1
|
Birchler JA, Kelly J, Singh J, Liu H, Zhang Z, Char SN, Sharma M, Yang H, Albert PS, Yang B. Synthetic minichromosomes in plants: past, present, and promise. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 120:2356-2366. [PMID: 39546384 DOI: 10.1111/tpj.17142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2024] [Revised: 11/01/2024] [Accepted: 11/04/2024] [Indexed: 11/17/2024]
Abstract
The status of engineered mini-chromosomes/artificial chromosomes/synthetic chromosomes in plants is summarized. Their promise is that they provide a means to accumulate foreign genes on an independent entity other than the normal chromosomes, which would facilitate stacking of novel traits in a way that would not be linked to endogenous genes and that would facilitate transfer between lines. Centromeres in plants are epigenetic, and therefore the isolation of DNA underlying centromeres and reintroduction into plant cells will not establish a functional kinetochore, which obviates this approach for in vitro assembly of plant artificial chromosomes. This issue was bypassed by using telomere-mediated chromosomal truncation to produce mini-chromosomes with little more than an endogenous centromere that could in turn be used as a foundation to build synthetic chromosomes. Site-specific recombinases and various iterations of CRISPR-Cas9 editing provide many tools for the development and re-engineering of synthetic chromosomes.
Collapse
Affiliation(s)
- James A Birchler
- Division of Biological Sciences, University of Missouri, Columbia, Missouri, 65211, USA
| | - Jacob Kelly
- Division of Biological Sciences, University of Missouri, Columbia, Missouri, 65211, USA
| | - Jasnoor Singh
- Division of Biological Sciences, University of Missouri, Columbia, Missouri, 65211, USA
| | - Hua Liu
- Division of Plant Science and Technology, University of Missouri, Columbia, Missouri, 65211, USA
| | - Zhengzhi Zhang
- Division of Plant Science and Technology, University of Missouri, Columbia, Missouri, 65211, USA
| | - Si Nian Char
- Division of Plant Science and Technology, University of Missouri, Columbia, Missouri, 65211, USA
| | - Malika Sharma
- Division of Biological Sciences, University of Missouri, Columbia, Missouri, 65211, USA
| | - Hua Yang
- Division of Biological Sciences, University of Missouri, Columbia, Missouri, 65211, USA
| | - Patrice S Albert
- Division of Biological Sciences, University of Missouri, Columbia, Missouri, 65211, USA
| | - Bing Yang
- Division of Plant Science and Technology, University of Missouri, Columbia, Missouri, 65211, USA
- Donald Danforth Plant Sciences Center, St. Louis, Missouri, 63132, USA
| |
Collapse
|
2
|
Singh C, Kumar R, Sehgal H, Bhati S, Singhal T, Gayacharan, Nimmy MS, Yadav R, Gupta SK, Abdallah NA, Hamwieh A, Kumar R. Unclasping potentials of genomics and gene editing in chickpea to fight climate change and global hunger threat. Front Genet 2023; 14:1085024. [PMID: 37144131 PMCID: PMC10153629 DOI: 10.3389/fgene.2023.1085024] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Accepted: 03/24/2023] [Indexed: 09/09/2023] Open
Abstract
Genomics and genome editing promise enormous opportunities for crop improvement and elementary research. Precise modification in the specific targeted location of a genome has profited over the unplanned insertional events which are generally accomplished employing unadventurous means of genetic modifications. The advent of new genome editing procedures viz; zinc finger nucleases (ZFNs), homing endonucleases, transcription activator like effector nucleases (TALENs), Base Editors (BEs), and Primer Editors (PEs) enable molecular scientists to modulate gene expressions or create novel genes with high precision and efficiency. However, all these techniques are exorbitant and tedious since their prerequisites are difficult processes that necessitate protein engineering. Contrary to first generation genome modifying methods, CRISPR/Cas9 is simple to construct, and clones can hypothetically target several locations in the genome with different guide RNAs. Following the model of the application in crop with the help of the CRISPR/Cas9 module, various customized Cas9 cassettes have been cast off to advance mark discrimination and diminish random cuts. The present study discusses the progression in genome editing apparatuses, and their applications in chickpea crop development, scientific limitations, and future perspectives for biofortifying cytokinin dehydrogenase, nitrate reductase, superoxide dismutase to induce drought resistance, heat tolerance and higher yield in chickpea to encounter global climate change, hunger and nutritional threats.
Collapse
Affiliation(s)
- Charul Singh
- USBT, Guru Govind Singh Indraprastha University, Delhi, India
| | - Ramesh Kumar
- Department of Biochemistry, University of Allahabad Prayagraj, Prayagraj, India
| | - Hansa Sehgal
- Department of Biological Sciences, Birla Institute of Technology and Sciences, Pilani, India
| | - Sharmista Bhati
- School of Biotechnology, Gautam Buddha University, Greater Noida, India
| | - Tripti Singhal
- Division of Genetics, ICAR-Indian Agricultural Research Institute, New Delhi, India
| | - Gayacharan
- Division of Germplasm Evaluation, ICAR- National Bureau of Plant Genetic Resources, New Delhi, India
| | - M. S. Nimmy
- ICAR-National Institute for Plant Biotechnology, New Delhi, India
| | | | | | | | - Aladdin Hamwieh
- The International Center for Agricultural Research in the Dry Areas (ICARDA), Cairo, Egypt
| | - Rajendra Kumar
- Division of Genetics, ICAR-Indian Agricultural Research Institute, New Delhi, India
| |
Collapse
|
3
|
Ganguly S, Purohit A, Ghosh S, Chaudhuri RK, Das S, Chakraborti D. Clean gene technology to develop selectable marker-free pod borer-resistant transgenic pigeon pea events involving the constitutive expression of Cry1Ac. Appl Microbiol Biotechnol 2022; 106:3051-3067. [PMID: 35441877 DOI: 10.1007/s00253-022-11922-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 04/04/2022] [Accepted: 04/08/2022] [Indexed: 11/29/2022]
Abstract
The most crucial yield constraint of pigeon pea is susceptibility to the pod borer Helicoverpa armigera, which causes extensive damage and severe economic losses every year. The Agrobacterium-mediated plumular meristem transformation technique was applied for the development of cry1Ac transgenic pigeon pea. Bioactivity of the cry1Ac gene was compared based on integration and expression driven by two promoters, the constitutive CaMV35S promoter and the green-tissue-specific ats1A promoter, in those transgenic events. The transgenic events also contained the selectable marker gene nptII flanked by loxP sites. Independent transgenic events expressing the Cre recombinase gene along with a linked bar selection marker were also developed. Integration and expression patterns of both cry1Ac and cre were confirmed through Southern and western blot analysis of T1 events. The constitutive expression of the Cry1Ac protein was found to be more effective for conferring resistant activity against H. armigera larvae in comparison to green-tissue-specific expression. Constitutively expressing Cry1Ac T1 events were crossed with Cre recombinase expressing T1 events. The crossing-based Cre/lox-mediated marker gene elimination strategy was demonstrated to generate nptII-free Cry1Ac-expressing T2 events. These events were subsequently analyzed in the T3 generation for the segregation of cre and bar genes. Five Cry1Ac-expressing T3 transgenic pigeon pea events were devoid of the nptII marker as well as cre-bar genes. H. armigera larval mortality in those marker-free T3 events was found to be 80-100%. The development of such nptII selectable marker-free Cry1Ac-expressing pigeon pea transgenics for the first time would greatly support the sustainable biotechnological breeding program for pod borer resistance in pigeon pea. KEY POINTS: • Constitutive expression of Cry1Ac conferred complete resistance against Helicoverpa armigera • Green-tissue-specific expression of Cry1Ac conferred partial pest resistance • Cre/lox-mediated nptII elimination was successful in constitutively expressing Cry1Ac transgenic pigeon pea events.
Collapse
Affiliation(s)
- Shreeparna Ganguly
- Department of Biotechnology, St. Xavier's College (Autonomous), 30, Mother Teresa Sarani, Kolkata - 700016, West Bengal, India.,Department of Genetics, University of Calcutta, 35, Ballygunge Circular Road, Kolkata - 700019, West Bengal, India
| | - Arnab Purohit
- Department of Genetics, University of Calcutta, 35, Ballygunge Circular Road, Kolkata - 700019, West Bengal, India
| | - Sanatan Ghosh
- Department of Genetics, University of Calcutta, 35, Ballygunge Circular Road, Kolkata - 700019, West Bengal, India
| | - Rituparna Kundu Chaudhuri
- Department of Botany, Barasat Govt. College, 10, K.N.C. Road, Barasat, Kolkata - 700124, West Bengal, India
| | - Sampa Das
- Division of Plant Biology, Bose Institute, C.I.T. Scheme VII M, P1/12, Kankurgachi, Kolkata- 700054, West Bengal, India
| | - Dipankar Chakraborti
- Department of Genetics, University of Calcutta, 35, Ballygunge Circular Road, Kolkata - 700019, West Bengal, India.
| |
Collapse
|
4
|
Yin X, Zhang Y, Chen Y, Wang J, Wang RRC, Fan C, Hu Z. Precise Characterization and Tracking of Stably Inherited Artificial Minichromosomes Made by Telomere-Mediated Chromosome Truncation in Brassica napus. FRONTIERS IN PLANT SCIENCE 2021; 12:743792. [PMID: 34671377 PMCID: PMC8521072 DOI: 10.3389/fpls.2021.743792] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Accepted: 09/08/2021] [Indexed: 06/13/2023]
Abstract
Plant artificial minichromosomes are the next-generation technology for plant genetic engineering and represent an independent platform for expressing foreign genes and the tools for studying the structure and function of chromosomes. Minichromosomes have been successfully produced by telomere-mediated chromosome truncation in several plants. However, previous studies have primarily focused on the construction and rough characterization of minichromosomes, while the development of stably inherited minichromosomes and their precise characterization and tracking over different generations have rarely been demonstrated. In this study, a 0.35-kb direct repeat of the Arabidopsis telomeric sequence was transformed into Brassica napus to produce artificial minichromosomes, which were analyzed by multifluorescence in situ hybridization (multi-FISH), Southern hybridization, and primer extension telomere rapid amplification (PETRA). The stably inherited minichromosomes C2 and C4 were developed by crossing transgenic plants with wild-type plants and then selfing the hybrids. Notably, two truncation sites on chromosomes C2 and C4, respectively, were identified by resequencing; thus, the artificial minichromosomes were tracked over different generations with insertion site-specific PCR. This study provided two stably inherited minichromosomes in oilseed rape and describes approaches to precisely characterize the truncation position and track the minichromosomes in offspring through multi-FISH, genome resequencing, and insertion site-specific PCR.
Collapse
Affiliation(s)
- Xiangzhen Yin
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing, China
| | - Yingxin Zhang
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing, China
- College of Agriculture, Yangtze University, Jingzhou, China
| | - Yuhong Chen
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing, China
| | - Jingqiao Wang
- Institute of Economical Crops, Yunnan Agricultural Academy, Kunming, China
| | - Richard R.-C. Wang
- Forage and Range Research Laboratory, United States Department of Agriculture, Agricultural Research Service, Utah State University, Logan, UT, United States
| | - Chengming Fan
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing, China
| | - Zanmin Hu
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing, China
- College of Agriculture, University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
5
|
Wang N, Arling M, Hoerster G, Ryan L, Wu E, Lowe K, Gordon-Kamm W, Jones TJ, Chilcoat ND, Anand A. An Efficient Gene Excision System in Maize. FRONTIERS IN PLANT SCIENCE 2020; 11:1298. [PMID: 32983193 PMCID: PMC7492568 DOI: 10.3389/fpls.2020.01298] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Accepted: 08/11/2020] [Indexed: 05/25/2023]
Abstract
Use of the morphogenic genes Baby Boom (Bbm) and Wuschel2 (Wus2), along with new ternary constructs, has increased the genotype range and the type of explants that can be used for maize transformation. Further optimizing the expression pattern for Bbm/Wus2 has resulted in rapid maize transformation methods that are faster and applicable to a broader range of inbreds. However, expression of Bbm/Wus2 can compromise the quality of regenerated plants, leading to sterility. We reasoned excising morphogenic genes after transformation but before regeneration would increase production of fertile T0 plants. We developed a method that uses an inducible site-specific recombinase (Cre) to excise morphogenic genes. The use of developmentally regulated promoters, such as Ole, Glb1, End2, and Ltp2, to drive Cre enabled excision of morphogenic genes in early embryo development and produced excised events at a rate of 25-100%. A different strategy utilizing an excision-activated selectable marker produced excised events at a rate of 53-68%; however, the transformation frequency was lower (13-50%). The use of inducible heat shock promoters (e.g. Hsp17.7, Hsp26) to express Cre, along with improvements in tissue culture conditions and construct design, resulted in high frequencies of T0 transformation (29-69%), excision (50-97%), usable quality events (4-15%), and few escapes (non-transgenic; 14-17%) in three elite maize inbreds. Transgenic events produced by this method are free of morphogenic and marker genes.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Ajith Anand
- Crop Genome Engineering, Applied Science and Technology, Corteva Agriscience, Johnston, IA, United States
| |
Collapse
|
6
|
Cody JP, Graham ND, Zhao C, Swyers NC, Birchler JA. Site-specific recombinase genome engineering toolkit in maize. PLANT DIRECT 2020; 4:e00209. [PMID: 32166212 PMCID: PMC7061458 DOI: 10.1002/pld3.209] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Revised: 02/08/2020] [Accepted: 02/18/2020] [Indexed: 05/20/2023]
Abstract
Site-specific recombinase enzymes function in heterologous cellular environments to initiate strand-switching reactions between unique DNA sequences termed recombinase binding sites. Depending on binding site position and orientation, reactions result in integrations, excisions, or inversions of targeted DNA sequences in a precise and predictable manner. Here, we established five different stable recombinase expression lines in maize through Agrobacterium-mediated transformation of T-DNA molecules that contain coding sequences for Cre, R, FLPe, phiC31 Integrase, and phiC31 excisionase. Through the bombardment of recombinase activated DsRed transient expression constructs, we have determined that all five recombinases are functional in maize plants. These recombinase expression lines could be utilized for a variety of genetic engineering applications, including selectable marker removal, targeted transgene integration into predetermined locations, and gene stacking.
Collapse
Affiliation(s)
- Jon P. Cody
- Division of Biological SciencesUniversity of MissouriColumbiaMOUSA
| | | | - Changzeng Zhao
- Division of Biological SciencesUniversity of MissouriColumbiaMOUSA
| | - Nathan C. Swyers
- Division of Biological SciencesUniversity of MissouriColumbiaMOUSA
| | | |
Collapse
|
7
|
Birchler JA, Swyers NC. Engineered minichromosomes in plants. Exp Cell Res 2020; 388:111852. [PMID: 31972219 DOI: 10.1016/j.yexcr.2020.111852] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2019] [Accepted: 01/14/2020] [Indexed: 11/17/2022]
Abstract
Artificial chromosome platforms are described in plants. Because the function of centromeres is largely epigenetic, attempts to produce artificial chromosomes with plant centromere DNA have failed. The removal of the centromeric sequences from the cell strips off the centromeric histone that is the apparent biochemical marker of centromere activity. Thus, engineered minichromosomes have been produced by telomere mediated chromosomal truncation. The introduction of telomere repeats will cleave the chromosome at the site of insertion and attach the accompanying transgenes in the process. Such truncation events have been documented in maize, Arabidopsis, barley, rice, Brassica and wheat. Truncation of the nonvital supernumerary B chromosome of maize is a favorite target but engineered minichromosomes derived from the normal A chromosomes have also been recovered. Transmission through mitosis of small chromosomes is apparently normal but there is loss during meiosis. Potential solutions to address this issue are discussed. With procedures now well established to produce the foundation for artificial chromosomes in plants, current efforts are directed at building them up to specification using gene stacking methods and editing techniques.
Collapse
Affiliation(s)
- James A Birchler
- Division of Biological Sciences, University of Missouri, 311 Tucker Hall, Columbia, MO, 65211-7400, USA.
| | - Nathan C Swyers
- Division of Biological Sciences, University of Missouri, 311 Tucker Hall, Columbia, MO, 65211-7400, USA
| |
Collapse
|
8
|
Site-specific transfer of chromosomal segments and genes in wheat engineered chromosomes. J Genet Genomics 2017; 44:531-539. [DOI: 10.1016/j.jgg.2017.08.005] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2017] [Revised: 07/30/2017] [Accepted: 08/07/2017] [Indexed: 11/18/2022]
|
9
|
Yan X, Li C, Yang J, Wang L, Jiang C, Wei W. Induction of telomere-mediated chromosomal truncation and behavior of truncated chromosomes in Brassica napus. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2017; 91:700-713. [PMID: 28500683 DOI: 10.1111/tpj.13598] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2017] [Accepted: 05/09/2017] [Indexed: 06/07/2023]
Abstract
Engineered minichromosomes could be stably inherited and serve as a platform for simultaneously transferring and stably expressing multiple genes. Chromosomal truncation mediated by repeats of telomeric sequences is a promising approach for the generation of minichromosomes. In the present work, direct repetitive sequences of Arabidopsis telomere were used to study telomere-mediated truncation of chromosomes in Brassica napus. Transgenes containing alien Arabidopsis telomere were successfully obtained, and Southern blotting and fluorescence in situ hybridization (FISH) results show that the transgenes resulted in successful chromosomal truncation in B. napus. In addition, truncated chromosomes were inherited at rates lower than that predicted by Mendelian rules. To determine the potential manipulations and applications of the engineered chromosomes, such as the stacking of multiple transgenes and the Cre/lox and FRT/FLP recombination systems, both amenable to genetic manipulations through site-specific recombination in somatic cells, were tested for their ability to undergo recombination in B. napus. These results demonstrate that alien Arabidopsis telomere is able to mediate chromosomal truncation in B. napus. This technology would be feasible for chromosomal engineering and for studies on chromosome structure and function in B. napus.
Collapse
Affiliation(s)
- Xiaohong Yan
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences/Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Wuhan, 430062, China
| | - Chen Li
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences/Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Wuhan, 430062, China
- College of Life Science and Technology, Henan Institute of Science and Technology/Collaborative Innovation Center of Modern Biological Breeding of Henan Province, Xinxiang, 453003, China
- College of Food Science and Technology, Agricultural University of Hebei, Baoding, 071001, China
| | - Jie Yang
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences/Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Wuhan, 430062, China
| | - Lijun Wang
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences/Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Wuhan, 430062, China
| | - Chenghong Jiang
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences/Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Wuhan, 430062, China
| | - Wenhui Wei
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences/Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Wuhan, 430062, China
- College of Life Science and Technology, Henan Institute of Science and Technology/Collaborative Innovation Center of Modern Biological Breeding of Henan Province, Xinxiang, 453003, China
| |
Collapse
|
10
|
Liu X, Xie C, Si H, Yang J. CRISPR/Cas9-mediated genome editing in plants. Methods 2017; 121-122:94-102. [PMID: 28315486 DOI: 10.1016/j.ymeth.2017.03.009] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2016] [Revised: 02/09/2017] [Accepted: 03/03/2017] [Indexed: 01/09/2023] Open
Abstract
The increasing burden of the world's population on agriculture necessitates the development of more robust crops. As the amount of information from sequenced crop genomes increases, technology can be used to investigate the function of genes in detail and to design improved crops at the molecular level. Recently, an RNA-programmed genome-editing system composed of a clustered regularly interspaced short palindromic repeats (CRISPR)-encoded guide RNA and the nuclease Cas9 has provided a powerful platform to achieve these goals. By combining versatile tools to study and modify plants at different molecular levels, the CRISPR/Cas9 system is paving the way towards a new horizon for basic research and crop development. In this review, the accomplishments, problems and improvements of this technology in plants, including target sequence cleavage, knock-in/gene replacement, transcriptional regulation, epigenetic modification, off-target effects, delivery system and potential applications, will be highlighted.
Collapse
Affiliation(s)
- Xuejun Liu
- TianJin Crops Research Institute, China.
| | - Chuanxiao Xie
- Institute of Crop Science of Chinese Academy of Agricultural Sciences, China.
| | - Huaijun Si
- College of Life Science and Technology, GanSu Agricultural University, China.
| | | |
Collapse
|
11
|
Cardi T, Neal Stewart C. Progress of targeted genome modification approaches in higher plants. PLANT CELL REPORTS 2016; 35:1401-16. [PMID: 27025856 DOI: 10.1007/s00299-016-1975-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2016] [Accepted: 03/21/2016] [Indexed: 05/07/2023]
Abstract
Transgene integration in plants is based on illegitimate recombination between non-homologous sequences. The low control of integration site and number of (trans/cis)gene copies might have negative consequences on the expression of transferred genes and their insertion within endogenous coding sequences. The first experiments conducted to use precise homologous recombination for gene integration commenced soon after the first demonstration that transgenic plants could be produced. Modern transgene targeting categories used in plant biology are: (a) homologous recombination-dependent gene targeting; (b) recombinase-mediated site-specific gene integration; (c) oligonucleotide-directed mutagenesis; (d) nuclease-mediated site-specific genome modifications. New tools enable precise gene replacement or stacking with exogenous sequences and targeted mutagenesis of endogeneous sequences. The possibility to engineer chimeric designer nucleases, which are able to target virtually any genomic site, and use them for inducing double-strand breaks in host DNA create new opportunities for both applied plant breeding and functional genomics. CRISPR is the most recent technology available for precise genome editing. Its rapid adoption in biological research is based on its inherent simplicity and efficacy. Its utilization, however, depends on available sequence information, especially for genome-wide analysis. We will review the approaches used for genome modification, specifically those for affecting gene integration and modification in higher plants. For each approach, the advantages and limitations will be noted. We also will speculate on how their actual commercial development and implementation in plant breeding will be affected by governmental regulations.
Collapse
Affiliation(s)
- Teodoro Cardi
- Consiglio per la Ricerca in Agricoltura e l'Analisi dell'Economia Agraria (CREA), Centro di Ricerca per l'Orticoltura, Via Cavalleggeri 25, 84098, Pontecagnano, Italy.
| | - C Neal Stewart
- Department of Plant Sciences, University of Tennessee, Knoxville, TN, 37996, USA
| |
Collapse
|
12
|
Hamzeh S, Motallebi M, Zamani MR, Moghaddassi Jahromi Z. Selectable Marker Gene Removal and Expression of Transgene by Inducible Promoter Containing FFDD Cis-Acting elements in Transgenic Plants. IRANIAN JOURNAL OF BIOTECHNOLOGY 2015; 13:1-9. [PMID: 28959293 PMCID: PMC5435017 DOI: 10.15171/ijb.1099] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2014] [Revised: 06/15/2015] [Accepted: 08/18/2015] [Indexed: 11/09/2022]
Abstract
BACKGROUND Selectable marker gene (SMG) systems are critical for generation of transgenic crops. Transgenic crop production without using SMG is not economically feasible. However, SMGs are non-essential once an intact transgenic plant has been established. Elimination of SMGs from transgenic crops both increases public acceptance of GM crops and prepares gene stacking possibility for improvement of complex traits. Synthetic inducible promoters provide an efficient and flexible strategy to regulate transgene expression. OBJECTIVES This study aimed to construct a transformation vector based on Cre/loxP recombination system to enhance efficiency of SMG-free transgenic plant production followed by post-excision expression of gene of interest in transgenic plants by a pathogen inducible promoter. MATERIALS AND METHODS In pG-IPFFDD-creint-gusint construct, cre recombinase and selectable marker gene (nptII) cassettes were placed between the two loxP recognition sites in direct orientation. Seed-specific Napin promoter was used for regulation of Cre expression in transgenic seeds. In the construct, loxP flanked sequence containing nptII and recombinase cassettes, located between a pathogen inducible promoter containing FFDD cis-acting elements and β-glucuronidase coding region. The cunstuct was transformed into Nicotiana tabaccum via Agrobacterium-mediated transformation. RESULTS The results showed that both cre and nptII excision occurs in T1 progeny tobacco plants through seed-specific cre expression. The excisions were confirmed by methods activation of the gus gene, germination test on kanamycin-containing medium and molecular analysis. Inducibility of gus expression by FFDD-containing promoter in T1 leaf tissues was confirmed by histochemical Gus staining assay. CONCLUSIONS The established system is not only an efficient tool for marker gene elimination but also provides possibility for inducible expression of the transgene.
Collapse
Affiliation(s)
| | - Mostafa Motallebi
- Department of Agricultural Biotechnology, National Institute of Genetic Engineering and Biotechnology, Tehran, Iran
| | - Mohammad Reza Zamani
- Department of Agricultural Biotechnology, National Institute of Genetic Engineering and Biotechnology, Tehran, Iran
| | | |
Collapse
|
13
|
Heat shock induced excision of selectable marker genes in transgenic banana by the Cre-lox site-specific recombination system. J Biotechnol 2012; 159:265-73. [DOI: 10.1016/j.jbiotec.2011.07.031] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2011] [Revised: 06/26/2011] [Accepted: 07/27/2011] [Indexed: 11/19/2022]
|
14
|
Gaeta RT, Masonbrink RE, Krishnaswamy L, Zhao C, Birchler JA. Synthetic chromosome platforms in plants. ANNUAL REVIEW OF PLANT BIOLOGY 2011; 63:307-330. [PMID: 22136564 DOI: 10.1146/annurev-arplant-042110-103924] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Synthetic chromosomes provide the means to stack transgenes independently of the remainder of the genome. Combining them with haploid breeding could provide the means to transfer many transgenes more easily among varieties of the same species. The epigenetic nature of centromere formation complicates the production of synthetic chromosomes. However, telomere-mediated truncation coupled with the introduction of site-specific recombination cassettes has been used to produce minichromosomes consisting of little more than a centromere. Methods that have been developed to modify genes in vivo could be applied to minichromosomes to improve their utility and to continue to increase their length and genic content. Synthetic chromosomes establish the means to add or subtract multiple transgenes, multigene complexes, or whole biochemical pathways to plants to change their properties for agricultural applications or to use plants as factories for the production of foreign proteins or metabolites.
Collapse
Affiliation(s)
- Robert T Gaeta
- Division of Biological Sciences, University of Missouri, Columbia, MO 65211, USA
| | | | | | | | | |
Collapse
|
15
|
Kopertekh L, v. Saint Paul V, Krebs E, Schiemann J. Utilization of PVX-Cre expression vector in potato. Transgenic Res 2011; 21:645-54. [DOI: 10.1007/s11248-011-9558-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2011] [Accepted: 09/13/2011] [Indexed: 11/29/2022]
|
16
|
Nandy S, Srivastava V. Site-specific gene integration in rice genome mediated by the FLP-FRT recombination system. PLANT BIOTECHNOLOGY JOURNAL 2011; 9:713-21. [PMID: 21083801 DOI: 10.1111/j.1467-7652.2010.00577.x] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Plant transformation based on random integration of foreign DNA often generates complex integration structures. Precision in the integration process is necessary to ensure the formation of full-length, single-copy integration. Site-specific recombination systems are versatile tools for precise genomic manipulations such as DNA excision, inversion or integration. The yeast FLP-FRT recombination system has been widely used for DNA excision in higher plants. Here, we report the use of FLP-FRT system for efficient targeting of foreign gene into the engineered genomic site in rice. The transgene vector containing a pair of directly oriented FRT sites was introduced by particle bombardment into the cells containing the target locus. FLP activity generated by the co-bombarded FLP gene efficiently separated the transgene construct from the vector-backbone and integrated the backbone-free construct into the target site. Strong FLP activity, derived from the enhanced FLP protein, FLPe, was important for the successful site-specific integration (SSI). The majority of the transgenic events contained a precise integration and expressed the transgene. Interestingly, each transgenic event lacked the co-bombarded FLPe gene, suggesting reversion of the integration structure in the presence of the constitutive FLPe expression. Progeny of the precise transgenic lines inherited the stable SSI locus and expressed the transgene. This work demonstrates the application of FLP-FRT system for site-specific gene integration in plants using rice as a model.
Collapse
Affiliation(s)
- Soumen Nandy
- Department of Crop, Soil & Environmental Sciences, University of Arkansas, Fayetteville, AR, USA
| | | |
Collapse
|
17
|
Wang Y, Yau YY, Perkins-Balding D, Thomson JG. Recombinase technology: applications and possibilities. PLANT CELL REPORTS 2011; 30:267-85. [PMID: 20972794 PMCID: PMC3036822 DOI: 10.1007/s00299-010-0938-1] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2010] [Revised: 10/06/2010] [Accepted: 10/08/2010] [Indexed: 05/02/2023]
Abstract
The use of recombinases for genomic engineering is no longer a new technology. In fact, this technology has entered its third decade since the initial discovery that recombinases function in heterologous systems (Sauer in Mol Cell Biol 7(6):2087-2096, 1987). The random insertion of a transgene into a plant genome by traditional methods generates unpredictable expression patterns. This feature of transgenesis makes screening for functional lines with predictable expression labor intensive and time consuming. Furthermore, an antibiotic resistance gene is often left in the final product and the potential escape of such resistance markers into the environment and their potential consumption raises consumer concern. The use of site-specific recombination technology in plant genome manipulation has been demonstrated to effectively resolve complex transgene insertions to single copy, remove unwanted DNA, and precisely insert DNA into known genomic target sites. Recombinases have also been demonstrated capable of site-specific recombination within non-nuclear targets, such as the plastid genome of tobacco. Here, we review multiple uses of site-specific recombination and their application toward plant genomic engineering. We also provide alternative strategies for the combined use of multiple site-specific recombinase systems for genome engineering to precisely insert transgenes into a pre-determined locus, and removal of unwanted selectable marker genes.
Collapse
Affiliation(s)
- Yueju Wang
- Department of Natural Sciences, Northeastern State University, Broken Arrow, OK 74014 USA
| | - Yuan-Yeu Yau
- Department of Plant and Microbial Biology, Plant Gene Expression Center, USDA-ARS, University of California-Berkeley, 800 Buchanan St., Albany, CA 94710 USA
| | | | - James G. Thomson
- Crop Improvement and Utilization Unit, USDA-ARS WRRC, 800 Buchanan St., Albany, CA 94710 USA
| |
Collapse
|
18
|
Improved FLP Recombinase, FLPe, Efficiently Removes Marker Gene from Transgene Locus Developed by Cre–lox Mediated Site-Specific Gene Integration in Rice. Mol Biotechnol 2011; 49:82-9. [DOI: 10.1007/s12033-011-9381-y] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
19
|
Khrunyk Y, Münch K, Schipper K, Lupas AN, Kahmann R. The use of FLP-mediated recombination for the functional analysis of an effector gene family in the biotrophic smut fungus Ustilago maydis. THE NEW PHYTOLOGIST 2010; 187:957-968. [PMID: 20673282 DOI: 10.1111/j.1469-8137.2010.03413.x] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
*In the Ustilago maydis genome, several novel secreted effector proteins are encoded by gene families. Because of the limited number of selectable markers, the ability to carry out sequential gene deletions has limited the analysis of effector gene families that may have redundant functions. *Here, we established an inducible FLP-mediated recombination system in U. maydis that allows repeated rounds of gene deletion using a single selectable marker (Hyg(R)). To avoid genome rearrangements via FRT sites remaining in the genome after excision, different mutated FRT sites were introduced. *The FLP-mediated selectable marker-removal technique was successfully applied to delete a family of 11 effector genes (eff1) using five sequential rounds of recombination. We showed that expression of all 11 genes is up-regulated during the biotrophic phase. Strains carrying deletions of 9 or all 11 genes showed a significant reduction in virulence, and this phenotype could be partially complemented by the introduction of different members from the gene family, demonstrating redundancy. *The establishment of the FLP/FRT system in a plant pathogenic fungus paves the way for analyzing multigene families with redundant functions.
Collapse
Affiliation(s)
- Yuliya Khrunyk
- Department of Organismic Interactions, Max Planck Institute for Terrestrial Microbiology, Karl-von-Frisch-Strasse 10, D-35043 Marburg, Germany
| | - Karin Münch
- Department of Organismic Interactions, Max Planck Institute for Terrestrial Microbiology, Karl-von-Frisch-Strasse 10, D-35043 Marburg, Germany
| | - Kerstin Schipper
- Department of Organismic Interactions, Max Planck Institute for Terrestrial Microbiology, Karl-von-Frisch-Strasse 10, D-35043 Marburg, Germany
| | - Andrei N Lupas
- Department of Protein Evolution, Max Planck Institute for Developmental Biology, Spemannstr. 35, D-72076 Tübingen, Germany
| | - Regine Kahmann
- Department of Organismic Interactions, Max Planck Institute for Terrestrial Microbiology, Karl-von-Frisch-Strasse 10, D-35043 Marburg, Germany
| |
Collapse
|
20
|
Kopertekh L, Schulze K, Frolov A, Strack D, Broer I, Schiemann J. Cre-mediated seed-specific transgene excision in tobacco. PLANT MOLECULAR BIOLOGY 2010; 72:597-605. [PMID: 20076992 DOI: 10.1007/s11103-009-9595-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2009] [Accepted: 12/22/2009] [Indexed: 05/28/2023]
Abstract
Here we report the production of marker-free transgenic plants expressing phenolic compounds with high pharmacological value. Our strategy consisted in simultaneous delivery of lox-target and cre-containing constructs into the plant genome by cotransformation. In the Cre-vector, the cre recombinase gene was controlled by a seed-specific napin promoter. In the lox-target construct the selectable bar gene was placed between two lox sites in direct orientation, while a napin promoter driven vstI gene was inserted outside of the lox sites. Upon seed-specific cre induction the bar expression cassette was excised from the tobacco genome. Genetic and molecular analysis of T1 progeny plants indicated DNA excision in all 10 transgenic lines tested. RP-HPLC analysis demonstrated that the expression of the vstI gene resulted in accumulation of trans-resveratrol and its glycosylated derivative piceid in seeds of all marker free lines. These findings indicate that the seed-specific marker gene excision did not interfere with the expression of the gene of interest. Our data demonstrated the feasi of a developmentally controlled cre gene to mediate site-specific excision in tobacco very efficiently.
Collapse
Affiliation(s)
- L Kopertekh
- Julius Kuehn Institute, Federal Research Centre for Cultivated Plants (JKI), Institute for Biosafety of Genetically Modified Plants, Erwin-Baur-Str 27, 06484 Quedlinburg, Germany
| | | | | | | | | | | |
Collapse
|
21
|
Chen IC, Thiruvengadam V, Lin WD, Chang HH, Hsu WH. Lysine racemase: a novel non-antibiotic selectable marker for plant transformation. PLANT MOLECULAR BIOLOGY 2010; 72:153-69. [PMID: 19834817 DOI: 10.1007/s11103-009-9558-y] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/24/2008] [Accepted: 10/03/2009] [Indexed: 05/28/2023]
Abstract
A non-antibiotic based selection system using L-lysine as selection agent and the lysine racemase (lyr) as selectable marker gene for plant transformation was established in this study. L-lysine was toxic to plants, and converted by Lyr into D-lysine which would subsequently be used by the transgenic plants as nitrogen source. Transgenic tobacco and Arabidopsis plants were successfully recovered on L-lysine medium at efficiencies of 23 and 2.4%, respectively. Phenotypic characterization of transgenic plants clearly revealed the expression of normal growth and developmental characteristics as that of wild-type plants, suggesting no pleiotropic effects associated with the lyr gene. The specific activity of Lyr in transgenic tobacco plants selected on L: -lysine ranged from 0.77 to 1.06 mU/mg protein, whereas no activity was virtually detectable in the wild-type plants. In addition, the composition of the free amino acids, except aspartic acid, was not affected by the expression of the lyr gene in the transgenic tobacco plants suggesting very limited interference with endogenous amino acid metabolism. Interestingly, our findings also suggested that the plant aspartate kinases may possess an ability to distinguish the enantiomers of lysine for feedback regulation. To our knowledge, this is the first report to demonstrate that the lysine racemase selectable marker system is novel, less controversial and inexpensive than the traditional selection systems.
Collapse
Affiliation(s)
- I-Chieh Chen
- Institute of Molecular Biology, College of Life Sciences, National Chung Hsing University, Taichung, 402, Taiwan
| | | | | | | | | |
Collapse
|
22
|
Li B, Li N, Duan X, Wei A, Yang A, Zhang J. Generation of marker-free transgenic maize with improved salt tolerance using the FLP/FRT recombination system. J Biotechnol 2009; 145:206-13. [PMID: 19932138 DOI: 10.1016/j.jbiotec.2009.11.010] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2009] [Revised: 10/13/2009] [Accepted: 11/12/2009] [Indexed: 01/31/2023]
Abstract
The possible release of selectable marker genes from genetically modified transgenic plants, or of gut microbes, to the environment, has raised worldwide public concerns. In this study, we showed the generation of marker-free transgenic maize plants constitutively expressing AtNHX1, a Na(+)/H(+) antiporter gene from Arabidopsis that conferred salt tolerance on plants, using the FLP/FRT site-specific recombination system. Transgenic plant expressing a modified FLP recombinase gene was crossed with transgenic plant harboring AtNHX1 and mutant als, a selectable marker gene flanked by two directed FRT sites. The sexual crossing led to precise and complete excision of the FRT-surrounded als marker gene in the F1 progenies. Further salt tolerance examinations indicated that marker-free AtNHX1 transgenic plants accumulated more Na(+) and K(+), and produced greater biomass and yields than did the wild-type plants when grown in high saline fields. These results demonstrate the feasibility of using this FLP/FRT-based marker elimination system to generate marker-free transgenic important cereal crops with improved salt tolerance.
Collapse
Affiliation(s)
- Bei Li
- School of Life Science, Shandong University, 27 Shanda South Road, Jinan 250100, PR China
| | | | | | | | | | | |
Collapse
|
23
|
Chakraborti D, Sarkar A, Mondal HA, Schuermann D, Hohn B, Sarmah BK, Das S. Cre/lox system to develop selectable marker free transgenic tobacco plants conferring resistance against sap sucking homopteran insect. PLANT CELL REPORTS 2008; 27:1623-33. [PMID: 18663453 DOI: 10.1007/s00299-008-0585-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2008] [Revised: 06/20/2008] [Accepted: 07/08/2008] [Indexed: 05/26/2023]
Abstract
A binary expression vector was constructed containing the insecticidal gene Allium sativum leaf agglutinin (ASAL), and a selectable nptII marker gene cassette, flanked by lox sites. Similarly, another binary vector was developed with the chimeric cre gene construct. Transformed tobacco plants were generated with these two independent vectors. Each of the T(0) lox plants was crossed with T(0) Cre plants. PCR analyses followed by the sequencing of the target T-DNA part of the hybrid T(1) plants demonstrated the excision of the nptII gene in highly precised manner in certain percentage of the T(1) hybrid lines. The frequency of such marker gene excision was calculated to be 19.2% in the hybrids. Marker free plants were able to express ASAL efficiently and reduce the survivability of Myzus persiceae, the deadly pest of tobacco significantly, compared to the control tobacco plants. Results of PCR and Southern blot analyses of some of the T(2) plants detected the absence of cre as well as nptII genes. Thus, the crossing strategy involving Cre/lox system for the excision of marker genes appears to be very effective and easy to execute. Documentation of such marker excision phenomenon in the transgenic plants expressing the important insecticidal protein for the first time has a great significance from agricultural and biotechnological points of view.
Collapse
Affiliation(s)
- Dipankar Chakraborti
- Plant Molecular and Cellular Genetics, Bose Institute, P1/12 C.I.T. Scheme VIIM, Kankurgachi, Kolkata 700054, India
| | | | | | | | | | | | | |
Collapse
|
24
|
Djukanovic V, Lenderts B, Bidney D, Lyznik LA. A Cre::FLP fusion protein recombines FRT or loxP sites in transgenic maize plants. PLANT BIOTECHNOLOGY JOURNAL 2008; 6:770-781. [PMID: 18627532 DOI: 10.1111/j.1467-7652.2008.00357.x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
The coding sequences of Cre (site-specific recombinase from bacteriophage P1) and FLP (yeast 2-microm plasmid site-specific recombinase) were fused in frame to produce a novel, dual-function, site-specific recombinase gene. Transgenic maize plants containing the Cre::FLP fusion expression vector were crossed to transgenic plants containing either the loxP or FRT excision substrate. Complete and precise excisions of chromosomal fragments flanked by the respective target sites were observed in the F1 and F2 progeny plants. The episomal DNA recombination products were frequently lost. Non-recombined FRT substrates found in the F1 plants were recovered in the F2 generation after the Cre::FLP gene segregated out. They produced the recombination products in the F3 generation when crossed back to the FLP-expressing plants. These observations may indicate that the efficiency of site-specific recombination is affected by the plant developmental stage, with site-specific recombination being more prevalent in developing embryos. The Cre::FLP fusion protein was also tested for excisions catalysed by Cre. Excisions were identified in the F1 plants and verified in the F2 plants by polymerase chain reaction and Southern blotting. Both components of the fusion protein (FLP and Cre) were functional and acted with similar efficiency. The crossing strategy proved to be suitable for the genetic engineering of maize using the FLP or Cre site-specific recombination system.
Collapse
Affiliation(s)
- Vesna Djukanovic
- Pioneer Hi-Bred International, A DuPont Business, Research Center, 7300 NW 62nd Avenue, Johnston, IA 50131-1004, USA
| | | | | | | |
Collapse
|
25
|
Thomson JG, Yau YY, Blanvillain R, Chiniquy D, Thilmony R, Ow DW. ParA resolvase catalyzes site-specific excision of DNA from the Arabidopsis genome. Transgenic Res 2008; 18:237-48. [DOI: 10.1007/s11248-008-9213-4] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2008] [Accepted: 07/30/2008] [Indexed: 11/30/2022]
|
26
|
Hu Q, Kononowicz-Hodges H, Nelson-Vasilchik K, Viola D, Zeng P, Liu H, Kausch AP, Chandlee JM, Hodges TK, Luo H. FLP recombinase-mediated site-specific recombination in rice. PLANT BIOTECHNOLOGY JOURNAL 2008; 6:176-188. [PMID: 18021190 DOI: 10.1111/j.1467-7652.2007.00310.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
The feasibility of using the FLP/FRT site-specific recombination system in rice for genome engineering was evaluated. Transgenic rice plants expressing the FLP recombinase were crossed with plants harbouring the kanamycin resistance gene (neomycin phosphotransferase II, nptII) flanked by FRT sites, which also served to separate the corn ubiquitin promoter from a promoterless gusA. Hybrid progeny were tested for excision of the nptII gene and the positioning of the ubiquitin promoter proximal to gusA. While the hybrid progeny from various crosses exhibited beta-glucuronidase (GUS) expression, the progeny of selfed parental rice plants did not show detectable GUS activity. Despite the variable GUS expression and incomplete recombination displayed in hybrids from some crosses, uniform GUS staining and complete recombination were observed in hybrids from other crosses. The recombined locus was shown to be stably inherited by the progeny. These data demonstrate the operation of FLP recombinase in catalysing excisional DNA recombination in rice, and confirm that the FLP/FRT recombination system functions effectively in the cereal crop rice. Transgenic rice lines expressing active FLP recombinase generated in this study provide foundational stock material, thus facilitating the future application and development of the FLP/FRT system in rice genetic improvement.
Collapse
Affiliation(s)
- Qian Hu
- Department of Genetics and Biochemistry, Clemson University, 100 Jordan Hall, Clemson, SC 29634, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Birchler J, Yu W, Han F. Plant engineered minichromosomes and artificial chromosome platforms. Cytogenet Genome Res 2008; 120:228-32. [DOI: 10.1159/000121071] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/22/2007] [Indexed: 02/01/2023] Open
|
28
|
Verweire D, Verleyen K, De Buck S, Claeys M, Angenon G. Marker-free transgenic plants through genetically programmed auto-excision. PLANT PHYSIOLOGY 2007; 145:1220-31. [PMID: 17965180 PMCID: PMC2151720 DOI: 10.1104/pp.107.106526] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2007] [Accepted: 10/22/2007] [Indexed: 05/18/2023]
Abstract
We present here a vector system to obtain homozygous marker-free transgenic plants without the need of extra handling and within the same time frame as compared to transformation methods in which the marker is not removed. By introducing a germline-specific auto-excision vector containing a cre recombinase gene under the control of a germline-specific promoter, transgenic plants become genetically programmed to lose the marker when its presence is no longer required (i.e. after the initial selection of primary transformants). Using promoters with different germline functionality, two modules of this genetic program were developed. In the first module, the promoter, placed upstream of the cre gene, confers CRE functionality in both the male and the female germline or in the common germline (e.g. floral meristem cells). In the second module, a promoter conferring single germline-specific CRE functionality was introduced upstream of the cre gene. Promoter sequences used in this work are derived from the APETALA1 and SOLO DANCERS genes from Arabidopsis (Arabidopsis thaliana) Columbia-0 conferring common germline and single germline functionality, respectively. Introduction of the genetic program did not reduce transformation efficiency. Marker-free homozygous progeny plants were efficiently obtained, regardless of which promoter was used. In addition, simplification of complex transgene loci was observed.
Collapse
Affiliation(s)
- Dimitri Verweire
- Laboratory of Plant Genetics, Institute for Molecular Biology and Biotechnology, Vrije Universiteit Brussel, B-1050 Brussels, Belgium
| | | | | | | | | |
Collapse
|
29
|
Yu W, Han F, Gao Z, Vega JM, Birchler JA. Construction and behavior of engineered minichromosomes in maize. Proc Natl Acad Sci U S A 2007; 104:8924-9. [PMID: 17502617 PMCID: PMC1885604 DOI: 10.1073/pnas.0700932104] [Citation(s) in RCA: 85] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Engineered minichromosomes were constructed in maize by modifying natural A and supernumerary B chromosomes. By using telomere-mediated chromosomal truncation, it was demonstrated that such an approach is feasible for the generation of minichromosomes of normal A chromosomes by selection of spontaneous polyploid events that compensate for the deficiencies produced. B chromosomes are readily fractionated by biolistic transformation of truncating plasmids. Foreign genes were faithfully expressed from integrations into normal B chromosomes and from truncated miniB chromosomes. Site-specific recombination between the terminal transgene on a miniA chromosome and a terminal site on a normal chromosome was demonstrated. It was also found that the miniA chromosome did not pair with its progenitor chromosomes during meiosis, indicating a useful property for such constructs. The miniB chromosomes are faithfully transmitted from one generation to the next but can be changed in dosage in the presence of normal B chromosomes. This approach for construction of engineered chromosomes can be easily extended to other plant species because it does not rely on cloned centromere sequences, which are species-specific. These platforms will provide avenues for studies on plant chromosome structure and function and for future developments in biotechnology and agriculture.
Collapse
Affiliation(s)
- Weichang Yu
- Division of Biological Sciences, 117 Tucker Hall, University of Missouri, Columbia, MO 65211
| | - Fangpu Han
- Division of Biological Sciences, 117 Tucker Hall, University of Missouri, Columbia, MO 65211
| | - Zhi Gao
- Division of Biological Sciences, 117 Tucker Hall, University of Missouri, Columbia, MO 65211
| | - Juan M. Vega
- Division of Biological Sciences, 117 Tucker Hall, University of Missouri, Columbia, MO 65211
| | - James A. Birchler
- Division of Biological Sciences, 117 Tucker Hall, University of Missouri, Columbia, MO 65211
- To whom correspondence should be addressed. E-mail:
| |
Collapse
|
30
|
Ow DW. GM maize from site-specific recombination technology, what next? Curr Opin Biotechnol 2007; 18:115-20. [PMID: 17353124 DOI: 10.1016/j.copbio.2007.02.004] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2007] [Revised: 02/05/2007] [Accepted: 02/28/2007] [Indexed: 10/23/2022]
Abstract
The term plant genetic engineering has long conveyed a highly efficient and precise process for the manipulation of plant genomes. For nearly two decades, research on recombinase-based applications has steadily advanced the surgical capabilities of plant genome rearrangements. Once considered interesting laboratory exercises, a first crop plant derived from this type of DNA acrobatics is heading to market. Originally configured for a specific application, to remove a selectable marker, it could be the first of more to come - and not just market-free plants.
Collapse
Affiliation(s)
- David W Ow
- Plant Gene Expression Center, USDA-ARS and University of California at Berkeley, 800 Buchanan Street, Albany, California 94710, USA.
| |
Collapse
|
31
|
Grønlund JT, Stemmer C, Lichota J, Merkle T, Grasser KD. Functionality of the beta/six site-specific recombination system in tobacco and Arabidopsis: a novel tool for genetic engineering of plant genomes. PLANT MOLECULAR BIOLOGY 2007; 63:545-56. [PMID: 17131098 DOI: 10.1007/s11103-006-9108-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2006] [Accepted: 10/30/2006] [Indexed: 05/12/2023]
Abstract
The beta recombinase is a member of the prokaryotic site-specific serine recombinases (invertase/resolvase family), which in the presence of a DNA bending cofactor can catalyse DNA deletions between two directly oriented 90-bp six recombination sites. We have examined here whether the beta recombinase can be expressed in plants and whether it displays in planta its specific catalytic activity excising DNA sequences that are flanked by six sites. In plant protoplasts, the enzyme could be expressed as a GFP-beta recombinase fusion which can localise to the cell nucleus. Beta recombinase stably expressed in tobacco plants can catalyse deletion of a spacer region that is flanked by directly oriented six sites and has been placed between promoter and a GUS reporter gene (preventing GUS expression). In transient transformation experiments, beta recombinase-mediated elimination of the spacer results in transcriptional induction of the GUS gene. Similarly, beta recombinase in stably double-transformed Arabidopsis plants deletes specifically the spacer region of a reporter construct that has been incorporated into the genome. In the segregating T1 generation, plants were identified that contain exclusively the recombined reporter construct. In summary, our results demonstrate that functional / recombinase can be expressed in plants and that the enzyme is suitable to precisely eliminate undesired sequences from plant genomes. Therefore, the beta/six recombination system (and presumably related recombinases) may become an attractive tool for plant genetic engineering.
Collapse
Affiliation(s)
- Jesper T Grønlund
- Department of Life Sciences, Aalborg University, Sohngaardsholmsvej 49, DK-9000 Aalborg, Denmark
| | | | | | | | | |
Collapse
|