ancestors, T. urartu, Aegilops speltoides, and Ae. tauschii, respectively. A public database containing genome-specific primers, SNPs, and other information was constructed. A total of 987 genes with nucleotide diversity estimated in one or more of the wheat genomes was placed on an Ae. tauschii genetic map, and the map was superimposed on wheat deletion-bin maps. The agreement between the maps was assessed. CONCLUSIONS In a young polyploid, exemplified by T. aestivum, ancestral species are the primary source of genetic diversity. Low effective recombination due to self-pollination and a genetic mechanism precluding homoeologous chromosome pairing during polyploid meiosis can lead to the loss of diversity from large chromosomal regions. The net effect of these factors in T. aestivum is large variation in diversity among genomes and chromosomes, which impacts the development of SNP markers and their practical utility. Accumulation of new mutations in older polyploid species, such as wild emmer, results in increased diversity and its more uniform distribution across the genome.
Collapse
Affiliation(s)
- Eduard D Akhunov
- Department of Plant Sciences, University of California, Davis, CA 95616, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Hand ML, Cogan NOI, Stewart AV, Forster JW. Evolutionary history of tall fescue morphotypes inferred from molecular phylogenetics of the Lolium-Festuca species complex. BMC Evol Biol 2010. [PMID: 20937141 DOI: 10.1186/1471‐2148‐10‐303] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The agriculturally important pasture grass tall fescue (Festuca arundinacea Schreb. syn. Lolium arundinaceum (Schreb.) Darbysh.) is an outbreeding allohexaploid, that may be more accurately described as a species complex consisting of three major (Continental, Mediterranean and rhizomatous) morphotypes. Observation of hybrid infertility in some crossing combinations between morphotypes suggests the possibility of independent origins from different diploid progenitors. This study aims to clarify the evolutionary relationships between each tall fescue morphotype through phylogenetic analysis using two low-copy nuclear genes (encoding plastid acetyl-CoA carboxylase [Acc1] and centroradialis [CEN]), the nuclear ribosomal DNA internal transcribed spacer (rDNA ITS) and the chloroplast DNA (cpDNA) genome-located matK gene. Other taxa within the closely related Lolium-Festuca species complex were also included in the study, to increase understanding of evolutionary processes in a taxonomic group characterised by multiple inter-specific hybridisation events. RESULTS Putative homoeologous sequences from both nuclear genes were obtained from each polyploid species and compared to counterparts from 15 diploid taxa. Phylogenetic reconstruction confirmed F. pratensis and F. arundinacea var. glaucescens as probable progenitors to Continental tall fescue, and these species are also likely to be ancestral to the rhizomatous morphotype. However, these two morphotypes are sufficiently distinct to be located in separate clades based on the ITS-derived data set. All four of the generated data sets suggest independent evolution of the Mediterranean and Continental morphotypes, with minimal affinity between cognate sequence haplotypes. No obvious candidate progenitor species for Mediterranean tall fescues were identified, and only two putative sub-genome-specific haplotypes were identified for this morphotype. CONCLUSIONS This study describes the first phylogenetic analysis of the Festuca genus to include representatives of each tall fescue morphotype, and to use low copy nuclear gene-derived sequences to identify putative progenitors of the polyploid species. The demonstration of distinct tall fescue lineages has implications for both taxonomy and molecular breeding strategies, and may facilitate the generation of morphotype and/or sub-genome-specific molecular markers.
Collapse
Affiliation(s)
- Melanie L Hand
- Department of Primary Industries, Biosciences Research Division, Victorian AgriBiosciences Centre, 1 Park Drive, La Trobe University Research and Development Park, Bundoora, Victoria 3083, Australia
| | | | | | | |
Collapse
|
15
|
Hand ML, Cogan NOI, Stewart AV, Forster JW. Evolutionary history of tall fescue morphotypes inferred from molecular phylogenetics of the Lolium-Festuca species complex. BMC Evol Biol 2010; 10:303. [PMID: 20937141 PMCID: PMC2958922 DOI: 10.1186/1471-2148-10-303] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2010] [Accepted: 10/12/2010] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The agriculturally important pasture grass tall fescue (Festuca arundinacea Schreb. syn. Lolium arundinaceum (Schreb.) Darbysh.) is an outbreeding allohexaploid, that may be more accurately described as a species complex consisting of three major (Continental, Mediterranean and rhizomatous) morphotypes. Observation of hybrid infertility in some crossing combinations between morphotypes suggests the possibility of independent origins from different diploid progenitors. This study aims to clarify the evolutionary relationships between each tall fescue morphotype through phylogenetic analysis using two low-copy nuclear genes (encoding plastid acetyl-CoA carboxylase [Acc1] and centroradialis [CEN]), the nuclear ribosomal DNA internal transcribed spacer (rDNA ITS) and the chloroplast DNA (cpDNA) genome-located matK gene. Other taxa within the closely related Lolium-Festuca species complex were also included in the study, to increase understanding of evolutionary processes in a taxonomic group characterised by multiple inter-specific hybridisation events. RESULTS Putative homoeologous sequences from both nuclear genes were obtained from each polyploid species and compared to counterparts from 15 diploid taxa. Phylogenetic reconstruction confirmed F. pratensis and F. arundinacea var. glaucescens as probable progenitors to Continental tall fescue, and these species are also likely to be ancestral to the rhizomatous morphotype. However, these two morphotypes are sufficiently distinct to be located in separate clades based on the ITS-derived data set. All four of the generated data sets suggest independent evolution of the Mediterranean and Continental morphotypes, with minimal affinity between cognate sequence haplotypes. No obvious candidate progenitor species for Mediterranean tall fescues were identified, and only two putative sub-genome-specific haplotypes were identified for this morphotype. CONCLUSIONS This study describes the first phylogenetic analysis of the Festuca genus to include representatives of each tall fescue morphotype, and to use low copy nuclear gene-derived sequences to identify putative progenitors of the polyploid species. The demonstration of distinct tall fescue lineages has implications for both taxonomy and molecular breeding strategies, and may facilitate the generation of morphotype and/or sub-genome-specific molecular markers.
Collapse
Affiliation(s)
- Melanie L Hand
- Department of Primary Industries, Biosciences Research Division, Victorian AgriBiosciences Centre, 1 Park Drive, La Trobe University Research and Development Park, Bundoora, Victoria 3083, Australia
- La Trobe University, Bundoora, Victoria 3086, Australia
| | - Noel OI Cogan
- Department of Primary Industries, Biosciences Research Division, Victorian AgriBiosciences Centre, 1 Park Drive, La Trobe University Research and Development Park, Bundoora, Victoria 3083, Australia
- Molecular Plant Breeding and Dairy Futures Cooperative Research Centres, Australia
| | - Alan V Stewart
- PGG Wrightson Seeds, P.O. Box 175, Lincoln 7640, Canterbury, New Zealand
| | - John W Forster
- Department of Primary Industries, Biosciences Research Division, Victorian AgriBiosciences Centre, 1 Park Drive, La Trobe University Research and Development Park, Bundoora, Victoria 3083, Australia
- Molecular Plant Breeding and Dairy Futures Cooperative Research Centres, Australia
- La Trobe University, Bundoora, Victoria 3086, Australia
| |
Collapse
|
16
|
Sharma S, Sreenivasulu N, Harshavardhan VT, Seiler C, Sharma S, Khalil ZN, Akhunov E, Sehgal SK, Röder MS. Delineating the structural, functional and evolutionary relationships of sucrose phosphate synthase gene family II in wheat and related grasses. BMC PLANT BIOLOGY 2010; 10:134. [PMID: 20591144 PMCID: PMC3017794 DOI: 10.1186/1471-2229-10-134] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2010] [Accepted: 06/30/2010] [Indexed: 05/18/2023]
Abstract
BACKGROUND Sucrose phosphate synthase (SPS) is an important component of the plant sucrose biosynthesis pathway. In the monocotyledonous Poaceae, five SPS genes have been identified. Here we present a detailed analysis of the wheat SPSII family in wheat. A set of homoeologue-specific primers was developed in order to permit both the detection of sequence variation, and the dissection of the individual contribution of each homoeologue to the global expression of SPSII. RESULTS The expression in bread wheat over the course of development of various sucrose biosynthesis genes monitored on an Affymetrix array showed that the SPS genes were regulated over time and space. SPSII homoeologue-specific assays were used to show that the three homoeologues contributed differentially to the global expression of SPSII. Genetic mapping placed the set of homoeoloci on the short arms of the homoeologous group 3 chromosomes. A resequencing of the A and B genome copies allowed the detection of four haplotypes at each locus. The 3B copy includes an unspliced intron. A comparison of the sequences of the wheat SPSII orthologues present in the diploid progenitors einkorn, goatgrass and Triticum speltoides, as well as in the more distantly related species barley, rice, sorghum and purple false brome demonstrated that intronic sequence was less well conserved than exonic. Comparative sequence and phylogenetic analysis of SPSII gene showed that false purple brome was more similar to Triticeae than to rice. Wheat - rice synteny was found to be perturbed at the SPS region. CONCLUSION The homoeologue-specific assays will be suitable to derive associations between SPS functionality and key phenotypic traits. The amplicon sequences derived from the homoeologue-specific primers are informative regarding the evolution of SPSII in a polyploid context.
Collapse
Affiliation(s)
- Shailendra Sharma
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Corrensstr. 3, D-06466 Gatersleben, Germany
- Sardar Vallabh Bhai Patel University of Agriculture and Technology, Modipuram, Meerut, Uttar Pradesh 250110, India
- Iwate Biotechnology Research Center, Narita 22-174-4, Kitakami, Iwate 024-0003, Japan
| | - Nese Sreenivasulu
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Corrensstr. 3, D-06466 Gatersleben, Germany
| | | | - Christiane Seiler
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Corrensstr. 3, D-06466 Gatersleben, Germany
| | - Shiveta Sharma
- Plant Breeding Institute, Christian-Albrechts University of Kiel, Olshausenstrasse 40, 24098 Kiel Germany
| | - Zaynali Nezhad Khalil
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Corrensstr. 3, D-06466 Gatersleben, Germany
- Department of Agronomy and Plant Breeding, College of Agriculture, Isfahan University of Technology, 841568311, Isfahan, Iran
| | - Eduard Akhunov
- Department of Plant Pathology, Throckmorton Plant Sciences Center, Kansas State University, Manhattan, KS 66506, USA
| | - Sunish Kumar Sehgal
- Department of Plant Pathology, Throckmorton Plant Sciences Center, Kansas State University, Manhattan, KS 66506, USA
| | - Marion S Röder
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Corrensstr. 3, D-06466 Gatersleben, Germany
| |
Collapse
|
17
|
Huang XQ, Brûlé-Babel A. Development of genome-specific primers for homoeologous genes in allopolyploid species: the waxy and starch synthase II genes in allohexaploid wheat (Triticum aestivum L.) as examples. BMC Res Notes 2010; 3:140. [PMID: 20497560 PMCID: PMC2890506 DOI: 10.1186/1756-0500-3-140] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2010] [Accepted: 05/24/2010] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND In allopolypoid crops, homoeologous genes in different genomes exhibit a very high sequence similarity, especially in the coding regions of genes. This makes it difficult to design genome-specific primers to amplify individual genes from different genomes. Development of genome-specific primers for agronomically important genes in allopolypoid crops is very important and useful not only for the study of sequence diversity and association mapping of genes in natural populations, but also for the development of gene-based functional markers for marker-assisted breeding. Here we report on a useful approach for the development of genome-specific primers in allohexaploid wheat. FINDINGS In the present study, three genome-specific primer sets for the waxy (Wx) genes and four genome-specific primer sets for the starch synthase II (SSII) genes were developed mainly from single nucleotide polymorphisms (SNPs) and/or insertions or deletions (Indels) in introns and intron-exon junctions. The size of a single PCR product ranged from 750 bp to 1657 bp. The total length of amplified PCR products by these genome-specific primer sets accounted for 72.6%-87.0% of the Wx genes and 59.5%-61.6% of the SSII genes. Five genome-specific primer sets for the Wx genes (one for Wx-7A, three for Wx-4A and one for Wx-7D) could distinguish the wild type wheat and partial waxy wheat lines. These genome-specific primer sets for the Wx and SSII genes produced amplifications in hexaploid wheat, cultivated durum wheat, and Aegilops tauschii accessions, but failed to generate amplification in the majority of wild diploid and tetraploid accessions. CONCLUSIONS For the first time, we report on the development of genome-specific primers from three homoeologous Wx and SSII genes covering the majority of the genes in allohexaploid wheat. These genome-specific primers are being used for the study of sequence diversity and association mapping of the three homoeologous Wx and SSII genes in natural populations of both hexaploid wheat and cultivated tetraploid wheat. The strategies used in this paper can be used to develop genome-specific primers for homoeologous genes in any allopolypoid species. They may be also suitable for (i) the development of gene-specific primers for duplicated paralogous genes in any diploid species, and (ii) the development of allele-specific primers at the same gene locus.
Collapse
Affiliation(s)
- Xiu-Qiang Huang
- Department of Plant Science, University of Manitoba, 66 Dafoe Road, Winnipeg, Manitoba R3T 2N2, Canada.
| | | |
Collapse
|
18
|
Chai G, Bai Z, Wei F, King GJ, Wang C, Shi L, Dong C, Chen H, Liu S. Brassica GLABRA2 genes: analysis of function related to seed oil content and development of functional markers. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2010; 120:1597-1610. [PMID: 20162256 DOI: 10.1007/s00122-010-1279-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2009] [Accepted: 01/19/2010] [Indexed: 05/28/2023]
Abstract
Regulation of seed oil accumulation in oilseed rape (Brassica napus) has important economic significance. However, few genes have been characterized that affect final seed oil content. Through a mutant identification, the class IV homeodomain-ZIP transcription factor GLABRA2 (GL2) has been found to regulate seed oil accumulation in Arabidopsis, in addition to its role in trichome development. In this study, we isolated four distinct orthologues of GL2 from B. napus (AC-genome), B. rapa (A) and B. oleracea (C), using an overlapping-PCR strategy. The four GL2 orthologues were very similar, with 96.10-99.69% identity in exon regions, 75.45-93.84% in intron regions, 97.34-99.87% in amino acid sequences. Alignments of the four genes revealed that the A-genome sequences of BnaA.GL2.a from B. napus and BraA.GL2.a from B. rapa are more similar than the others, and likewise the C-genome sequences of BnaC.GL2.b from B. napus and BolC.GL2.a from B. oleracea are more similar. BnaA.GL2.a and BraA.GL2.a from the A-genome are highly expressed in roots, whilst BnaC.GL2.b and BolC.GL2.a from the C-genome are preferentially expressed in seeds. Transgenic ectopic overexpression and suppression of BnaC.GL2.b in Arabidopsis allowed further investigation of the effect on seed oil content. Overexpression generated two phenotypes: the wild-type-like and the gl2-mutant-like (an Arabidopsis glabrous mutant of gl2-2), with increases in seed oil content of 3.5-5.0% in the gl2-mutant-like transgenic plants. Suppression resulted in increases of 2.5-6.1% in seed oil content, and reduced trichome number at the leaf margins. These results suggest that BnaC.GL2.b can negatively regulate oil accumulation in Arabidopsis seeds. As a result of comparing the four GL2 genes, three A/C-genome-specific primer sets were developed and a C-genome-specific EcoRV cleavage site was identified, which can be used as functional markers to distinguish these orthologues within Brassica species. The genes identified and their molecular markers developed in this study will be valuable both for oilseed rape breeding focusing on improvement of seed oil content, and for detecting gene flow between populations.
Collapse
Affiliation(s)
- Guohua Chai
- The Key Lab of Oil Crops Biology, The Ministry of Agriculture of the People's Republic of China, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, No. 2 Xudong 2nd Road, Wuhan, 430062, Hubei, People's Republic of China
| | | | | | | | | | | | | | | | | |
Collapse
|
19
|
You FM, Huo N, Gu YQ, Lazo GR, Dvorak J, Anderson OD. ConservedPrimers 2.0: a high-throughput pipeline for comparative genome referenced intron-flanking PCR primer design and its application in wheat SNP discovery. BMC Bioinformatics 2009; 10:331. [PMID: 19825183 PMCID: PMC2765976 DOI: 10.1186/1471-2105-10-331] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2009] [Accepted: 10/13/2009] [Indexed: 01/18/2023] Open
Abstract
Background In some genomic applications it is necessary to design large numbers of PCR primers in exons flanking one or several introns on the basis of orthologous gene sequences in related species. The primer pairs designed by this target gene approach are called "intron-flanking primers" or because they are located in exonic sequences which are usually conserved between related species, "conserved primers". They are useful for large-scale single nucleotide polymorphism (SNP) discovery and marker development, especially in species, such as wheat, for which a large number of ESTs are available but for which genome sequences and intron/exon boundaries are not available. To date, no suitable high-throughput tool is available for this purpose. Results We have developed, the ConservedPrimers 2.0 pipeline, for designing intron-flanking primers for large-scale SNP discovery and marker development, and demonstrated its utility in wheat. This tool uses non-redundant wheat EST sequences, such as wheat contigs and singleton ESTs, and related genomic sequences, such as those of rice, as inputs. It aligns the ESTs to the genomic sequences to identify unique colinear exon blocks and predicts intron lengths. Intron-flanking primers are then designed based on the intron/exon information using the Primer3 core program or BatchPrimer3. Finally, a tab-delimited file containing intron-flanking primer pair sequences and their primer properties is generated for primer ordering and their PCR applications. Using this tool, 1,922 bin-mapped wheat ESTs (31.8% of the 6,045 in total) were found to have unique colinear exon blocks suitable for primer design and 1,821 primer pairs were designed from these single- or low-copy genes for PCR amplification and SNP discovery. With these primers and subsequently designed genome-specific primers, a total of 1,527 loci were found to contain one or more genome-specific SNPs. Conclusion The ConservedPrimers 2.0 pipeline for designing intron-flanking primers was developed and its utility demonstrated. The tool can be used for SNP discovery, genetic variation assays and marker development for any target genome that has abundant ESTs and a related reference genome that has been fully sequenced. The ConservedPrimers 2.0 pipeline has been implemented as a command-line tool as well as a web application. Both versions are freely available at .
Collapse
Affiliation(s)
- Frank M You
- Department of Plant Sciences, University of California, Davis, CA 95616, USA.
| | | | | | | | | | | |
Collapse
|
20
|
Uauy C, Paraiso F, Colasuonno P, Tran RK, Tsai H, Berardi S, Comai L, Dubcovsky J. A modified TILLING approach to detect induced mutations in tetraploid and hexaploid wheat. BMC PLANT BIOLOGY 2009; 9:115. [PMID: 19712486 PMCID: PMC2748083 DOI: 10.1186/1471-2229-9-115] [Citation(s) in RCA: 191] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2009] [Accepted: 08/28/2009] [Indexed: 05/18/2023]
Abstract
BACKGROUND Wheat (Triticum ssp.) is an important food source for humans in many regions around the world. However, the ability to understand and modify gene function for crop improvement is hindered by the lack of available genomic resources. TILLING is a powerful reverse genetics approach that combines chemical mutagenesis with a high-throughput screen for mutations. Wheat is specially well-suited for TILLING due to the high mutation densities tolerated by polyploids, which allow for very efficient screens. Despite this, few TILLING populations are currently available. In addition, current TILLING screening protocols require high-throughput genotyping platforms, limiting their use. RESULTS We developed mutant populations of pasta and common wheat and organized them for TILLING. To simplify and decrease costs, we developed a non-denaturing polyacrylamide gel set-up that uses ethidium bromide to detect fragments generated by crude celery juice extract digestion of heteroduplexes. This detection method had similar sensitivity as traditional LI-COR screens, suggesting that it represents a valid alternative. We developed genome-specific primers to circumvent the presence of multiple homoeologous copies of our target genes. Each mutant library was characterized by TILLING multiple genes, revealing high mutation densities in both the hexaploid (~1/38 kb) and tetraploid (~1/51 kb) populations for 50% GC targets. These mutation frequencies predict that screening 1,536 lines for an effective target region of 1.3 kb with 50% GC content will result in ~52 hexaploid and ~39 tetraploid mutant alleles. This implies a high probability of obtaining knock-out alleles (P = 0.91 for hexaploid, P = 0.84 for tetraploid), in addition to multiple missense mutations. In total, we identified over 275 novel alleles in eleven targeted gene/genome combinations in hexaploid and tetraploid wheat and have validated the presence of a subset of them in our seed stock. CONCLUSION We have generated reverse genetics TILLING resources for pasta and bread wheat and achieved a high mutation density in both populations. We also developed a modified screening method that will lower barriers to adopt this promising technology. We hope that the use of this reverse genetics resource will enable more researchers to pursue wheat functional genomics and provide novel allelic diversity for wheat improvement.
Collapse
Affiliation(s)
- Cristobal Uauy
- Department of Plant Sciences, University of California, Davis, CA, 95616, USA
- John Innes Centre, Colney, Norwich NR4 7UH, UK
| | - Francine Paraiso
- Department of Plant Sciences, University of California, Davis, CA, 95616, USA
| | - Pasqualina Colasuonno
- Department of Plant Sciences, University of California, Davis, CA, 95616, USA
- Department of Genetics and Plant Breeding, University of Bari, Italy
| | - Robert K Tran
- UC Davis Genome Center, University of California, Davis, CA, 95616, USA
| | - Helen Tsai
- UC Davis Genome Center, University of California, Davis, CA, 95616, USA
| | - Steve Berardi
- UC Davis Genome Center, University of California, Davis, CA, 95616, USA
| | - Luca Comai
- UC Davis Genome Center, University of California, Davis, CA, 95616, USA
| | - Jorge Dubcovsky
- Department of Plant Sciences, University of California, Davis, CA, 95616, USA
- John Innes Centre, Colney, Norwich NR4 7UH, UK
| |
Collapse
|
21
|
You FM, Huo N, Gu YQ, Luo MC, Ma Y, Hane D, Lazo GR, Dvorak J, Anderson OD. BatchPrimer3: a high throughput web application for PCR and sequencing primer design. BMC Bioinformatics 2008; 9:253. [PMID: 18510760 PMCID: PMC2438325 DOI: 10.1186/1471-2105-9-253] [Citation(s) in RCA: 502] [Impact Index Per Article: 29.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2007] [Accepted: 05/29/2008] [Indexed: 01/25/2023] Open
Abstract
Background Microsatellite (simple sequence repeat – SSR) and single nucleotide polymorphism (SNP) markers are two types of important genetic markers useful in genetic mapping and genotyping. Often, large-scale genomic research projects require high-throughput computer-assisted primer design. Numerous such web-based or standard-alone programs for PCR primer design are available but vary in quality and functionality. In particular, most programs lack batch primer design capability. Such a high-throughput software tool for designing SSR flanking primers and SNP genotyping primers is increasingly demanded. Results A new web primer design program, BatchPrimer3, is developed based on Primer3. BatchPrimer3 adopted the Primer3 core program as a major primer design engine to choose the best primer pairs. A new score-based primer picking module is incorporated into BatchPrimer3 and used to pick position-restricted primers. BatchPrimer3 v1.0 implements several types of primer designs including generic primers, SSR primers together with SSR detection, and SNP genotyping primers (including single-base extension primers, allele-specific primers, and tetra-primers for tetra-primer ARMS PCR), as well as DNA sequencing primers. DNA sequences in FASTA format can be batch read into the program. The basic information of input sequences, as a reference of parameter setting of primer design, can be obtained by pre-analysis of sequences. The input sequences can be pre-processed and masked to exclude and/or include specific regions, or set targets for different primer design purposes as in Primer3Web and primer3Plus. A tab-delimited or Excel-formatted primer output also greatly facilitates the subsequent primer-ordering process. Thousands of primers, including wheat conserved intron-flanking primers, wheat genome-specific SNP genotyping primers, and Brachypodium SSR flanking primers in several genome projects have been designed using the program and validated in several laboratories. Conclusion BatchPrimer3 is a comprehensive web primer design program to develop different types of primers in a high-throughput manner. Additional methods of primer design can be easily integrated into future versions of BatchPrimer3. The program with source code and thousands of PCR and sequencing primers designed for wheat and Brachypodium are accessible at .
Collapse
Affiliation(s)
- Frank M You
- Department of Plant Sciences, University of California, CA 95616, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
22
|
You FM, Huo N, Gu YQ, Luo MC, Ma Y, Hane D, Lazo GR, Dvorak J, Anderson OD. BatchPrimer3: a high throughput web application for PCR and sequencing primer design. BMC Bioinformatics 2008. [PMID: 18510760 DOI: 10.1186/1471‐2105‐9‐253] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND Microsatellite (simple sequence repeat - SSR) and single nucleotide polymorphism (SNP) markers are two types of important genetic markers useful in genetic mapping and genotyping. Often, large-scale genomic research projects require high-throughput computer-assisted primer design. Numerous such web-based or standard-alone programs for PCR primer design are available but vary in quality and functionality. In particular, most programs lack batch primer design capability. Such a high-throughput software tool for designing SSR flanking primers and SNP genotyping primers is increasingly demanded. RESULTS A new web primer design program, BatchPrimer3, is developed based on Primer3. BatchPrimer3 adopted the Primer3 core program as a major primer design engine to choose the best primer pairs. A new score-based primer picking module is incorporated into BatchPrimer3 and used to pick position-restricted primers. BatchPrimer3 v1.0 implements several types of primer designs including generic primers, SSR primers together with SSR detection, and SNP genotyping primers (including single-base extension primers, allele-specific primers, and tetra-primers for tetra-primer ARMS PCR), as well as DNA sequencing primers. DNA sequences in FASTA format can be batch read into the program. The basic information of input sequences, as a reference of parameter setting of primer design, can be obtained by pre-analysis of sequences. The input sequences can be pre-processed and masked to exclude and/or include specific regions, or set targets for different primer design purposes as in Primer3Web and primer3Plus. A tab-delimited or Excel-formatted primer output also greatly facilitates the subsequent primer-ordering process. Thousands of primers, including wheat conserved intron-flanking primers, wheat genome-specific SNP genotyping primers, and Brachypodium SSR flanking primers in several genome projects have been designed using the program and validated in several laboratories. CONCLUSION BatchPrimer3 is a comprehensive web primer design program to develop different types of primers in a high-throughput manner. Additional methods of primer design can be easily integrated into future versions of BatchPrimer3. The program with source code and thousands of PCR and sequencing primers designed for wheat and Brachypodium are accessible at http://wheat.pw.usda.gov/demos/BatchPrimer3/.
Collapse
Affiliation(s)
- Frank M You
- Department of Plant Sciences, University of California, CA 95616, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Paux E, Roger D, Badaeva E, Gay G, Bernard M, Sourdille P, Feuillet C. Characterizing the composition and evolution of homoeologous genomes in hexaploid wheat through BAC-end sequencing on chromosome 3B. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2006; 48:463-74. [PMID: 17010109 DOI: 10.1111/j.1365-313x.2006.02891.x] [Citation(s) in RCA: 135] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Bread wheat (Triticum aestivum) is one of the most important crops worldwide. However, because of its large, hexaploid, highly repetitive genome it is a challenge to develop efficient means for molecular analysis and genetic improvement in wheat. To better understand the composition and molecular evolution of the hexaploid wheat homoeologous genomes and to evaluate the potential of BAC-end sequences (BES) for marker development, we have followed a chromosome-specific strategy and generated 11 Mb of random BES from chromosome 3B, the largest chromosome of bread wheat. The sequence consisted of about 86% of repetitive elements, 1.2% of coding regions, and 13% remained unknown. With 1.2% of the sequence length corresponding to coding sequences, 6000 genes were estimated for chromosome 3B. New repetitive sequences were identified, including a Triticineae-specific tandem repeat (Fat) that represents 0.6% of the B-genome and has been differentially amplified in the homoeologous genomes before polyploidization. About 10% of the BES contained junctions between nested transposable elements that were used to develop chromosome-specific markers for physical and genetic mapping. Finally, sequence comparison with 2.9 Mb of random sequences from the D-genome of Aegilops tauschii suggested that the larger size of the B-genome is due to a higher content in repetitive elements. It also indicated which families of transposable elements are mostly responsible for differential expansion of the homoeologous wheat genomes during evolution. Our data demonstrate that BAC-end sequencing from flow-sorted chromosomes is a powerful tool for analysing the structure and evolution of polyploid and highly repetitive genomes.
Collapse
Affiliation(s)
- Etienne Paux
- UMR ASP 1095, INRA, Université Blaise Pascal, 63100 Clermont-Ferrand, France
| | | | | | | | | | | | | |
Collapse
|
24
|
Molecular characterization of dimeric alpha-amylase inhibitor genes in wheat and development of genome allele-specific primers for the genes located on chromosome 3BS and 3DS. J Cereal Sci 2006. [DOI: 10.1016/j.jcs.2005.12.005] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|