1
|
Peng Y, Li Q, Gong Y, Yang Q, Dong Q, Han Y. RcPLATZ8 as a novel negative regulator of flowering in Rosa chinensis. PLANT CELL REPORTS 2025; 44:125. [PMID: 40397162 DOI: 10.1007/s00299-025-03513-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2024] [Accepted: 05/06/2025] [Indexed: 05/22/2025]
Abstract
KEY MESSAGE Comprehensive analysis of the RcPLATZ gene family in Rosa chinensis reveals RcPLATZ8 as a novel negative regulator of flowering, offering insights for targeted breeding to manipulate flowering traits. Flowering regulation in Rosa chinensis is essential for improving ornamental and commercial traits, but its molecular mechanisms remain poorly understood. In this study, we identified and characterized ten members of the PLANT AT-RICH SEQUENCE AND ZINC-BINDING (PLATZ) protein family in R. chinensis through genome-wide analysis and protein domain validation using the Pfam database. Among these, we focused on RcPLATZ8, a novel negative regulator of flowering. Expression analysis via RT-qPCR revealed that RcPLATZ8 is predominantly expressed in floral organs, including stamens, pistils, and petals, and exhibits significant responsiveness to key plant hormones, such as abscisic acid (ABA), gibberellins (GA), and jasmonic acid (JA). Functional assays showed that overexpression of RcPLATZ8 in Arabidopsis resulted in delayed flowering and increased leaf number, whereas silencing RcPLATZ8 in R. chinensis led to early flowering. Furthermore, Weighted Gene Co-expression Network Analysis (WGCNA) identified that RcPLATZ8 is part of the 'red module,' which is strongly associated with flowering-time regulatory genes, including SHORT VEGETATIVE PHASE (SVP). These findings provide new insights into the molecular regulation of flowering in roses, demonstrating that RcPLATZ8 may plays a key role in integrating hormonal signals and floral development. Our study not only expands the functional understanding of the PLATZ family but also offers potential strategies for molecular breeding aimed at improving flowering traits for horticultural applications.
Collapse
Affiliation(s)
- Yifang Peng
- Beijing Key Laboratory of Ornamental Plants Germplasm Innovation and Molecular Breeding, Beijing Laboratory of Urban and Rural Ecological Environment, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants of Ministry of Education, State Key Laboratory of Efficient Production of Forest Resources, National Engineering Research Center for Floriculture, School of Landscape Architecture, Beijing Forestry University, Beijing, 100083, China
| | - Qi Li
- Beijing Key Laboratory of Ornamental Plants Germplasm Innovation and Molecular Breeding, Beijing Laboratory of Urban and Rural Ecological Environment, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants of Ministry of Education, State Key Laboratory of Efficient Production of Forest Resources, National Engineering Research Center for Floriculture, School of Landscape Architecture, Beijing Forestry University, Beijing, 100083, China
| | - Yao Gong
- Beijing Key Laboratory of Ornamental Plants Germplasm Innovation and Molecular Breeding, Beijing Laboratory of Urban and Rural Ecological Environment, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants of Ministry of Education, State Key Laboratory of Efficient Production of Forest Resources, National Engineering Research Center for Floriculture, School of Landscape Architecture, Beijing Forestry University, Beijing, 100083, China
| | - Qian Yang
- Beijing Key Laboratory of Ornamental Plants Germplasm Innovation and Molecular Breeding, Beijing Laboratory of Urban and Rural Ecological Environment, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants of Ministry of Education, State Key Laboratory of Efficient Production of Forest Resources, National Engineering Research Center for Floriculture, School of Landscape Architecture, Beijing Forestry University, Beijing, 100083, China
| | - Qijing Dong
- Beijing Key Laboratory of Ornamental Plants Germplasm Innovation and Molecular Breeding, Beijing Laboratory of Urban and Rural Ecological Environment, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants of Ministry of Education, State Key Laboratory of Efficient Production of Forest Resources, National Engineering Research Center for Floriculture, School of Landscape Architecture, Beijing Forestry University, Beijing, 100083, China
| | - Yu Han
- Beijing Key Laboratory of Ornamental Plants Germplasm Innovation and Molecular Breeding, Beijing Laboratory of Urban and Rural Ecological Environment, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants of Ministry of Education, State Key Laboratory of Efficient Production of Forest Resources, National Engineering Research Center for Floriculture, School of Landscape Architecture, Beijing Forestry University, Beijing, 100083, China.
| |
Collapse
|
2
|
Xiao JJ, Zhang RX, Khan A, Ul Haq S, Gai WX, Gong ZH. CaFtsH06, A Novel Filamentous Thermosensitive Protease Gene, Is Involved in Heat, Salt, and Drought Stress Tolerance of Pepper ( Capsicum annuum L.). Int J Mol Sci 2021; 22:ijms22136953. [PMID: 34203346 PMCID: PMC8268771 DOI: 10.3390/ijms22136953] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 06/23/2021] [Accepted: 06/23/2021] [Indexed: 11/29/2022] Open
Abstract
Harsh environmental factors have continuous negative effects on plant growth and development, leading to metabolic disruption and reduced plant productivity and quality. However, filamentation temperature-sensitive H protease (FtsH) plays a prominent role in helping plants to cope with these negative impacts. In the current study, we examined the transcriptional regulation of the CaFtsH06 gene in the R9 thermo-tolerant pepper (Capsicum annuum L.) line. The results of qRT-PCR revealed that CaFtsH06 expression was rapidly induced by abiotic stress treatments, including heat, salt, and drought. The CaFtsH06 protein was localized to the mitochondria and cell membrane. Additionally, silencing CaFtsH06 increased the accumulation of malonaldehyde content, conductivity, hydrogen peroxide (H2O2) content, and the activity levels of superoxide dismutase and superoxide (·O2−), while total chlorophyll content decreased under these abiotic stresses. Furthermore, CaFtsH06 ectopic expression enhanced tolerance to heat, salt, and drought stresses, thus decreasing malondialdehyde, proline, H2O2, and ·O2− contents while superoxide dismutase activity and total chlorophyll content were increased in transgenic Arabidopsis. Similarly, the expression levels of other defense-related genes were much higher in the transgenic ectopic expression lines than WT plants. These results suggest that CaFtsH06 confers abiotic stress tolerance in peppers by interfering with the physiological indices through reducing the accumulation of reactive oxygen species, inducing the activities of stress-related enzymes and regulating the transcription of defense-related genes, among other mechanisms. The results of this study suggest that CaFtsH06 plays a very crucial role in the defense mechanisms of pepper plants to unfavorable environmental conditions and its regulatory network with other CaFtsH genes should be examined across variable environments.
Collapse
Affiliation(s)
- Jing-Jing Xiao
- College of Horticulture, Northwest A&F University, Yangling, Xianyang 712100, China
| | - Rui-Xing Zhang
- College of Horticulture, Northwest A&F University, Yangling, Xianyang 712100, China
| | - Abid Khan
- Department of Horticulture, The University of Haripur, Haripur 22620, Pakistan
| | - Saeed Ul Haq
- College of Horticulture, Northwest A&F University, Yangling, Xianyang 712100, China
- Department of Horticulture, University of Agriculture Peshawar, Peshawar 25120, Pakistan
| | - Wen-Xian Gai
- College of Horticulture, Northwest A&F University, Yangling, Xianyang 712100, China
| | - Zhen-Hui Gong
- College of Horticulture, Northwest A&F University, Yangling, Xianyang 712100, China
| |
Collapse
|
3
|
Kim SJ, Park JS, Shin YH, Park YD. Identification and Validation of Genetic Variations in Transgenic Chinese Cabbage Plants ( Brassica rapa ssp. pekinensis) by Next-Generation Sequencing. Genes (Basel) 2021; 12:genes12050621. [PMID: 33922022 PMCID: PMC8143544 DOI: 10.3390/genes12050621] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 04/16/2021] [Accepted: 04/19/2021] [Indexed: 01/24/2023] Open
Abstract
Transgenic plants are usually produced through tissue culture, which is an essential step in Agrobacterium-mediated plant transformation. However, genomic variations, termed somaclonal variations, have been detected in transgenic plants cultured in vitro. The occurrence of these variations should be as low as possible to secure the stability of transgenic crops. Determining the cause and mechanism of somaclonal variations in tissue culture-derived plants will help reduce the rate of variation and promote the stable expression of genes in transgenic plants. In order to determine the genetic variability in transgenic Chinese cabbage plants, we performed whole-genome resequencing and compared the sequencing data with the ‘CT001’ reference genome. The variation candidates that were expected to consistently occur in the transgenic lines were selected and validated. The single nucleotide polymorphism (SNP) and insertion and deletion (InDel) candidates were identified using the resequencing data and validated by reverse transcription (RT)-PCR analysis. The deduced amino acid sequences were used to determine whether the variations caused changes in the resulting polypeptide, and the annotations of the mutated genes were analyzed to predict the possible effects of the SNPs on gene function. In conclusion, we selected and validated the genetic variations identified in transgenic Chinese cabbage plants. Their genomes were expected to be affected by the process of Agrobacterium-mediated transformation. The findings of our study will provide a genetic basis for transgenic plant research.
Collapse
Affiliation(s)
| | | | | | - Young-Doo Park
- Correspondence: ; Tel.: +82-10-3338-9344; Fax: +82-31-202-8395
| |
Collapse
|
4
|
Rajewski A, Carter-House D, Stajich J, Litt A. Datura genome reveals duplications of psychoactive alkaloid biosynthetic genes and high mutation rate following tissue culture. BMC Genomics 2021; 22:201. [PMID: 33752605 PMCID: PMC7986286 DOI: 10.1186/s12864-021-07489-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Accepted: 02/26/2021] [Indexed: 11/29/2022] Open
Abstract
BACKGROUND Datura stramonium (Jimsonweed) is a medicinally and pharmaceutically important plant in the nightshade family (Solanaceae) known for its production of various toxic, hallucinogenic, and therapeutic tropane alkaloids. Recently, we published a tissue-culture based transformation protocol for D. stramonium that enables more thorough functional genomics studies of this plant. However, the tissue culture process can lead to undesirable phenotypic and genomic consequences independent of the transgene used. Here, we have assembled and annotated a draft genome of D. stramonium with a focus on tropane alkaloid biosynthetic genes. We then use mRNA sequencing and genome resequencing of transformants to characterize changes following tissue culture. RESULTS Our draft assembly conforms to the expected 2 gigabasepair haploid genome size of this plant and achieved a BUSCO score of 94.7% complete, single-copy genes. The repetitive content of the genome is 61%, with Gypsy-type retrotransposons accounting for half of this. Our gene annotation estimates the number of protein-coding genes at 52,149 and shows evidence of duplications in two key alkaloid biosynthetic genes, tropinone reductase I and hyoscyamine 6 β-hydroxylase. Following tissue culture, we detected only 186 differentially expressed genes, but were unable to correlate these changes in expression with either polymorphisms from resequencing or positional effects of transposons. CONCLUSIONS We have assembled, annotated, and characterized the first draft genome for this important model plant species. Using this resource, we show duplications of genes leading to the synthesis of the medicinally important alkaloid, scopolamine. Our results also demonstrate that following tissue culture, mutation rates of transformed plants are quite high (1.16 × 10- 3 mutations per site), but do not have a drastic impact on gene expression.
Collapse
Affiliation(s)
- Alex Rajewski
- Department of Botany and Plant Science, University of California, Riverside, California 92521 USA
| | - Derreck Carter-House
- Department of Microbiology and Plant Pathology, University of California, Riverside, California 92521 USA
| | - Jason Stajich
- Department of Microbiology and Plant Pathology, University of California, Riverside, California 92521 USA
| | - Amy Litt
- Department of Botany and Plant Science, University of California, Riverside, California 92521 USA
| |
Collapse
|
5
|
Zlobin NE, Lebedeva MV, Taranov VV. CRISPR/Cas9 genome editing through in planta transformation. Crit Rev Biotechnol 2020; 40:153-168. [PMID: 31903793 DOI: 10.1080/07388551.2019.1709795] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
In this review, the application of CRISPR/Cas9 plant genome editing using alternative transformation methods is discussed. Genome editing by the CRISPR/Cas9 system is usually implemented via the generation of transgenic plants carrying Cas9 and sgRNA genes in the genome. Transgenic plants are usually developed by in vitro regeneration from single transformed cells, which requires using different in vitro culture-based methods. Despite their common application, these methods have some disadvantages and limitations. Thus, some methods of plant transformation that do not depend on in vitro regeneration have been developed. These methods are known as "in planta" transformation. The main focus of this review is the so-called floral dip in planta transformation method, although other approaches are also described. The main features of in planta transformation in the context of CRISPR/Cas9 genome editing are discussed. Furthermore, multiple ways to increase the effectiveness of this approach and to broaden its use in different plant species are considered.
Collapse
Affiliation(s)
- Nikolay E Zlobin
- All-Russia Research Institute of Agricultural Biotechnology, Russian Academy of Sciences, Moscow, Russian
| | - Marina V Lebedeva
- All-Russia Research Institute of Agricultural Biotechnology, Russian Academy of Sciences, Moscow, Russian
| | - Vasiliy V Taranov
- All-Russia Research Institute of Agricultural Biotechnology, Russian Academy of Sciences, Moscow, Russian
| |
Collapse
|
6
|
Park D, Park SH, Kim YS, Choi BS, Kim JK, Kim NS, Choi IY. NGS sequencing reveals that many of the genetic variations in transgenic rice plants match the variations found in natural rice population. Genes Genomics 2018; 41:213-222. [PMID: 30406575 DOI: 10.1007/s13258-018-0754-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Accepted: 10/15/2018] [Indexed: 11/27/2022]
Abstract
BACKGROUND As the transformation process can induce mutations in host plants, molecular characterization of the associated genomic changes is important not only for practical food safety but also for understanding the fundamental theories of genome evolution. OBJECTIVES To investigate a population-scale comparative study of the genome-wide spectrum of sequence variants in the transgenic genome with the variations present in 3000 rice varieties. RESULTS On average, we identified 19,273 SNPs (including Indels) per transgenic line in which 10,729 SNPs were at the identical locations in the three transgenic rice plants. We found that these variations were predominantly present in specific regions in chromosomes 8 and 10. Majority (88%) of the identified variations were detected at the same genomic locations as those in natural rice population, implying that the transgenic induced mutations had a tendency to be common alleles. CONCLUSION Genomic variations in transgenic rice plants frequently occurred at the same sites as the major alleles found in the natural rice population, which implies that the sequence variations occur within the limits of a biological system to ensure survival.
Collapse
Affiliation(s)
- Doori Park
- Department of Molecular Bioscience, Kangwon National University, Chuncheon, South Korea
| | - Su-Hyun Park
- Graduate School of International Agricultural Technology and Crop Biotech Institute/GreenBio Science and Technology, Seoul National University, Pyeongchang, South Korea
- Laboratory of Plant Molecular Biology, The Rockefeller University, 1230 York Avenue, New York, NY, 10065, USA
| | - Youn Shic Kim
- Graduate School of International Agricultural Technology and Crop Biotech Institute/GreenBio Science and Technology, Seoul National University, Pyeongchang, South Korea
| | | | - Ju-Kon Kim
- Graduate School of International Agricultural Technology and Crop Biotech Institute/GreenBio Science and Technology, Seoul National University, Pyeongchang, South Korea.
| | - Nam-Soo Kim
- Department of Molecular Bioscience, Kangwon National University, Chuncheon, South Korea.
- Institute of Bioscience and Biomedical Sciences, Kangwon National University, Chuncheon, South Korea.
| | - Ik-Young Choi
- Department of Agriculture and Life Industry, Kangwon National University, Chuncheon, South Korea.
| |
Collapse
|
7
|
Michno JM, Stupar RM. The importance of genotype identity, genetic heterogeneity, and bioinformatic handling for properly assessing genomic variation in transgenic plants. BMC Biotechnol 2018; 18:38. [PMID: 29859067 PMCID: PMC5984819 DOI: 10.1186/s12896-018-0447-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2018] [Accepted: 05/18/2018] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND The advent of -omics technologies has enabled the resolution of fine molecular differences among individuals within a species. DNA sequence variations, such as single nucleotide polymorphisms or small deletions, can be tabulated for many kinds of genotype comparisons. However, experimental designs and analytical approaches are replete with ways to overestimate the level of variation present within a given sample. Analytical pipelines that do not apply proper thresholds nor assess reproducibility among samples are susceptible to calling false-positive variants. Furthermore, issues with sample genotype identity or failing to account for heterogeneity in reference genotypes may lead to misinterpretations of standing variants as polymorphisms derived de novo. RESULTS A recent publication that featured the analysis of RNA-sequencing data in three transgenic soybean event series appeared to overestimate the number of sequence variants identified in plants that were exposed to a tissue culture based transformation process. We reanalyzed these data with a stringent set of criteria and demonstrate three different factors that lead to variant overestimation, including issues related to the genetic identity of the background genotype, unaccounted genetic heterogeneity in the reference genome, and insufficient bioinformatics filtering. CONCLUSIONS This study serves as a cautionary tale to users of genomic and transcriptomic data that wish to assess the molecular variation attributable to tissue culture and transformation processes. Moreover, accounting for the factors that lead to sequence variant overestimation is equally applicable to samples derived from other germplasm sources, including chemical or irradiation mutagenesis and genome engineering (e.g., CRISPR) processes.
Collapse
Affiliation(s)
- Jean-Michel Michno
- Bioinformatics and Computational Biology Program, University of Minnesota, Minneapolis, MN USA
- Department of Agronomy and Plant Genetics, University of Minnesota, 1991 Upper Buford Circle, 411 Borlaug Hall, Saint Paul, MN 55108 USA
| | - Robert M. Stupar
- Bioinformatics and Computational Biology Program, University of Minnesota, Minneapolis, MN USA
- Department of Agronomy and Plant Genetics, University of Minnesota, 1991 Upper Buford Circle, 411 Borlaug Hall, Saint Paul, MN 55108 USA
| |
Collapse
|
8
|
Yew CL, Kakui H, Shimizu KK. Agrobacterium-mediated floral dip transformation of the model polyploid species Arabidopsis kamchatica. JOURNAL OF PLANT RESEARCH 2018; 131:349-358. [PMID: 29032409 DOI: 10.1007/s10265-017-0982-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2017] [Accepted: 09/11/2017] [Indexed: 06/07/2023]
Abstract
Polyploidization has played an important role in the speciation and diversification of plant species. However, genetic analyses of polyploids are challenging because the vast majority of the model species are diploids. The allotetraploid Arabidopsis kamchatica, which originated through the hybridization of the diploid Arabidopsis halleri and Arabidopsis lyrata, is an emerging model system for studying various aspects of polyploidy. However, a transgenic method that allows the insertion of a gene of interest into A. kamchatica is still lacking. In this study, we investigated the early development of pistils in A. kamchatica and confirmed the formation of open pistils in young flower buds (stages 8-9), which is important for allowing Agrobacterium to access female reproductive tissues. We established a simple Agrobacterium-mediated floral dip transformation method to transform a gene of interest into A. kamchatica by dipping A. kamchatica inflorescences bearing many young flower buds into a 5% sucrose solution containing 0.05% Silwet L-77 and Agrobacterium harboring the gene of interest. We showed that a screenable marker comprising fluorescence-accumulating seed technology with green fluorescent protein was useful for screening the transgenic seeds of two accessions of A. kamchatica subsp. kamchatica and an accession of A. kamchatica subsp. kawasakiana.
Collapse
Affiliation(s)
- Chow-Lih Yew
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, Winterthurerstrasse 190, 8057, Zurich, Switzerland
| | - Hiroyuki Kakui
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, Winterthurerstrasse 190, 8057, Zurich, Switzerland
- Kihara Institute for Biological Research, Yokohama City University, 641-12 Maioka, Totsuka-ward, Yokohama, 244-0813, Japan
| | - Kentaro K Shimizu
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, Winterthurerstrasse 190, 8057, Zurich, Switzerland.
- Kihara Institute for Biological Research, Yokohama City University, 641-12 Maioka, Totsuka-ward, Yokohama, 244-0813, Japan.
| |
Collapse
|
9
|
Coronel CJ, González AI, Ruiz ML, Polanco C. Analysis of somaclonal variation in transgenic and regenerated plants of Arabidopsis thaliana using methylation related metAFLP and TMD markers. PLANT CELL REPORTS 2018; 37:137-152. [PMID: 29038910 DOI: 10.1007/s00299-017-2217-x] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2017] [Accepted: 10/04/2017] [Indexed: 05/14/2023]
Abstract
We provide evidence that nucleotide sequence and methylation status changes occur in the Arabidopsis genome during in vitro tissue culture at a frequency high enough to represent an important source of variation. Somaclonal variation is a general consequence of the tissue culture process that has to be analyzed specifically when regenerated plants are obtained in any plant species. Currently, there are few studies about the variability comprising sequence changes and methylation status at the DNA level, generated by the culture of A. thaliana cells and tissues. In this work, two types of highly reproducible molecular markers, modified methylation sensitive AFLP (metAFLP) and transposon methylation display (TMD) have been used for the first time in this species to analyze the nucleotide and cytosine methylation changes induced by transformation and tissue culture protocols. We found significantly higher average methylation values (7.5%) in regenerated and transgenic plants when compared to values obtained from seed derived plants (3.2%) and that the main component of the somaclonal variation present in Arabidopsis clonal plants is genetic rather than epigenetic. However, we have found that the Arabidopsis regenerated and transgenic plants had a higher number of non-fully methylated sites flanking transposable elements than the control plants, and therefore, their mobilization can be facilitated. These data provide further evidence that changes in nucleotide sequence and methylation status occur in the Arabidopsis genome during in vitro tissue culture frequently enough to be an important source of variation in this species.
Collapse
Affiliation(s)
- Carlos J Coronel
- Área de Genética, Facultad de Ciencias Biológicas y Ambientales, Universidad de León, 24071, León, Spain
| | - Ana I González
- Área de Genética, Facultad de Ciencias Biológicas y Ambientales, Universidad de León, 24071, León, Spain
| | - María L Ruiz
- Área de Genética, Facultad de Ciencias Biológicas y Ambientales, Universidad de León, 24071, León, Spain
| | - Carlos Polanco
- Área de Genética, Facultad de Ciencias Biológicas y Ambientales, Universidad de León, 24071, León, Spain.
| |
Collapse
|
10
|
Bleotu C, Matei L, Dragu LD, Grigorescu L, Diaconu CC, Anton G. Methods for Plant Genetic Modification. GENETICALLY ENGINEERED FOODS 2018:385-401. [DOI: 10.1016/b978-0-12-811519-0.00015-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2025]
|
11
|
Dolgikh YI, Solov’yova AI, Tereshonok DV. Variability of DNA markers in Arabidopsis thaliana cultured cells under standard growing conditions and under the influence of stressors. BIOL BULL+ 2017. [DOI: 10.1134/s1062359017020042] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
12
|
Kalbande BB, Patil AS. Plant tissue culture independent Agrobacterium tumefaciens mediated In-planta transformation strategy for upland cotton ( Gossypium hirsutum). J Genet Eng Biotechnol 2016; 14:9-18. [PMID: 30647592 PMCID: PMC6299899 DOI: 10.1016/j.jgeb.2016.05.003] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2015] [Revised: 04/21/2016] [Accepted: 05/01/2016] [Indexed: 11/17/2022]
Abstract
A new method of transgenic development called "In-planta" transformation method, where Agrobacterium is used to infect the plantlets but the steps of in vitro regeneration of plants is totally avoided. In this study, we have reported a simple In-planta method for efficient transformation of diploid cotton Gossypium hirsutum cv LRK-516 Anjali using Agrobacterium tumefaciens EHA-105 harbouring recombinant binary vector plasmid pBinAR with Arabidopsis At-NPR1 gene. Four day old plantlets were used for transformation. A vertical cut was made at the junction of cotyledonary leaves, moderately bisecting the shoot tip and exposing meristem cells at apical meristem. This site was infected with Agrobacterium inoculum. The transgenic events obtained were tested positive for the presence of At-NPR1 gene with promoter nptII gene. They are also tested negative for vector backbone integration and Agrobacterium contamination in T0 events. With this method a transformation frequency of 6.89% was reported for the cv LRK-516.
Collapse
|
13
|
ONAY A, TİLKAT E, SÜZERER V, KARAKAŞ METİN Ö, ÖZDEN ÇİFTÇİ Y, KILINÇ FM, KOÇ İ, ŞAKİROĞLU M, YILDIRIM H, ALTINKUT UNCUOĞLU A, ÇALAR N, AKDEMİR ÖF. Rejuvenation of mature lentisk by micrografting and evaluation of genetic stability. Turk J Biol 2016. [DOI: 10.3906/biy-1510-25] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
|
14
|
Sedov KA, Fomenkov AA, Solov’yova AI, Nosov AV, Dolgikh YI. The level of genetic variability of cells in prolonged suspension culture of Arabidopsis thaliana. BIOL BULL+ 2014. [DOI: 10.1134/s1062359014060107] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
15
|
Kawakatsu T, Kawahara Y, Itoh T, Takaiwa F. A whole-genome analysis of a transgenic rice seed-based edible vaccine against cedar pollen allergy. DNA Res 2013; 20:623-31. [PMID: 23956243 PMCID: PMC3859328 DOI: 10.1093/dnares/dst036] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Genetic modification (GM) by Agrobacterium-mediated transformation is a robust and widely employed method to confer new traits to crops. In this process, a transfer DNA is delivered into the host genome, but it is still unclear how the host genome is altered by this event at single-base resolution. To decipher genomic discrepancy between GM crops and their host, we conducted whole-genome sequencing of a transgenic rice line OSCR11. This rice line expresses a seed-based edible vaccine containing two major pollen allergens, Cry j 1 and Cry j 2, against Japanese cedar pollinosis. We revealed that genetic differences between OSCR11 and its host a123 were significantly less than those between a123 and its precedent cultivar Koshihikari. The pattern of nucleotide base substitution in OSCR11, relative to a123, was consistent with somaclonal variation. Mutations in OSCR11 probably occurred during the cell culture steps. In addition, strand-specific mRNA-Seq revealed similar transcriptomes of a123 and OSCR11, supporting genomic integrity between them.
Collapse
Affiliation(s)
- Taiji Kawakatsu
- 1Genetically Modified Organism Research Center, National Institute of Agrobiological Sciences, 2-1-2 Kan-nondai, Tsukuba, Ibaraki 305-8602, Japan
| | | | | | | |
Collapse
|
16
|
Leclercq J, Martin F, Sanier C, Clément-Vidal A, Fabre D, Oliver G, Lardet L, Ayar A, Peyramard M, Montoro P. Over-expression of a cytosolic isoform of the HbCuZnSOD gene in Hevea brasiliensis changes its response to a water deficit. PLANT MOLECULAR BIOLOGY 2012; 80:255-272. [PMID: 22814939 DOI: 10.1007/s11103-012-9942-x] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2012] [Accepted: 07/09/2012] [Indexed: 06/01/2023]
Abstract
Hevea brasiliensis is the main commercial source of natural rubber. Reactive oxygen species (ROS) scavenging systems are involved in various biotic and abiotic stresses. Genetic engineering was undertaken to study the strengthening of plant defences by antioxidants. To that end, Hevea transgenic plant lines over-expressing a Hevea brasiliensis cytosolic HbCuZnSOD gene were successfully established and regenerated. Over-expression of the HbCuZnSOD gene was not clearly related to an increase in SOD activity in plant leaves. The impact of HbCuZnSOD gene over-expression in somatic embryogenesis and in plant development are presented and discussed. The water deficit tolerance of two HbCuZnSOD over-expressing lines was evaluated. The physiological parameters of transgenic plantlets subjected to a water deficit suggested that plants from line TS4T8An displayed lower stomatal conductance and a higher proline content. Over-expression of the HbCuZnSOD gene and activation of all ROS-scavenging enzymes also suggested that protection against ROS was more efficient in the TS4T8An transgenic line.
Collapse
Affiliation(s)
- J Leclercq
- CIRAD, UMR AGAP, 34 398 Montpellier, France
| | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Scientific opinion addressing the safety assessment of plants developed through cisgenesis and intragenesis. EFSA J 2012. [DOI: 10.2903/j.efsa.2012.2561] [Citation(s) in RCA: 95] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
|
18
|
Viejo M, Santamaría ME, Rodríguez JL, Valledor L, Meijón M, Pérez M, Pascual J, Hasbún R, Fernández Fraga M, Berdasco M, Toorop PE, Cañal MJ, Rodríguez Fernández R. Epigenetics, the role of DNA methylation in tree development. Methods Mol Biol 2012; 877:277-301. [PMID: 22610636 DOI: 10.1007/978-1-61779-818-4_22] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
During development of multicellular organisms, cells become differentiated by modulating different programs of gene expression. Cells have their own epigenetic signature which reflects genotype, developmental history, and environmental influences, and it is ultimately reflected in the phenotype of the cells and the organism. However, in normal development or disease situations, such as adaptation to climate change or during in vitro culture, some cells undergo major epigenetic reprogramming involving the removal of epigenetic marks in the nuclei followed by the establishment of a different new set of marks. Compared with animal cells, biotech-mediated achievements are reduced in plants despite the presence of cell polypotency. In forestry, any sustainable developments using biotech tools remain restricted to the lab, without progressing to the field for application. Such barriers in the translation between development and implementation need to be addressed by organizations that have the power to integrate these two fields. However, a lack of understanding of gene regulation is also to blame for this barrier. In recent years, great progress has been made in unraveling the control of gene expression. These advances are discussed in this chapter, including the possibility of applying this knowledge in forestry practice.
Collapse
Affiliation(s)
- Marcos Viejo
- Área de Fisiología Vegetal, Departamento BOS, Facultad de Biología, Universidad de Oviedo, Oviedo, Spain.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Lardet L, Leclercq J, Bénistan E, Dessailly F, Oliver G, Martin F, Montoro P. Variation in GUS activity in vegetatively propagated Hevea brasiliensis transgenic plants. PLANT CELL REPORTS 2011; 30:1847-1856. [PMID: 21643815 DOI: 10.1007/s00299-011-1092-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2011] [Revised: 05/17/2011] [Accepted: 05/19/2011] [Indexed: 05/30/2023]
Abstract
Hevea brasiliensis transgenic plants are regenerated from transgenic callus lines by somatic embryogenesis. Somatic embryogenesis is not yet available for commercial propagation of Hevea clones, which requires conventional grafting of buds on rootstock seedlings (budding). The stability of transgene expression in budded plants is therefore necessary for further development of genetic engineering in rubber trees. Transgene expression was assessed by fluorimetric beta-glucuronidase (GUS) activity in fully developed leaves of in vitro plants from transgenic lines and their sub-lines obtained by budding. A large variation in GUS activity was found in self-rooted in vitro plants of five transgenic lines, and the absence of activity in one line suggested transgene silencing. Beyond confirming transmissibility of the reporter gene by budding and long-term expression, a quantification of GUS activity revealed that greater variability existed in budded plants compared to self-rooted mother in vitro plants for three transgenic lines. Although somatic embryogenesis provided more stable GUS activity, budding remained an efficient way of propagating transgenic plants but transgene expression in budded plants should be verified for functional analysis and further development.
Collapse
|
20
|
Das P, Joshi NC. Minor modifications in obtainable Arabidopsis floral dip method enhances transformation efficiency and production of homozygous transgenic lines harboring a single copy of transgene. ACTA ACUST UNITED AC 2011. [DOI: 10.4236/abb.2011.22010] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
21
|
Latham JR, Wilson AK, Steinbrecher RA. The mutational consequences of plant transformation. J Biomed Biotechnol 2010; 2006:25376. [PMID: 16883050 PMCID: PMC1559911 DOI: 10.1155/jbb/2006/25376] [Citation(s) in RCA: 94] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Plant transformation is a genetic engineering tool for introducing transgenes into plant genomes. It is now being used for the
breeding of commercial crops. A central feature of transformation is insertion of the transgene into plant chromosomal DNA.
Transgene insertion is infrequently, if ever, a precise event. Mutations found at transgene insertion sites include deletions and
rearrangements of host chromosomal DNA and introduction of superfluous DNA. Insertion sites introduced using Agrobacterium tumefaciens tend to have simpler structures but can be associated with extensive chromosomal rearrangements, while those of particle bombardment appear invariably to be associated with deletion and extensive scrambling of inserted and chromosomal DNA. Ancillary procedures associated with plant transformation, including tissue culture and infection with A tumefaciens, can also introduce mutations. These genome-wide mutations can number from hundreds to many thousands per diploid genome.
Despite the fact that confidence in the safety and dependability of crop species rests significantly
on their genetic integrity, the frequency of transformation-induced mutations and their importance as potential biosafety hazards are poorly understood.
Collapse
Affiliation(s)
- Jonathan R. Latham
- Bioscience Resource Project, PO Box 66,
Ledbury HR8 9AE, UK
- EcoNexus, PO Box 3279, Brighton BN1 1TL, UK
- *Jonathan R. Latham:
| | - Allison K. Wilson
- Bioscience Resource Project, PO Box 66,
Ledbury HR8 9AE, UK
- EcoNexus, PO Box 3279, Brighton BN1 1TL, UK
| | | |
Collapse
|
22
|
Filipecki M, Malepszy S. Unintended consequences of plant transformation: A molecular insight. J Appl Genet 2006; 47:277-86. [PMID: 17132892 DOI: 10.1007/bf03194637] [Citation(s) in RCA: 70] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Plant genomes are dynamic structures having both the system to maintain and accurately reproduce the information encoded therein and the ability to accept more or less random changes, which is one of the foundations of evolution. Crop improvement and various uncontrolled stress factors can induce unintended genetic and epigenetic variations. In this review it is attempted to summarize factors causing such changes and the molecular nature of these variations in transgenic plants. Unintended effects in transgenic plants can be divided into three main groups: first, pleiotropic effects of integrated DNA on the host plant genome; second, the influence of the integration site and transgene architecture on transgene expression level and stability; and third, the effect of various stresses related to tissue handling, regeneration and clonal propagation. Many of these factors are recently being redefined due to new researches, which apply modern highly sensitive analytical techniques and sequenced model organisms. The ability to inspect large portions of genomes clearly shows that tissue culture contributes to a vast majority of observed genetic and epigenetic changes. Nevertheless, monitoring of thousands transcripts, proteins and metabolites reveals that unintended variation most often falls in the range of natural differences between landraces or varieties. We expect that an increasing amount of evidence on many important crop species will support these observations in the nearest future.
Collapse
|
23
|
Holme IB, Brinch-Pedersen H, Lange M, Holm PB. Transformation of barley (Hordeum vulgare L.) by Agrobacterium tumefaciens infection of in vitro cultured ovules. PLANT CELL REPORTS 2006; 25:1325-35. [PMID: 16832622 DOI: 10.1007/s00299-006-0188-4] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2006] [Revised: 05/11/2006] [Accepted: 05/28/2006] [Indexed: 05/10/2023]
Abstract
We report on a novel transformation procedure for barley by Agrobacterium infection of in vitro cultured ovules. Ovules of the cultivar Golden Promise were isolated a few hours after pollination and infected with the Agrobacterium tumefaciens strain AGL0 carrying the binary vector pVec8-GFP. The vector harboured a hygromycin resistance gene and the green fluorescence protein (GFP) gene. GFP-expressing embryos were isolated from the ovules, regenerated to plants and investigated by Southern blot analysis. Transformation frequencies amounted to 3.1% with hygromycin selection and 0.8% without selection. Mendelian inheritance and stable expression of the GFP gene was confirmed in 18 independent lines over two generations. We conclude that the described technique allows for the rapid and direct generation of high quality transgenic plants.
Collapse
Affiliation(s)
- Inger Baeksted Holme
- Department of Genetics and Biotechnology, Danish Institute of Agricultural Sciences, Research Centre Flakkebjerg, 4200, Slagelse, Denmark.
| | | | | | | |
Collapse
|
24
|
Toki S, Hara N, Ono K, Onodera H, Tagiri A, Oka S, Tanaka H. Early infection of scutellum tissue with Agrobacterium allows high-speed transformation of rice. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2006; 47:969-76. [PMID: 16961734 DOI: 10.1111/j.1365-313x.2006.02836.x] [Citation(s) in RCA: 475] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Several approaches have recently been adopted to improve Agrobacterium-mediated transformation of rice, both to generate the large number of T-DNA insertion plants needed for functional analysis of the rice genome, and for production of rice with additional agronomical value. However, about 3 months of in vitro culture is still required for isolation of transgenic rice plants. Here, we report the competency of scutellum tissue from 1-day pre-cultured seeds for Agrobacterium-mediated transformation. Furthermore, early infection of rice seeds with Agrobacterium enhanced efficient selection of transformed calli. Using our system, we successfully regenerated transgenic rice plantlets within a month of the start of the aseptic culture of mature seeds. Our new system should reduce the somaclonal variation accompanying prolonged culture of rice cells in the dedifferentiated state and facilitate the molecular breeding of rice.
Collapse
Affiliation(s)
- Seiichi Toki
- Plant Genetic Engineering Research Unit, National Institute of Agrobiological Sciences, 2-1-2 Kannondai, Tsukuba, Ibaraki 305-8602, Japan.
| | | | | | | | | | | | | |
Collapse
|
25
|
Zhang X, Henriques R, Lin SS, Niu QW, Chua NH. Agrobacterium-mediated transformation of Arabidopsis thaliana using the floral dip method. Nat Protoc 2006; 1:641-6. [PMID: 17406292 DOI: 10.1038/nprot.2006.97] [Citation(s) in RCA: 1413] [Impact Index Per Article: 74.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Collective efforts of several laboratories in the past two decades have resulted in the development of various methods for Agrobacterium tumefaciens-mediated transformation of Arabidopsis thaliana. Among these, the floral dip method is the most facile protocol and widely used for producing transgenic Arabidopsis plants. In this method, transformation of female gametes is accomplished by simply dipping developing Arabidopsis inflorescences for a few seconds into a 5% sucrose solution containing 0.01-0.05% (vol/vol) Silwet L-77 and resuspended Agrobacterium cells carrying the genes to be transferred. Treated plants are allowed to set seed which are then plated on a selective medium to screen for transformants. A transformation frequency of at least 1% can be routinely obtained and a minimum of several hundred independent transgenic lines generated from just two pots of infiltrated plants (20-30 plants per pot) within 2-3 months. Here, we describe the protocol routinely used in our laboratory for the floral dip method for Arabidopsis transformation. Transgenic Arabidopsis plants can be obtained in approximately 3 months.
Collapse
Affiliation(s)
- Xiuren Zhang
- Laboratory of Plant Molecular Biology, Rockefeller University, 1230 York Avenue, New York, New York 10021, USA
| | | | | | | | | |
Collapse
|
26
|
Lunkenbein S, Bellido M, Aharoni A, Salentijn EMJ, Kaldenhoff R, Coiner HA, Muñoz-Blanco J, Schwab W. Cinnamate metabolism in ripening fruit. Characterization of a UDP-glucose:cinnamate glucosyltransferase from strawberry. PLANT PHYSIOLOGY 2006; 140:1047-58. [PMID: 16443693 PMCID: PMC1400576 DOI: 10.1104/pp.105.074955] [Citation(s) in RCA: 81] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
Strawberry (Fragaria x ananassa) fruit accumulate (hydroxy)cinnamoyl glucose (Glc) esters, which may serve as the biogenetic precursors of diverse secondary metabolites, such as the flavor constituents methyl cinnamate and ethyl cinnamate. Here, we report on the isolation of a cDNA encoding a UDP-Glc:cinnamate glucosyltransferase (Fragaria x ananassa glucosyltransferase 2 [FaGT2]) from ripe strawberry cv Elsanta that catalyzes the formation of 1-O-acyl-Glc esters of cinnamic acid, benzoic acid, and their derivatives in vitro. Quantitative real-time PCR analysis indicated that FaGT2 transcripts accumulate to high levels during strawberry fruit ripening and to lower levels in flowers. The levels in fruits positively correlated with the in planta concentration of cinnamoyl, p-coumaroyl, and caffeoyl Glc. In the leaf, high amounts of Glc esters were detected, but FaGT2 mRNA was not observed. The expression of FaGT2 is negatively regulated by auxin, induced by oxidative stress, and by hydroxycinnamic acids. Although FaGT2 glucosylates a number of aromatic acids in vitro, quantitative analysis in transgenic lines containing an antisense construct of FaGT2 under the control of the constitutive 35S cauliflower mosaic virus promoter demonstrated that the enzyme is only involved in the formation of cinnamoyl Glc and p-coumaroyl Glc during ripening.
Collapse
Affiliation(s)
- Stefan Lunkenbein
- Biomolecular Food Technology, Technical University Munich, Freising, Germany
| | | | | | | | | | | | | | | |
Collapse
|