1
|
Patel S, Patel J, Silliman K, Hall N, Bowen K, Koebernick J. Comparative Transcriptome Profiling Unfolds a Complex Defense and Secondary Metabolite Networks Imparting Corynespora cassiicola Resistance in Soybean ( Glycine max (L.) Merrill). Int J Mol Sci 2023; 24:10563. [PMID: 37445741 DOI: 10.3390/ijms241310563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 06/07/2023] [Accepted: 06/20/2023] [Indexed: 07/15/2023] Open
Abstract
Target spot is caused by Corynespora cassiicola, which heavily affects soybean production areas that are hot and humid. Resistant soybean genotypes have been identified; however, the molecular mechanisms governing resistance to infection are unknown. Comparative transcriptomic profiling using two known resistant genotypes and two susceptible genotypes was performed under infected and control conditions to understand the regulatory network operating between soybean and C. cassiicola. RNA-Seq analysis identified a total of 2571 differentially expressed genes (DEGs) which were shared by all four genotypes. These DEGs are related to secondary metabolites, immune response, defense response, phenylpropanoid, and flavonoid/isoflavonoid pathways in all four genotypes after C. cassiicola infection. In the two resistant genotypes, additional upregulated DEGs were identified affiliated with the defense network: flavonoids, jasmonic acid, salicylic acid, and brassinosteroids. Further analysis led to the identification of differentially expressed transcription factors, immune receptors, and defense genes with a leucine-rich repeat domain, dirigent proteins, and cysteine (C)-rich receptor-like kinases. These results will provide insight into molecular mechanisms of soybean resistance to C. cassiicola infection and valuable resources to potentially pyramid quantitative resistance loci for improving soybean germplasm.
Collapse
Affiliation(s)
- Sejal Patel
- Department of Crop, Soil and Environmental Sciences, Auburn University, Auburn, AL 36849, USA
| | - Jinesh Patel
- Department of Crop, Soil and Environmental Sciences, Auburn University, Auburn, AL 36849, USA
| | - Katherine Silliman
- School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, AL 36849, USA
| | - Nathan Hall
- Department of Crop, Soil and Environmental Sciences, Auburn University, Auburn, AL 36849, USA
| | - Kira Bowen
- Department of Entomology and Plant Pathology, Auburn University, Auburn, AL 36849, USA
| | - Jenny Koebernick
- Department of Crop, Soil and Environmental Sciences, Auburn University, Auburn, AL 36849, USA
| |
Collapse
|
2
|
Transgenic Improvement for Biotic Resistance of Crops. Int J Mol Sci 2022; 23:ijms232214370. [PMID: 36430848 PMCID: PMC9697442 DOI: 10.3390/ijms232214370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 11/15/2022] [Accepted: 11/17/2022] [Indexed: 11/22/2022] Open
Abstract
Biotic constraints, including pathogenic fungi, viruses and bacteria, herbivory insects, as well as parasitic nematodes, cause significant yield loss and quality deterioration of crops. The effect of conventional management of these biotic constraints is limited. The advances in transgenic technologies provide a direct and directional approach to improve crops for biotic resistance. More than a hundred transgenic events and hundreds of cultivars resistant to herbivory insects, pathogenic viruses, and fungi have been developed by the heterologous expression of exogenous genes and RNAi, authorized for cultivation and market, and resulted in a significant reduction in yield loss and quality deterioration. However, the exploration of transgenic improvement for resistance to bacteria and nematodes by overexpression of endogenous genes and RNAi remains at the testing stage. Recent advances in RNAi and CRISPR/Cas technologies open up possibilities to improve the resistance of crops to pathogenic bacteria and plant parasitic nematodes, as well as other biotic constraints.
Collapse
|
3
|
Amo A, Soriano JM. Unravelling consensus genomic regions conferring leaf rust resistance in wheat via meta-QTL analysis. THE PLANT GENOME 2022; 15:e20185. [PMID: 34918873 DOI: 10.1002/tpg2.20185] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Accepted: 11/12/2021] [Indexed: 06/14/2023]
Abstract
Leaf rust, caused by the fungus Puccinia triticina Erikss (Pt), is a destructive disease affecting wheat (Triticum aestivum L.) and a threat to food security. Developing resistant cultivars represents a useful method of disease control, and thus, understanding the genetic basis for leaf rust resistance is required. To this end, a comprehensive bibliographic search for leaf rust resistance quantitative trait loci (QTL) was performed, and 393 QTL were collected from 50 QTL mapping studies. Afterward, a consensus map with a total length of 4,567 cM consisting of different types of markers (simple sequence repeat [SSR], diversity arrays technology [DArT], chip-based single-nucleotide polymorphism [SNP] markers, and SNP markers from genotyping-by-sequencing) was used for QTL projection, and meta-QTL (MQTL) analysis was performed on 320 QTL. A total of 75 MQTL were discovered and refined to 15 high-confidence MQTL (hcmQTL). The candidate genes discovered within the hcmQTL interval were then checked for differential expression using data from three transcriptome studies, resulting in 92 differentially expressed genes (DEGs). The expression of these genes in various leaf tissues during wheat development was explored. This study provides insight into leaf rust resistance in wheat and thereby provides an avenue for developing resistant cultivars by incorporating the most important hcmQTL.
Collapse
Affiliation(s)
- Aduragbemi Amo
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F Univ., Yangling, Shaanxi, China
| | - Jose Miguel Soriano
- Sustainable Field Crops Programme, Institute for Food and Agricultural Research and Technology (IRTA), Lleida, 25198, Spain
| |
Collapse
|
4
|
Hernandez J, Meints B, Hayes P. Introgression Breeding in Barley: Perspectives and Case Studies. FRONTIERS IN PLANT SCIENCE 2020; 11:761. [PMID: 32595671 PMCID: PMC7303309 DOI: 10.3389/fpls.2020.00761] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Accepted: 05/13/2020] [Indexed: 05/04/2023]
Abstract
Changing production scenarios resulting from unstable climatic conditions are challenging crop improvement efforts. A deeper and more practical understanding of plant genetic resources is necessary if these assets are to be used effectively in developing improved varieties. In general, current varieties and potential varieties have a narrow genetic base, making them prone to suffer the consequences of new and different abiotic and biotic stresses that can reduce crop yield and quality. The deployment of genomic technologies and sophisticated statistical analysis procedures has generated a dramatic change in the way we characterize and access genetic diversity in crop plants, including barley. Various mapping strategies can be used to identify the genetic variants that lead to target phenotypes and these variants can be assigned coordinates in reference genomes. In this way, new genes and/or new alleles at known loci present in wild ancestors, germplasm accessions, land races, and un-adapted introductions can be located and targeted for introgression. In principle, the introgression process can now be streamlined and linkage drag reduced. In this review, we present an overview of (1) past and current efforts to identify diversity that can be tapped to improve barley yield and quality, and (2) case studies of our efforts to introgress resistance to stripe and stem rust from un-adapted germplasm. We conclude with a description of a modified Nested Association Mapping (NAM) population strategy that we are implementing for the development of multi-use naked barley for organic systems and share perspectives on the use of genome editing in introgression breeding.
Collapse
Affiliation(s)
- Javier Hernandez
- Department Crop and Soil Science, Oregon State University, Corvallis, OR, United States
| | | | | |
Collapse
|
5
|
Hernandez J, Del Blanco A, Filichkin T, Fisk S, Gallagher L, Helgerson L, Meints B, Mundt C, Steffenson B, Hayes P. A Genome-Wide Association Study of Resistance to Puccinia striiformis f. sp. hordei and P. graminis f. sp. tritici in Barley and Development of Resistant Germplasm. PHYTOPATHOLOGY 2020; 110:1082-1092. [PMID: 32023173 DOI: 10.1094/phyto-11-19-0415-r] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Stripe rust (incited by Puccinia striiformis f. sp. hordei) and stem rust (incited by P. graminis f. sp. tritici) are two of the most important diseases affecting barley. Building on prior work involving the introgression of the resistance genes rpg4/Rpg5 into diverse genetic backgrounds and the discovery of additional quantitative trait locus (QTLs) for stem rust resistance, we generated an array of germplasm in which we mapped resistance to stripe rust and stem rust. Stem rust races TTKSK and QCCJB were used for resistance mapping at the seedling and adult plant stages, respectively. Resistance to stripe rust, at the adult plant stage, was determined by QTLs on chromosomes 1H, 4H, and 5H that were previously reported in the literature. The rpg4/Rpg5 complex was validated as a source of resistance to stem rust at the seedling stage. Some parental germplasm, selected as potentially resistant to stem rust or susceptible but having other positive attributes, showed resistance at the seedling stage, which appears to be allelic to rpg4/Rpg5. The rpg4/Rpg5 complex, and this new allele, were not sufficient for adult plant resistance to stem rust in one environment. A QTL on 5H, distinct from Rpg5 and a previously reported resistance QTL, was required for resistance at the adult plant stage in all environments. This QTL is coincident with the QTL for stripe rust resistance. Germplasm with mapped genes/QTLs conferring resistance to stripe and stem rust was identified and is available as a resource to the research and breeding communities.
Collapse
Affiliation(s)
- Javier Hernandez
- Department of Crop and Soil Science, Oregon State University, Corvallis, OR 97331
| | - Alicia Del Blanco
- Department of Plant Sciences, University of California-Davis, Davis, CA 95616
| | - Tanya Filichkin
- Department of Crop and Soil Science, Oregon State University, Corvallis, OR 97331
| | - Scott Fisk
- Department of Crop and Soil Science, Oregon State University, Corvallis, OR 97331
| | - Lynn Gallagher
- Department of Plant Sciences, University of California-Davis, Davis, CA 95616
| | - Laura Helgerson
- Department of Crop and Soil Science, Oregon State University, Corvallis, OR 97331
| | - Brigid Meints
- Department of Crop and Soil Science, Oregon State University, Corvallis, OR 97331
| | - Chris Mundt
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, OR 97331
| | - Brian Steffenson
- Department of Plant Pathology, University of Minnesota, St. Paul, MN 55108
| | - Patrick Hayes
- Department of Crop and Soil Science, Oregon State University, Corvallis, OR 97331
| |
Collapse
|
6
|
Hernandez J, Steffenson BJ, Filichkin T, Fisk SP, Helgerson L, Meints B, Vining KJ, Marshall D, Del Blanco A, Chen X, Hayes PM. Introgression of rpg4/ Rpg5 Into Barley Germplasm Provides Insights Into the Genetics of Resistance to Puccinia graminis f. sp. tritici Race TTKSK and Resources for Developing Resistant Cultivars. PHYTOPATHOLOGY 2019; 109:1018-1028. [PMID: 30714882 DOI: 10.1094/phyto-09-18-0350-r] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Stem rust (incited by Puccinia graminis f. sp. tritici) is a devastating disease of wheat and barley in many production areas. The widely virulent African P. graminis f. sp. tritici race TTKSK is of particular concern, because most cultivars are susceptible. To prepare for the possible arrival of race TTKSK in North America, we crossed a range of barley germplasm-representing different growth habits and end uses-with donors of stem rust resistance genes Rpg1 and rpg4/Rpg5. The former confers resistance to prevalent races of P. graminis f. sp. tritici in North America, and the latter confers resistance to TTKSK and other closely related races from Africa. We produced doubled haploids from these crosses and determined their allele type at the Rpg loci and haplotype at 7,864 single-nucleotide polymorphism loci. The doubled haploids were phenotyped for TTKSK resistance at the seedling stage. Integration of genotype and phenotype data revealed that (i) Rpg1 was not associated with TTKSK resistance, (ii) rpg4/Rpg5 was necessary but was not sufficient for resistance, and (iii) specific haplotypes at two quantitative trait loci were required for rpg4/Rpg5 to confer resistance to TTKSK. To confirm whether lines found resistant to TTKSK at the seedling resistance were also resistant at the adult plant stage, a subset of doubled haploids was evaluated in Kenya. Additionally, adult plant resistance to leaf rust and stripe rust (incited by Puccinia hordei and Puccinia striiformis f. sp. hordei, respectively) was also assessed on the doubled haploids in field trials at three locations in the United States over a 2-year period. Doubled haploids were identified with adult plant resistance to all three rusts, and this germplasm is available to the research and breeding communities.
Collapse
Affiliation(s)
- Javier Hernandez
- 1 Department of Crop and Soil Science, Oregon State University, Corvallis, OR 97331
| | - Brian J Steffenson
- 2 Department of Plant Pathology, University of Minnesota, St. Paul, MN 55108
| | - Tanya Filichkin
- 1 Department of Crop and Soil Science, Oregon State University, Corvallis, OR 97331
| | - Scott P Fisk
- 1 Department of Crop and Soil Science, Oregon State University, Corvallis, OR 97331
| | - Laura Helgerson
- 1 Department of Crop and Soil Science, Oregon State University, Corvallis, OR 97331
| | - Brigid Meints
- 1 Department of Crop and Soil Science, Oregon State University, Corvallis, OR 97331
| | - Kelly J Vining
- 3 Department of Horticulture, Oregon State University, Corvallis, OR 97331
| | - David Marshall
- 4 U.S. Department of Agriculture Agricultural Research Service, Raleigh, NC 27695
| | - Alicia Del Blanco
- 5 Department of Plant Sciences, University of California, Davis, CA 95616
| | - Xianming Chen
- 6 U.S. Department of Agriculture Agricultural Research Service Wheat Health, Genetics, and Quality Research Unit and Department of Plant Pathology, Washington State University, Pullman, WA 99164-6430
| | - Patrick M Hayes
- 1 Department of Crop and Soil Science, Oregon State University, Corvallis, OR 97331
| |
Collapse
|
7
|
Lasserre-Zuber P, Caffier V, Stievenard R, Lemarquand A, Le Cam B, Durel CE. Pyramiding Quantitative Resistance with a Major Resistance Gene in Apple: From Ephemeral to Enduring Effectiveness in Controlling Scab. PLANT DISEASE 2018; 102:2220-2223. [PMID: 30145950 DOI: 10.1094/pdis-11-17-1759-re] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Genetic resistance is a useful strategy to control plant disease, but its effectiveness may be reduced over time due to the emergence of pathogens able to circumvent the defenses of the plant. However, the pyramiding of different resistance factors in the same plant can improve the effectiveness and durability of the resistance. To investigate the potential for this approach in apple to control scab disease we surveyed scab incidence in two experimental orchards located at a distance of more than 300 km planted with apple genotypes carrying quantitative resistance and major gene resistance alone or in combination. Our results showed that the effectiveness of pyramiding in controlling scab was dependent on the site and could not be completely explained by the effectiveness level of the resistances alone.
Collapse
Affiliation(s)
- Pauline Lasserre-Zuber
- IRHS, Agrocampus-Ouest, INRA, Université d'Angers, SFR 4207 QuaSaV, 49071, Beaucouzé, France; present address: INRA, UMR 1095, Genetics, Diversity and Ecophysiology of Cereals, 63100, Clermont-Ferrand, France
| | - Valérie Caffier
- IRHS, Agrocampus-Ouest, INRA, Université d'Angers, SFR 4207 QuaSaV, 49071, Beaucouzé, France
| | - René Stievenard
- CRRG, Centre Régional de Ressources Génétiques, Ferme du Héron, Chemin de la ferme de Lenglet, 59650, Villeneuve d'Ascq, France
| | - Arnaud Lemarquand
- UE0449 Unité Expérimentale Horticole, INRA, SFR 4207 QuaSaV, 49071, Beaucouzé, France
| | - Bruno Le Cam
- IRHS, Agrocampus-Ouest, INRA, Université d'Angers, SFR 4207 QuaSaV, 49071, Beaucouzé, France
| | - Charles-Eric Durel
- IRHS, Agrocampus-Ouest, INRA, Université d'Angers, SFR 4207 QuaSaV, 49071, Beaucouzé, France
| |
Collapse
|
8
|
Rimbaud L, Papaïx J, Rey JF, Barrett LG, Thrall PH. Assessing the durability and efficiency of landscape-based strategies to deploy plant resistance to pathogens. PLoS Comput Biol 2018; 14:e1006067. [PMID: 29649208 PMCID: PMC5918245 DOI: 10.1371/journal.pcbi.1006067] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2017] [Revised: 04/24/2018] [Accepted: 02/27/2018] [Indexed: 11/18/2022] Open
Abstract
Genetically-controlled plant resistance can reduce the damage caused by pathogens. However, pathogens have the ability to evolve and overcome such resistance. This often occurs quickly after resistance is deployed, resulting in significant crop losses and a continuing need to develop new resistant cultivars. To tackle this issue, several strategies have been proposed to constrain the evolution of pathogen populations and thus increase genetic resistance durability. These strategies mainly rely on varying different combinations of resistance sources across time (crop rotations) and space. The spatial scale of deployment can vary from multiple resistance sources occurring in a single cultivar (pyramiding), in different cultivars within the same field (cultivar mixtures) or in different fields (mosaics). However, experimental comparison of the efficiency (i.e. ability to reduce disease impact) and durability (i.e. ability to limit pathogen evolution and delay resistance breakdown) of landscape-scale deployment strategies presents major logistical challenges. Therefore, we developed a spatially explicit stochastic model able to assess the epidemiological and evolutionary outcomes of the four major deployment options described above, including both qualitative resistance (i.e. major genes) and quantitative resistance traits against several components of pathogen aggressiveness: infection rate, latent period duration, propagule production rate, and infectious period duration. This model, implemented in the R package landsepi, provides a new and useful tool to assess the performance of a wide range of deployment options, and helps investigate the effect of landscape, epidemiological and evolutionary parameters. This article describes the model and its parameterisation for rust diseases of cereal crops, caused by fungi of the genus Puccinia. To illustrate the model, we use it to assess the epidemiological and evolutionary potential of the combination of a major gene and different traits of quantitative resistance. The comparison of the four major deployment strategies described above will be the objective of future studies. There are many recent examples which demonstrate the evolutionary potential of plant pathogens to overcome the resistances deployed in agricultural landscapes to protect our crops. Increasingly, it is recognised that how resistance is deployed spatially and temporally can impact on rates of pathogen evolution and resistance breakdown. Such deployment strategies are mainly based on the combination of several sources of resistance at different spatiotemporal scales. However, comparison of these strategies in a predictive sense is not an easy task, owing to the logistical difficulties associated with experiments involving the spread of a pathogen at large spatio-temporal scales. Moreover, both the durability of a strategy and the epidemiological protection it provides to crops must be assessed since these evaluation criteria are not necessarily correlated. Surprisingly, no current simulation model allows a thorough comparison of the different options. Here we describe a spatio-temporal model able to simulate a wide range of deployment strategies and resistance sources. This model, implemented in the R package landsepi, facilitates assessment of both epidemiological and evolutionary outcomes across simulated scenarios. In this work, the model is used to investigate the combination of different sources of resistance against fungal diseases such as rusts of cereal crops.
Collapse
Affiliation(s)
- Loup Rimbaud
- CSIRO Agriculture and Food, Canberra, ACT, Australia
| | | | | | | | | |
Collapse
|
9
|
Visioni A, Gyawali S, Selvakumar R, Gangwar OP, Shekhawat PS, Bhardwaj SC, Al-Abdallat AM, Kehel Z, Verma RPS. Genome Wide Association Mapping of Seedling and Adult Plant Resistance to Barley Stripe Rust ( Puccinia striiformis f. sp. hordei) in India. FRONTIERS IN PLANT SCIENCE 2018; 9:520. [PMID: 29740461 PMCID: PMC5928535 DOI: 10.3389/fpls.2018.00520] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2017] [Accepted: 04/04/2018] [Indexed: 05/08/2023]
Abstract
Barley stripe rust is caused by Puccinia striiformis f.sp. hordei, (Psh), occurs worldwide, and is a major disease in South Asia. The aim of this work was to identify and estimate effects of loci underlying quantitative resistance to rust at seedling and adult plant stages. HI-AM panel of 261 barley genotypes consisting of released cultivars from North and South America, Europe, Australia, advanced breeding lines, and local landraces from ICARDA barley program were screened at seedling and adult plant stages for resistance to Psh. Seedling resistance was evaluated with the five prevalent Psh races in India. Screening for the adult plant stage resistance was also performed in two different locations by inoculating with a mixture of the five races used for seedling screeing. The panel was genotyped using DaRT-Seq high-throughput genotyping platform. The genome-wide association mapping (GWAM) showed a total of 45 QTL located across the seven barley chromosomes for seedling resistance to the five races and 18 QTL for adult plant stage resistance. Common QTL for different races at seedling stage were found on all chromosomes except on chromosome 1H. Four common QTL associated with seedling and adult plant stage resistance were found on chromosomes 2, 5, and 6H. Moreover, one of the QTL located on the long arm of chromosome 5H showed stable effects across environments for adult plant stage resistance. Several QTL identified in this study were also reported before in bi-parental and association mapping populations studies validating current GWAM. However 15 new QTL were found at adult plant stage on all chromosomes except the 4H, explaining up to 36.79% of the variance. The promising QTL detected at both stages, once validated, can be used for MAS in Psh resistance breeding program globally.
Collapse
Affiliation(s)
- Andrea Visioni
- Biodiversity and Integrated Gene Management, International Center for Agricultural Research in the Dry Areas, Rabat, Morocco
- *Correspondence: Andrea Visioni
| | - Sanjaya Gyawali
- Biodiversity and Integrated Gene Management, International Center for Agricultural Research in the Dry Areas, Rabat, Morocco
- Department of Plant Science, University of Manitoba, Winnipeg, MB, Canada
| | - Rajan Selvakumar
- Indian Institute of Wheat and Barley Research, Indian Council of Agricultural Research, Karnal, India
| | - Om P. Gangwar
- Indian Institute of Wheat and Barley Research, Indian Council of Agricultural Research, Karnal, India
| | | | - Subhash C. Bhardwaj
- Indian Institute of Wheat and Barley Research, Indian Council of Agricultural Research, Karnal, India
| | - Ayed M. Al-Abdallat
- Biodiversity and Integrated Gene Management, International Center for Agricultural Research in the Dry Areas, Rabat, Morocco
- Department of Horticulture and Crop Science, Faculty of Agriculture, The University of Jordan, Amman, Jordan
| | - Zakaria Kehel
- Biodiversity and Integrated Gene Management, International Center for Agricultural Research in the Dry Areas, Rabat, Morocco
| | - Ramesh P. S. Verma
- Biodiversity and Integrated Gene Management, International Center for Agricultural Research in the Dry Areas, Rabat, Morocco
| |
Collapse
|
10
|
Nelson R, Wiesner-Hanks T, Wisser R, Balint-Kurti P. Navigating complexity to breed disease-resistant crops. Nat Rev Genet 2017; 19:21-33. [PMID: 29109524 DOI: 10.1038/nrg.2017.82] [Citation(s) in RCA: 249] [Impact Index Per Article: 31.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Plant diseases are responsible for substantial crop losses each year and pose a threat to global food security and agricultural sustainability. Improving crop resistance to pathogens through breeding is an environmentally sound method for managing disease and minimizing these losses. However, it is challenging to breed varieties with resistance that is effective, stable and broad-spectrum. Recent advances in genetic and genomic technologies have contributed to a better understanding of the complexity of host-pathogen interactions and have identified some of the genes and mechanisms that underlie resistance. This new knowledge is benefiting crop improvement through better-informed breeding strategies that utilize diverse forms of resistance at different scales, from the genome of a single plant to the plant varieties deployed across a region.
Collapse
Affiliation(s)
- Rebecca Nelson
- School of Integrative Plant Science, Cornell University, Ithaca, New York 14853, USA
| | - Tyr Wiesner-Hanks
- School of Integrative Plant Science, Cornell University, Ithaca, New York 14853, USA
| | - Randall Wisser
- Department of Plant and Soil Sciences, University of Delaware, Newark, Delaware 19716, USA
| | - Peter Balint-Kurti
- United States Department of Agriculture Agricultural Research Service (USDA-ARS), Department of Entomology and Plant Pathology, North Carolina State University, Raleigh, North Carolina 27695-7616, USA
| |
Collapse
|
11
|
Pilet-Nayel ML, Moury B, Caffier V, Montarry J, Kerlan MC, Fournet S, Durel CE, Delourme R. Quantitative Resistance to Plant Pathogens in Pyramiding Strategies for Durable Crop Protection. FRONTIERS IN PLANT SCIENCE 2017; 8:1838. [PMID: 29163575 PMCID: PMC5664368 DOI: 10.3389/fpls.2017.01838] [Citation(s) in RCA: 113] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2017] [Accepted: 10/10/2017] [Indexed: 05/18/2023]
Abstract
Quantitative resistance has gained interest in plant breeding for pathogen control in low-input cropping systems. Although quantitative resistance frequently has only a partial effect and is difficult to select, it is considered more durable than major resistance (R) genes. With the exponential development of molecular markers over the past 20 years, resistance QTL have been more accurately detected and better integrated into breeding strategies for resistant varieties with increased potential for durability. This review summarizes current knowledge on the genetic inheritance, molecular basis, and durability of quantitative resistance. Based on this knowledge, we discuss how strategies that combine major R genes and QTL in crops can maintain the effectiveness of plant resistance to pathogens. Combining resistance QTL with complementary modes of action appears to be an interesting strategy for breeding effective and potentially durable resistance. Combining quantitative resistance with major R genes has proven to be a valuable approach for extending the effectiveness of major genes. In the plant genomics era, improved tools and methods are becoming available to better integrate quantitative resistance into breeding strategies. Nevertheless, optimal combinations of resistance loci will still have to be identified to preserve resistance effectiveness over time for durable crop protection.
Collapse
Affiliation(s)
- Marie-Laure Pilet-Nayel
- Institute for Genetics, Environment and Plant Protection (INRA), UMR 1349, Leu Rheu, France
- PISOM, UMT INRA-Terres Inovia, Le Rheu, France
| | | | - Valérie Caffier
- Research Institute of Horticulture and Seeds (INRA), UMR 1345, Beaucouzé, France
| | - Josselin Montarry
- Institute for Genetics, Environment and Plant Protection (INRA), UMR 1349, Leu Rheu, France
| | - Marie-Claire Kerlan
- Institute for Genetics, Environment and Plant Protection (INRA), UMR 1349, Leu Rheu, France
| | - Sylvain Fournet
- Institute for Genetics, Environment and Plant Protection (INRA), UMR 1349, Leu Rheu, France
| | - Charles-Eric Durel
- Research Institute of Horticulture and Seeds (INRA), UMR 1345, Beaucouzé, France
| | - Régine Delourme
- Institute for Genetics, Environment and Plant Protection (INRA), UMR 1349, Leu Rheu, France
| |
Collapse
|
12
|
Wang H, Qin F. Genome-Wide Association Study Reveals Natural Variations Contributing to Drought Resistance in Crops. FRONTIERS IN PLANT SCIENCE 2017; 8:1110. [PMID: 28713401 PMCID: PMC5491614 DOI: 10.3389/fpls.2017.01110] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2017] [Accepted: 06/08/2017] [Indexed: 05/18/2023]
Abstract
Crops are often cultivated in regions where they will face environmental adversities; resulting in substantial yield loss which can ultimately lead to food and societal problems. Thus, significant efforts have been made to breed stress tolerant cultivars in an attempt to minimize these problems and to produce more stability with respect to crop yields across broad geographies. Since stress tolerance is a complex and multi-genic trait, advancements with classical breeding approaches have been challenging. On the other hand, molecular breeding, which is based on transgenics, marker-assisted selection and genome editing technologies; holds great promise to enable farmers to better cope with these challenges. However, identification of the key genetic components underlying the trait is critical and will serve as the foundation for future crop genetic improvement. Recently, genome-wide association studies have made significant contributions to facilitate the discovery of natural variation contributing to stress tolerance in crops. From these studies, the identified loci can serve as targets for genomic selection or editing to enable the molecular design of new cultivars. Here, we summarize research progress on this issue and focus on the genetic basis of drought tolerance as revealed by genome-wide association studies and quantitative trait loci mapping. Although many favorable loci have been identified, elucidation of their molecular mechanisms contributing to increased stress tolerance still remains a challenge. Thus, continuous efforts are still required to functionally dissect this complex trait through comprehensive approaches, such as system biological studies. It is expected that proper application of the acquired knowledge will enable the development of stress tolerant cultivars; allowing agricultural production to become more sustainable under dynamic environmental conditions.
Collapse
Affiliation(s)
- Hongwei Wang
- Agricultural College, Yangtze UniversityJingzhou, China
- Hubei Collaborative Innovation Center for Grain Industry, Yangtze UniversityJingzhou, China
| | - Feng Qin
- College of Biological Sciences, China Agricultural UniversityBeijing, China
| |
Collapse
|
13
|
Esvelt Klos K, Gordon T, Bregitzer P, Hayes P, Chen XM, Del Blanco IA, Fisk S, Bonman JM. Barley Stripe Rust Resistance QTL: Development and Validation of SNP Markers for Resistance to Puccinia striiformis f. sp. hordei. PHYTOPATHOLOGY 2016; 106:1344-1351. [PMID: 27213558 DOI: 10.1094/phyto-09-15-0225-r] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Quantitative trait loci (QTL) for barley stripe rust resistance were mapped in recombinant inbred lines (RIL) from a 'Lenetah' × 'Grannelose Zweizeilige' (GZ) cross. GZ is known for a major seedling resistance QTL on chromosome 4H but linked markers suitable for marker-assisted selection have not been developed. This study identified the 4H QTL (log of the likelihood [LOD] = 15.94 at 97.19 centimorgans [cM]), and additional QTL on chromosomes 4H and 6H (LOD = 5.39 at 72.7 cM and 4.24 at 34.46 cM, respectively). A QTL on chromosome 7H (LOD = 2.04 at 81.07 cM) was suggested. All resistance alleles were derived from GZ. Evaluations of adult plant response in Corvallis, OR in 2013 and 2015 provided evidence of QTL at the same positions. However, the minor QTL on 4H was not statistically significant in either location/year, while the 7H QTL was significant in both. The single-nucleotide polymorphism markers flanking the resistance QTL were validated in RIL from a '95SR316A' × GZ cross for their ability to predict seedling resistance. In 95SR316A × GZ, 91 to 92% of RIL with GZ alleles at the major 4H QTL and at least one other were resistant to moderate in reaction. In these populations, at least two QTL were required to transfer the barley stripe rust resistance from GZ.
Collapse
Affiliation(s)
- K Esvelt Klos
- First, second, third, and eighth authors: Agricultural Research Service, United States Department of Agriculture (USDA), Aberdeen, ID 83210; fourth and seventh authors: Department of Crop and Soil Science, Oregon State University, Corvallis 97331; fifth author: USDA Agricultural Research Service, Pullman, WA 99164; and sixth author: Department of Plant Sciences, University of California, Davis 95616
| | - T Gordon
- First, second, third, and eighth authors: Agricultural Research Service, United States Department of Agriculture (USDA), Aberdeen, ID 83210; fourth and seventh authors: Department of Crop and Soil Science, Oregon State University, Corvallis 97331; fifth author: USDA Agricultural Research Service, Pullman, WA 99164; and sixth author: Department of Plant Sciences, University of California, Davis 95616
| | - P Bregitzer
- First, second, third, and eighth authors: Agricultural Research Service, United States Department of Agriculture (USDA), Aberdeen, ID 83210; fourth and seventh authors: Department of Crop and Soil Science, Oregon State University, Corvallis 97331; fifth author: USDA Agricultural Research Service, Pullman, WA 99164; and sixth author: Department of Plant Sciences, University of California, Davis 95616
| | - P Hayes
- First, second, third, and eighth authors: Agricultural Research Service, United States Department of Agriculture (USDA), Aberdeen, ID 83210; fourth and seventh authors: Department of Crop and Soil Science, Oregon State University, Corvallis 97331; fifth author: USDA Agricultural Research Service, Pullman, WA 99164; and sixth author: Department of Plant Sciences, University of California, Davis 95616
| | - X M Chen
- First, second, third, and eighth authors: Agricultural Research Service, United States Department of Agriculture (USDA), Aberdeen, ID 83210; fourth and seventh authors: Department of Crop and Soil Science, Oregon State University, Corvallis 97331; fifth author: USDA Agricultural Research Service, Pullman, WA 99164; and sixth author: Department of Plant Sciences, University of California, Davis 95616
| | - I A Del Blanco
- First, second, third, and eighth authors: Agricultural Research Service, United States Department of Agriculture (USDA), Aberdeen, ID 83210; fourth and seventh authors: Department of Crop and Soil Science, Oregon State University, Corvallis 97331; fifth author: USDA Agricultural Research Service, Pullman, WA 99164; and sixth author: Department of Plant Sciences, University of California, Davis 95616
| | - S Fisk
- First, second, third, and eighth authors: Agricultural Research Service, United States Department of Agriculture (USDA), Aberdeen, ID 83210; fourth and seventh authors: Department of Crop and Soil Science, Oregon State University, Corvallis 97331; fifth author: USDA Agricultural Research Service, Pullman, WA 99164; and sixth author: Department of Plant Sciences, University of California, Davis 95616
| | - J M Bonman
- First, second, third, and eighth authors: Agricultural Research Service, United States Department of Agriculture (USDA), Aberdeen, ID 83210; fourth and seventh authors: Department of Crop and Soil Science, Oregon State University, Corvallis 97331; fifth author: USDA Agricultural Research Service, Pullman, WA 99164; and sixth author: Department of Plant Sciences, University of California, Davis 95616
| |
Collapse
|
14
|
Lavaud C, Baviere M, Le Roy G, Hervé MR, Moussart A, Delourme R, Pilet-Nayel ML. Single and multiple resistance QTL delay symptom appearance and slow down root colonization by Aphanomyces euteiches in pea near isogenic lines. BMC PLANT BIOLOGY 2016; 16:166. [PMID: 27465043 PMCID: PMC4964060 DOI: 10.1186/s12870-016-0822-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2015] [Accepted: 05/26/2016] [Indexed: 05/07/2023]
Abstract
BACKGROUND Understanding the effects of resistance QTL on pathogen development cycle is an important issue for the creation of QTL combination strategies to durably increase disease resistance in plants. The oomycete pathogen Aphanomyces euteiches, causing root rot disease, is one of the major factors limiting the pea crop in the main producing countries. No commercial resistant varieties are currently available in Europe. Resistance alleles at seven main QTL were recently identified and introgressed into pea agronomic lines, resulting in the creation of Near Isogenic Lines (NILs) at the QTL. This study aimed to determine the effect of main A. euteiches resistance QTL in NILs on different steps of the pathogen life cycle. RESULTS NILs carrying resistance alleles at main QTL in susceptible genetic backgrounds were evaluated in a destructive test under controlled conditions. The development of root rot disease severity and pathogen DNA levels in the roots was measured during ten days after inoculation. Significant effects of several resistance alleles at the two major QTL Ae-Ps7.6 and Ae-Ps4.5 were observed on symptom appearance and root colonization by A. euteiches. Some resistance alleles at three other minor-effect QTL (Ae-Ps2.2, Ae-Ps3.1 and Ae-Ps5.1) significantly decreased root colonization. The combination of resistance alleles at two or three QTL including the major QTL Ae-Ps7.6 (Ae-Ps5.1/Ae-Ps7.6 or Ae-Ps2.2/Ae-Ps3.1/Ae-Ps7.6) had an increased effect on delaying symptom appearance and/or slowing down root colonization by A. euteiches and on plant resistance levels, compared to the effects of individual or no resistance alleles. CONCLUSIONS This study demonstrated the effects of single or multiple resistance QTL on delaying symptom appearance and/or slowing down colonization by A. euteiches in pea roots, using original plant material and a precise pathogen quantification method. Our findings suggest that single resistance QTL can act on multiple or specific steps of the disease development cycle and that their actions could be pyramided to increase partial resistance in future pea varieties. Further studies are needed to investigate QTL effects on different steps of the pathogen life cycle, as well as the efficiency and durability of pyramiding strategies using QTL which appear to act on the same stage of the pathogen cycle.
Collapse
Affiliation(s)
- C Lavaud
- INRA, UMR IGEPP 1349, Institut de Génétique, Environnement et Protection des Plantes, Domaine de la Motte au Vicomte, BP 35327, 35653, Le Rheu cedex, France
- PISOM, UMT INRA/Terres Inovia, UMR IGEPP 1349, Domaine de la Motte au Vicomte, BP 35327, 35653, Le Rheu cedex, France
| | - M Baviere
- INRA, UMR IGEPP 1349, Institut de Génétique, Environnement et Protection des Plantes, Domaine de la Motte au Vicomte, BP 35327, 35653, Le Rheu cedex, France
| | - G Le Roy
- INRA, UMR IGEPP 1349, Institut de Génétique, Environnement et Protection des Plantes, Domaine de la Motte au Vicomte, BP 35327, 35653, Le Rheu cedex, France
- PISOM, UMT INRA/Terres Inovia, UMR IGEPP 1349, Domaine de la Motte au Vicomte, BP 35327, 35653, Le Rheu cedex, France
| | - M R Hervé
- INRA, UMR IGEPP 1349, Institut de Génétique, Environnement et Protection des Plantes, Domaine de la Motte au Vicomte, BP 35327, 35653, Le Rheu cedex, France
| | - A Moussart
- PISOM, UMT INRA/Terres Inovia, UMR IGEPP 1349, Domaine de la Motte au Vicomte, BP 35327, 35653, Le Rheu cedex, France
- Terres Inovia, 11 rue de Monceau, CS 60003, 75378, Paris cedex 08, France
| | - R Delourme
- INRA, UMR IGEPP 1349, Institut de Génétique, Environnement et Protection des Plantes, Domaine de la Motte au Vicomte, BP 35327, 35653, Le Rheu cedex, France
| | - M-L Pilet-Nayel
- INRA, UMR IGEPP 1349, Institut de Génétique, Environnement et Protection des Plantes, Domaine de la Motte au Vicomte, BP 35327, 35653, Le Rheu cedex, France.
- PISOM, UMT INRA/Terres Inovia, UMR IGEPP 1349, Domaine de la Motte au Vicomte, BP 35327, 35653, Le Rheu cedex, France.
| |
Collapse
|
15
|
Lavaud C, Lesné A, Piriou C, Le Roy G, Boutet G, Moussart A, Poncet C, Delourme R, Baranger A, Pilet-Nayel ML. Validation of QTL for resistance to Aphanomyces euteiches in different pea genetic backgrounds using near-isogenic lines. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2015; 128:2273-88. [PMID: 26215183 DOI: 10.1007/s00122-015-2583-0] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2015] [Accepted: 07/10/2015] [Indexed: 05/07/2023]
Abstract
KEY MESSAGE Marker-assisted backcrossing was used to generate pea NILs carrying individual or combined resistance alleles at main Aphanomyces resistance QTL. The effects of several QTL were successfully validated depending on genetic backgrounds. Quantitative trait loci (QTL) validation is an important and often overlooked step before subsequent research in QTL cloning or marker-assisted breeding for disease resistance in plants. Validation of QTL controlling partial resistance to Aphanomyces root rot, one of the most damaging diseases of pea worldwide, is of major interest for the future development of resistant varieties. The aim of this study was to validate, in different genetic backgrounds, the effects of various resistance alleles at seven main resistance QTL recently identified. Five backcross-assisted selection programs were developed. In each, resistance alleles at one to three of the seven main Aphanomyces resistance QTL were transferred into three genetic backgrounds, including two agronomically important spring (Eden) and winter (Isard) pea cultivars. The subsequent near-isogenic lines (NILs) were evaluated for resistance to two reference strains of the main A. euteiches pathotypes under controlled conditions. The NILs carrying resistance alleles at the major-effect QTL Ae-Ps4.5 and Ae-Ps7.6, either individually or in combination with resistance alleles at other QTL, showed significantly reduced disease severity compared to NILs without resistance alleles. Resistance alleles at some minor-effect QTL, especially Ae-Ps2.2 and Ae-Ps5.1, were also validated for their individual or combined effects on resistance. QTL × genetic background interactions were observed, mainly for QTL Ae-Ps7.6, the effect of which increased in the winter cultivar Isard. The pea NILs are a novel and valuable resource for further understanding the mechanisms underlying QTL and their integration in breeding programs.
Collapse
Affiliation(s)
- C Lavaud
- INRA, UMR IGEPP 1349, Institut de Génétique, Environnement et Protection des Plantes, Domaine de la Motte au Vicomte, BP 35327, 35653, Le Rheu Cedex, France
| | - A Lesné
- INRA, UMR IGEPP 1349, Institut de Génétique, Environnement et Protection des Plantes, Domaine de la Motte au Vicomte, BP 35327, 35653, Le Rheu Cedex, France
- Terres Univia, 11 rue de Monceau, CS 60003, 75378, Paris Cedex 08, France
| | - C Piriou
- INRA, UMR IGEPP 1349, Institut de Génétique, Environnement et Protection des Plantes, Domaine de la Motte au Vicomte, BP 35327, 35653, Le Rheu Cedex, France
- PISOM, UMT INRA/Terres Inovia, UMR IGEPP 1349, Domaine de la Motte au Vicomte, BP 35327, 35653, Le Rheu Cedex, France
| | - G Le Roy
- INRA, UMR IGEPP 1349, Institut de Génétique, Environnement et Protection des Plantes, Domaine de la Motte au Vicomte, BP 35327, 35653, Le Rheu Cedex, France
- PISOM, UMT INRA/Terres Inovia, UMR IGEPP 1349, Domaine de la Motte au Vicomte, BP 35327, 35653, Le Rheu Cedex, France
| | - G Boutet
- INRA, UMR IGEPP 1349, Institut de Génétique, Environnement et Protection des Plantes, Domaine de la Motte au Vicomte, BP 35327, 35653, Le Rheu Cedex, France
- PISOM, UMT INRA/Terres Inovia, UMR IGEPP 1349, Domaine de la Motte au Vicomte, BP 35327, 35653, Le Rheu Cedex, France
| | - A Moussart
- PISOM, UMT INRA/Terres Inovia, UMR IGEPP 1349, Domaine de la Motte au Vicomte, BP 35327, 35653, Le Rheu Cedex, France
- Terres Inovia, 11 rue de Monceau, CS 60003, 75378, Paris Cedex 08, France
| | - C Poncet
- INRA, UMR GDEC 1095, Génétique, Diversité, Ecophysiologie des Céréales, 5 chemin de Beaulieu, 63039, Clermont-Ferrand Cedex 2, France
| | - R Delourme
- INRA, UMR IGEPP 1349, Institut de Génétique, Environnement et Protection des Plantes, Domaine de la Motte au Vicomte, BP 35327, 35653, Le Rheu Cedex, France
| | - A Baranger
- INRA, UMR IGEPP 1349, Institut de Génétique, Environnement et Protection des Plantes, Domaine de la Motte au Vicomte, BP 35327, 35653, Le Rheu Cedex, France
- PISOM, UMT INRA/Terres Inovia, UMR IGEPP 1349, Domaine de la Motte au Vicomte, BP 35327, 35653, Le Rheu Cedex, France
| | - M-L Pilet-Nayel
- INRA, UMR IGEPP 1349, Institut de Génétique, Environnement et Protection des Plantes, Domaine de la Motte au Vicomte, BP 35327, 35653, Le Rheu Cedex, France.
- PISOM, UMT INRA/Terres Inovia, UMR IGEPP 1349, Domaine de la Motte au Vicomte, BP 35327, 35653, Le Rheu Cedex, France.
| |
Collapse
|
16
|
Yasuda N, Mitsunaga T, Hayashi K, Koizumi S, Fujita Y. Effects of Pyramiding Quantitative Resistance Genes pi21, Pi34, and Pi35 on Rice Leaf Blast Disease. PLANT DISEASE 2015; 99:904-909. [PMID: 30690973 DOI: 10.1094/pdis-02-14-0214-re] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Development of resistant cultivars has been an effective method for controlling rice blast disease caused by Magnaporthe oryzae. Quantitative blast resistance genes may offer durable resistance because the selection pressure on M. oryzae to overcome resistance is low as a result of the genes' moderate susceptibility. Because the effects of individual resistance genes are relatively small, pyramiding these genes in rice cultivars is a promising strategy. Here, we used near-isogenic and backcross lines of rice cultivar Koshihikari with single- or two-gene combinations of blast resistance genes (pi21, Pi34, and Pi35) to evaluate the suppression of leaf blast. The severity of the disease was assessed throughout the infection process. Resistance varied among the lines: Pi35 conferred the strongest resistance, while Pi34 showed the weakest effects. Two types of combined-gene interactions were observed, and they varied on the basis of gene combination and characteristic of the infection: (i) the combination of two resistance genes was more effective than either of the genes individually or (ii) the combination of two resistance genes was similar to the level of the most effective resistance gene in the pair. The most effective gene combination for the suppression of leaf blast was pi21 + Pi35.
Collapse
Affiliation(s)
- Nobuko Yasuda
- NARO Agricultural Research Center, Tsukuba, Ibaraki 305-8666, Japan
| | | | - Keiko Hayashi
- NARO Agricultural Research Center, Tsukuba, Ibaraki 305-8666, Japan
| | - Shinzo Koizumi
- NARO Agricultural Research Center, Tsukuba, Ibaraki 305-8666, Japan; and Tsukuba International Center, Japan International Cooperation Agency, Tsukuba, Ibaraki 305-0074, Japan
| | - Yoshikatsu Fujita
- NARO Agricultural Research Center, Tsukuba, Ibaraki 305-8666, Japan; and College of Bioresource Sciences, Nihon University, Fujisawa Kanagawa 252-0880, Japan
| |
Collapse
|
17
|
A maize wall-associated kinase confers quantitative resistance to head smut. Nat Genet 2014; 47:151-7. [PMID: 25531751 DOI: 10.1038/ng.3170] [Citation(s) in RCA: 232] [Impact Index Per Article: 21.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2014] [Accepted: 12/01/2014] [Indexed: 11/08/2022]
Abstract
Head smut is a systemic disease in maize caused by the soil-borne fungus Sporisorium reilianum that poses a grave threat to maize production worldwide. A major head smut quantitative resistance locus, qHSR1, has been detected on maize chromosome bin2.09. Here we report the map-based cloning of qHSR1 and the molecular mechanism of qHSR1-mediated resistance. Sequential fine mapping and transgenic complementation demonstrated that ZmWAK is the gene within qHSR1 conferring quantitative resistance to maize head smut. ZmWAK spans the plasma membrane, potentially serving as a receptor-like kinase to perceive and transduce extracellular signals. ZmWAK was highly expressed in the mesocotyl of seedlings where it arrested biotrophic growth of the endophytic S. reilianum. Impaired expression in the mesocotyl compromised ZmWAK-mediated resistance. Deletion of the ZmWAK locus appears to have occurred after domestication and spread among maize germplasm, and the ZmWAK kinase domain underwent functional constraints during maize evolution.
Collapse
|
18
|
Galvez LC, Banerjee J, Pinar H, Mitra A. Engineered plant virus resistance. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2014; 228:11-25. [PMID: 25438782 DOI: 10.1016/j.plantsci.2014.07.006] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2014] [Revised: 07/16/2014] [Accepted: 07/18/2014] [Indexed: 06/04/2023]
Abstract
Virus diseases are among the key limiting factors that cause significant yield loss and continuously threaten crop production. Resistant cultivars coupled with pesticide application are commonly used to circumvent these threats. One of the limitations of the reliance on resistant cultivars is the inevitable breakdown of resistance due to the multitude of variable virus populations. Similarly, chemical applications to control virus transmitting insect vectors are costly to the farmers, cause adverse health and environmental consequences, and often result in the emergence of resistant vector strains. Thus, exploiting strategies that provide durable and broad-spectrum resistance over diverse environments are of paramount importance. The development of plant gene transfer systems has allowed for the introgression of alien genes into plant genomes for novel disease control strategies, thus providing a mechanism for broadening the genetic resources available to plant breeders. Genetic engineering offers various options for introducing transgenic virus resistance into crop plants to provide a wide range of resistance to viral pathogens. This review examines the current strategies of developing virus resistant transgenic plants.
Collapse
Affiliation(s)
- Leny C Galvez
- Department of Plant Pathology, University of Nebarska, Lincoln, NE 68583-0722, USA
| | - Joydeep Banerjee
- Department of Plant Pathology, University of Nebarska, Lincoln, NE 68583-0722, USA
| | - Hasan Pinar
- Department of Plant Pathology, University of Nebarska, Lincoln, NE 68583-0722, USA
| | - Amitava Mitra
- Department of Plant Pathology, University of Nebarska, Lincoln, NE 68583-0722, USA.
| |
Collapse
|
19
|
Gurung S, Mamidi S, Bonman JM, Xiong M, Brown-Guedira G, Adhikari TB. Genome-wide association study reveals novel quantitative trait Loci associated with resistance to multiple leaf spot diseases of spring wheat. PLoS One 2014; 9:e108179. [PMID: 25268502 PMCID: PMC4182470 DOI: 10.1371/journal.pone.0108179] [Citation(s) in RCA: 101] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2014] [Accepted: 08/23/2014] [Indexed: 11/18/2022] Open
Abstract
Accelerated wheat development and deployment of high-yielding, climate resilient, and disease resistant cultivars can contribute to enhanced food security and sustainable intensification. To facilitate gene discovery, we assembled an association mapping panel of 528 spring wheat landraces of diverse geographic origin for a genome-wide association study (GWAS). All accessions were genotyped using an Illumina Infinium 9K wheat single nucleotide polymorphism (SNP) chip and 4781 polymorphic SNPs were used for analysis. To identify loci underlying resistance to the major leaf spot diseases and to better understand the genomic patterns, we quantified population structure, allelic diversity, and linkage disequilibrium. Our results showed 32 loci were significantly associated with resistance to the major leaf spot diseases. Further analysis identified QTL effective against major leaf spot diseases of wheat which appeared to be novel and others that were previously identified by association analysis using Diversity Arrays Technology (DArT) and bi-parental mapping. In addition, several identified SNPs co-localized with genes that have been implicated in plant disease resistance. Future work could aim to select the putative novel loci and pyramid them in locally adapted wheat cultivars to develop broad-spectrum resistance to multiple leaf spot diseases of wheat via marker-assisted selection (MAS).
Collapse
Affiliation(s)
- Suraj Gurung
- Department of Plant Pathology, University of California Davis, United States Department of Agriculture-Agricultural Research Service (USDA-ARS), Salinas, California, United States of America
| | - Sujan Mamidi
- Department of Plant Sciences, North Dakota State University, Fargo, North Dakota, United States of America
| | - J. Michael Bonman
- USDA-ARS, Small Grains and Potato Germplasm Research Unit, Aberdeen, Idaho, United States of America
| | - Mai Xiong
- USDA-ARS, Plant Science Research Unit, Department of Crop Science, North Carolina State University, Raleigh, North Carolina, United States of America
| | - Gina Brown-Guedira
- USDA-ARS, Plant Science Research Unit, Department of Crop Science, North Carolina State University, Raleigh, North Carolina, United States of America
| | - Tika B. Adhikari
- Center for Integrated Pest Management and Department of Plant Pathology, North Carolina State University, Raleigh, North Carolina, United States of America
| |
Collapse
|
20
|
Muñoz-Amatriaín M, Cuesta-Marcos A, Hayes PM, Muehlbauer GJ. Barley genetic variation: implications for crop improvement. Brief Funct Genomics 2014; 13:341-50. [PMID: 24658880 DOI: 10.1093/bfgp/elu006] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Genetic variation is crucial for successful barley improvement. Genomic technologies are improving dramatically and are providing access to the genetic diversity within this important crop species. Diverse collections of barley germplasm are being assembled and mined via genome-wide association studies and the identified variation can be linked to the barley sequence assembly. Introgression of favorable alleles via marker-assisted selection is now faster and more efficient due to the availability of single nucleotide polymorphism platforms. High-throughput genotyping is also making genomic selection an essential tool in modern barley breeding. Contemporary plant breeders now benefit from publicly available user-friendly databases providing genotypic and phenotypic information on large numbers of barley accessions. These resources facilitate access to allelic variation. In this review we explore how the most recent genomics and molecular breeding advances are changing breeding practices. The Coordinated Agricultural Projects (CAPs), Barley CAP and Triticeae CAP coupled with international collaborations, are discussed in detail as examples of a collaborative approach to exploit diverse germplasm resources for barley improvement.
Collapse
|
21
|
Barbary A, Palloix A, Fazari A, Marteu N, Castagnone-Sereno P, Djian-Caporalino C. The plant genetic background affects the efficiency of the pepper major nematode resistance genes Me1 and Me3. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2014; 127:499-507. [PMID: 24258389 DOI: 10.1007/s00122-013-2235-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2013] [Accepted: 11/05/2013] [Indexed: 06/02/2023]
Abstract
The plant genetic background influences the efficiency of major resistance genes to root-knot nematodes in pepper and has to be considered in breeding strategies. Root-knot nematodes (RKNs), Meloidogyne spp., are extremely polyphagous plant parasites worldwide. Since the use of most chemical nematicides is being prohibited, genetic resistance is an efficient alternative way to protect crops against these pests. However, nematode populations proved able to breakdown plant resistance, and genetic resources in terms of resistance genes (R-genes) are limited. Sustainable management of these valuable resources is thus a key point of R-gene durability. In pepper, Me1 and Me3 are two dominant major R-genes, currently used in breeding programs to control M. arenaria, M. incognita and M. javanica, the three main RKN species. These two genes differ in the hypersensitive response induced by nematode infection. In this study, they were introgressed in either a susceptible or a partially resistant genetic background, in either homozygous or heterozygous allelic status. Challenging these genotypes with an avirulent M. incognita isolate demonstrated that (1) the efficiency of the R-genes in reducing the reproductive potential of RKNs is strongly affected by the plant genetic background, (2) the allelic status of the R-genes has no effect on nematode reproduction. These results highlight the primary importance of the choice of both the R-gene and the genetic background into which it is introgressed during the selection of new elite cultivars by plant breeders.
Collapse
Affiliation(s)
- A Barbary
- INRA, UMR1355 Institut Sophia Agrobiotech, 06903, Sophia Antipolis, France,
| | | | | | | | | | | |
Collapse
|
22
|
Durable resistance: a key to sustainable management of pathogens and pests. INFECTION GENETICS AND EVOLUTION 2014; 27:446-55. [PMID: 24486735 DOI: 10.1016/j.meegid.2014.01.011] [Citation(s) in RCA: 168] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2013] [Revised: 12/24/2013] [Accepted: 01/13/2014] [Indexed: 11/22/2022]
Abstract
This review briefly addresses what has been learned about resistance durability in recent years, as well as the questions that still remain. Molecular analyses of major gene interactions have potential to contribute to both breeding for resistance and improved understanding of virulence impacts on pathogen fitness. Though the molecular basis of quantitative resistance is less clear, substantial evidence has accumulated for the relative simplicity of inheritance. There is increasing evidence for specific interactions with quantitative resistance, though implications of this for durability are still unknown. Mechanisms by which resistance gene pyramids contribute to durability remain elusive, though ideas have been generated for identifying gene combinations that may be more durable. Though cultivar mixtures and related approaches have been used successfully, identifying the diseases and conditions that are most conducive to the use of diversity has been surprisingly difficult, and the selective influence of diversity on pathogen populations is complex. The importance of considering resistance durability in a landscape context has received increasing emphasis and is an important future area of research. Experimental systems are being developed to test resistance gene deployment strategies that previously could be addressed only with logic and observation. The value of molecular markers for identifying and pyramiding major genes is quite clear, but the successful use of quantitative trait loci (QTL) for marker-assisted selection of quantitative resistance will depend greatly on the degree to which the identified QTL are expressed in different genetic backgrounds. Transgenic approaches will likely provide opportunities for control of some recalcitrant pathogens, though issues of durability for transgenes are likely to be no different than other genes for resistance. The need for high quality phenotypic analysis and screening methodologies is a priority, and field-based studies are likely to remain of signal importance in the foreseeable future.
Collapse
|
23
|
Chen X. Review Article: High-Temperature Adult-Plant Resistance, Key for Sustainable Control of Stripe Rust. ACTA ACUST UNITED AC 2013. [DOI: 10.4236/ajps.2013.43080] [Citation(s) in RCA: 219] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
24
|
Increasing Food Production in Africa by Boosting the Productivity of Understudied Crops. AGRONOMY-BASEL 2012. [DOI: 10.3390/agronomy2040240] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
25
|
Johnson EB, Haggard JE, St.Clair DA. Fractionation, stability, and isolate-specificity of QTL for resistance to Phytophthora infestans in cultivated tomato (Solanum lycopersicum). G3 (BETHESDA, MD.) 2012; 2:1145-59. [PMID: 23050225 PMCID: PMC3464107 DOI: 10.1534/g3.112.003459] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/14/2012] [Accepted: 07/16/2012] [Indexed: 11/18/2022]
Abstract
Cultivated tomato (Solanum lycopersicum) is susceptible to late blight, a major disease caused by Phytophthora infestans, but quantitative resistance exists in the wild tomato species S. habrochaites. Previously, we mapped several quantitative trait loci (QTL) from S. habrochaites and then introgressed each individually into S. lycopersicum. Near-isogenic lines (NILs) were developed, each containing a single introgressed QTL on chromosome 5 or 11. NILs were used to create two recombinant sub-NIL populations, one for each target chromosome region, for higher-resolution mapping. The sub-NIL populations were evaluated for foliar and stem resistance to P. infestans in replicated field experiments over two years, and in replicated growth chamber experiments for resistance to three California isolates. Each of the original single QTL on chromosomes 5 and 11 fractionated into between two and six QTL for both foliar and stem resistance, indicating a complex genetic architecture. The majority of QTL from the field experiments were detected in multiple locations or years, and two of the seven QTL detected in growth chambers were co-located with QTL detected in field experiments, indicating stability of some QTL across environments. QTL that confer foliar and stem resistance frequently co-localized, suggesting that pleiotropy and/or tightly linked genes control the trait phenotypes. Other QTL exhibited isolate-specificity and QTL × environment interactions. Map-based comparisons between QTL mapped in this study and Solanaceae resistance genes/QTL detected in other published studies revealed multiple cases of co-location, suggesting conservation of gene function.
Collapse
Affiliation(s)
- Emily B. Johnson
- Department of Plant Sciences, University of California, Davis, California 95616
| | - J. Erron Haggard
- Department of Plant Sciences, University of California, Davis, California 95616
| | - Dina A. St.Clair
- Department of Plant Sciences, University of California, Davis, California 95616
| |
Collapse
|
26
|
Lo Iacono G, van den Bosch F, Paveley N. The evolution of plant pathogens in response to host resistance: factors affecting the gain from deployment of qualitative and quantitative resistance. J Theor Biol 2012; 304:152-63. [PMID: 22483999 DOI: 10.1016/j.jtbi.2012.03.033] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2011] [Revised: 03/23/2012] [Accepted: 03/23/2012] [Indexed: 11/15/2022]
Abstract
Disease resistance genes are valuable natural resources which should be deployed in a way which maximises the gain to crop productivity before they lose efficacy. Here we present a general epidemiological model for plant diseases, formulated to study the evolution of phenotypic traits of plant pathogens in response to host resistance. The model was used to analyse how the characteristics of the disease resistance, and the method of deployment, affect the size and duration of the gain. The gain obtained from growing a resistant cultivar, compared to a susceptible cultivar, was quantified as the increase in green canopy area resulting from control of foliar disease, integrated over many years-termed 'Healthy Area Duration (HAD) Gain'. Previous work has suggested that the effect of crop ratio (the proportion of land area occupied by the resistant crop) on the gain from qualitative (gene-for-gene) resistance is negligible. Increasing the crop ratio increases the area of uninfected host, but the resistance is more rapidly broken; these two effects counteract each other. We tested the hypothesis that similar counteracting effects would occur for quantitative, multi-genic resistance, but found that the HAD Gain increased at higher crop ratios. Then we tested the hypothesis that the gain from quantitative host resistance could differ depending on the life-cycle component (sporulation rate or infection efficiency) constrained by the resistance. For the patho-system considered, a quantitative resistant cultivar that reduced the infection efficiency gave a greater HAD Gain than a cultivar that reduced sporulation rate, despite having equivalent transmission rates.
Collapse
Affiliation(s)
- Giovanni Lo Iacono
- Disease Dynamics Unit, Department of Veterinary Medicine, University of Cambridge, Madingley Road, Cambridge CB3 0ES, United Kingdom.
| | | | | |
Collapse
|
27
|
Hamon C, Baranger A, Coyne CJ, McGee RJ, Le Goff I, L'anthoëne V, Esnault R, Rivière JP, Klein A, Mangin P, McPhee KE, Roux-Duparque M, Porter L, Miteul H, Lesné A, Morin G, Onfroy C, Moussart A, Tivoli B, Delourme R, Pilet-Nayel ML. New consistent QTL in pea associated with partial resistance to Aphanomyces euteiches in multiple French and American environments. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2011; 123:261-81. [PMID: 21479935 DOI: 10.1007/s00122-011-1582-z] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2010] [Accepted: 03/23/2011] [Indexed: 05/03/2023]
Abstract
Partial resistances, often controlled by quantitative trait loci (QTL), are considered to be more durable than monogenic resistances. Therefore, a precursor to developing efficient breeding programs for polygenic resistance to pathogens should be a greater understanding of genetic diversity and stability of resistance QTL in plants. In this study, we deciphered the diversity and stability of resistance QTL to Aphanomyces euteiches in pea towards pathogen variability, environments and scoring criteria, from two new sources of partial resistance (PI 180693 and 552), effective in French and USA infested fields. Two mapping populations of 178 recombinant inbred lines each, derived from crosses between 552 or PI 180693 (partially resistant) and Baccara (susceptible), were used to identify QTL for Aphanomyces root rot resistance in controlled and in multiple French and USA field conditions using several resistance criteria. We identified a total of 135 additive-effect QTL corresponding to 23 genomic regions and 13 significant epistatic interactions associated with partial resistance to A. euteiches in pea. Among the 23 additive-effect genomic regions identified, five were consistently detected, and showed highly stable effects towards A. euteiches strains, environments, resistance criteria, condition tests and RIL populations studied. These results confirm the complexity of inheritance of partial resistance to A. euteiches in pea and provide good bases for the choice of consistent QTL to use in marker-assisted selection schemes to increase current levels of resistance to A. euteiches in pea breeding programs.
Collapse
Affiliation(s)
- Céline Hamon
- Université de Rennes 1, Amélioration des Plantes et Biotechnologies Végétales, Rennes, France.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Tan MYA, Hutten RCB, Visser RGF, van Eck HJ. The effect of pyramiding Phytophthora infestans resistance genes R Pi-mcd1 and R Pi-ber in potato. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2010; 121:117-25. [PMID: 20204320 PMCID: PMC2871099 DOI: 10.1007/s00122-010-1295-8] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2008] [Accepted: 02/05/2010] [Indexed: 05/18/2023]
Abstract
Despite efforts to control late blight in potatoes by introducing R(pi)-genes from wild species into cultivated potato, there are still concerns regarding the durability and level of resistance. Pyramiding R(pi)-genes can be a solution to increase both durability and level of resistance. In this study, two resistance genes, R(Pi-mcd1) and R(Pi-ber), introgressed from the wild tuber-bearing potato species Solanum microdontum and S. berthaultii were combined in a diploid S. tuberosum population. Individual genotypes from this population were classified after four groups, carrying no R(pi)-gene, with only R (Pi-mcd1), with only R(Pi-ber), and a group with the pyramided R(Pi-mcd1) and R (Pi-ber) by means of tightly linked molecular markers. The levels of resistance between the groups were compared in a field experiment in 2007. The group with R(Pi-mcd1) showed a significant delay to reach 50% infection of the leaf area of 3 days. The group with R ( Pi-ber ) showed a delay of 3 weeks. The resistance level in the pyramid group suggested an additive effect of R (Pi-mcd1) with R(Pi-ber). This suggests that potato breeding can benefit from combining individual R(pi)-genes, irrespective of the weak effect of R(Pi-mcd1) or the strong effect of R(Pi-ber).
Collapse
Affiliation(s)
- M. Y. Adillah Tan
- Laboratory of Plant Breeding, Wageningen University and Research Centre, P.O. Box 386, 6700 AJ Wageningen, The Netherlands
| | - Ronald C. B. Hutten
- Laboratory of Plant Breeding, Wageningen University and Research Centre, P.O. Box 386, 6700 AJ Wageningen, The Netherlands
| | - Richard G. F. Visser
- Laboratory of Plant Breeding, Wageningen University and Research Centre, P.O. Box 386, 6700 AJ Wageningen, The Netherlands
| | - Herman J. van Eck
- Laboratory of Plant Breeding, Wageningen University and Research Centre, P.O. Box 386, 6700 AJ Wageningen, The Netherlands
| |
Collapse
|
29
|
St Clair DA. Quantitative disease resistance and quantitative resistance Loci in breeding. ANNUAL REVIEW OF PHYTOPATHOLOGY 2010; 48:247-68. [PMID: 19400646 DOI: 10.1146/annurev-phyto-080508-081904] [Citation(s) in RCA: 194] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Quantitative disease resistance (QDR) has been observed within many crop plants but is not as well understood as qualitative (monogenic) disease resistance and has not been used as extensively in breeding. Mapping quantitative trait loci (QTLs) is a powerful tool for genetic dissection of QDR. DNA markers tightly linked to quantitative resistance loci (QRLs) controlling QDR can be used for marker-assisted selection (MAS) to incorporate these valuable traits. QDR confers a reduction, rather than lack, of disease and has diverse biological and molecular bases as revealed by cloning of QRLs and identification of the candidate gene(s) underlying QRLs. Increasing our biological knowledge of QDR and QRLs will enhance understanding of how QDR differs from qualitative resistance and provide the necessary information to better deploy these resources in breeding. Application of MAS for QRLs in breeding for QDR to diverse pathogens is illustrated by examples from wheat, barley, common bean, tomato, and pepper. Strategies for optimum deployment of QRLs require research to understand effects of QDR on pathogen populations over time.
Collapse
Affiliation(s)
- Dina A St Clair
- Plant Sciences Department, University of California, Davis, California 95616, USA.
| |
Collapse
|
30
|
Zhang NW, Pelgrom K, Niks RE, Visser RGF, Jeuken MJW. Three combined quantitative trait loci from nonhost Lactuca saligna are sufficient to provide complete resistance of lettuce against Bremia lactucae. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2009; 22:1160-8. [PMID: 19656050 DOI: 10.1094/mpmi-22-9-1160] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
The nonhost resistance of wild lettuce (Lactuca saligna) to downy mildew (Bremia lactucae) is based on at least 15 quantitative trait loci (QTL), each effective at one or more plant developmental stages. We used QTL pyramiding (stacking) to determine how many of these QTL from L. saligna are sufficient to impart complete resistance towards B. lactucae to cultivated lettuce, L. sativa. The alleles of four of the most promising QTL, rbq4, rbq5, rbq6+11, and rbq7 are effective at both the young and adult plant stages. Lines with these four QTL in all possible combinations were generated by crossing the respective backcross inbred lines (BIL). Using the 11 resulting lines (combiBIL), we determined that combinations of three QTL, rbq4, rbq5, and rbq6+11, led to increased levels of resistance; however, one QTL, rbq7, did not add to the resistance level when combined with the other QTL. One line, tripleBIL268, which contains the three QTL rbq4, rbq5, and rbq6+11, was completely resistant to B. lactucae at the young plant stage. This suggests that these three QTL are sufficient to confer the complete resistance of the nonhost L. saligna and any additional QTL in L. saligna are redundant. Histological analysis of B. lactucae infection in L. saligna, the BIL, and the combiBIL 48 h after inoculation revealed different microscopical phenotypes of resistance. The QTL differed with respect to the stage of the infection process with which they interfered.
Collapse
Affiliation(s)
- Ningwen W Zhang
- Laboratory of Plant Breeding, Wageningen Universtiy, Wageningen, The Netherlands.
| | | | | | | | | |
Collapse
|
31
|
Delourme R, Piel N, Horvais R, Pouilly N, Domin C, Vallée P, Falentin C, Manzanares-Dauleux MJ, Renard M. Molecular and phenotypic characterization of near isogenic lines at QTL for quantitative resistance to Leptosphaeria maculans in oilseed rape (Brassica napus L.). TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2008; 117:1055-67. [PMID: 18696043 DOI: 10.1007/s00122-008-0844-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2008] [Revised: 06/20/2008] [Accepted: 06/28/2008] [Indexed: 05/09/2023]
Abstract
The most common and effective way to control phoma stem canker (blackleg) caused by Leptosphaeria maculans in oilseed rape (Brassica napus) is by breeding resistant cultivars. Specific resistance genes have been identified in B. napus and related species but in some B. napus cultivars resistance is polygenic [mediated by quantitative trait loci (QTL)], postulated to be race non-specific and durable. The genetic basis of quantitative resistance in the French winter oilseed rape 'Darmor', which was derived from 'Jet Neuf', was previously examined in two genetic backgrounds. Stable QTL involved in blackleg resistance across year and genetic backgrounds were identified. In this study, near isogenic lines (NILs) were produced in the susceptible background 'Yudal' for four of these QTL using marker-assisted selection. Various strategies were used to develop new molecular markers, which were mapped in these QTL regions. These were used to characterize the length and homozygosity of the 'Darmor-bzh' introgressed segment in the NILs. Individuals from each NIL were evaluated in blackleg disease field trials and assessed for their level of stem canker in comparison to the recurrent line 'Yudal'. The effect of QTL LmA2 was clearly validated and to a lesser extent, QTL LmA9 also showed an effect on the disease level. This work provides valuable material that can be used to study the mode of action of genetic factors involved in L. maculans quantitative resistance.
Collapse
Affiliation(s)
- R Delourme
- UMR 118 Amélioration des Plantes et Biotechnologies Végétales, INRA, BP 35327, 35653 Le Rheu Cedex, France.
| | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Hu KM, Qiu DY, Shen XL, Li XH, Wang SP. Isolation and manipulation of quantitative trait loci for disease resistance in rice using a candidate gene approach. MOLECULAR PLANT 2008; 1:786-93. [PMID: 19825581 DOI: 10.1093/mp/ssn039] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Bacterial blight caused by Xanthomonas oryzae pv. oryzae and fungal blast caused by Magnaporthe grisea result in heavy production losses in rice, a main staple food for approximately 50% of the world's population. Application of host resistance to these pathogens is the most economical and environment-friendly approach to solve this problem. Quantitative trait loci (QTLs) controlling quantitative resistance are valuable sources for broad-spectrum and durable disease resistance. Although large numbers of QTLs for bacterial blight and blast resistance have been identified, these sources have not been used effectively in rice improvement because of the complex genetic control of quantitative resistance and because the genes underlying resistance QTLs are unknown. To isolate disease resistance QTLs, we established a candidate gene strategy that integrates linkage map, expression profile, and functional complementation analyses. This strategy has proven to be applicable for identifying the genes underlying minor resistance QTLs in rice-Xoo and rice-M. grisea systems and it may also help to shed light on disease resistance QTLs of other cereals. Our results also suggest that a single minor QTL can be used in rice improvement by modulating the expression of the gene underlying the QTL. Pyramiding two or three minor QTL genes, whose expression can be managed and that function in different defense signal transduction pathways, may allow the breeding of rice cultivars that are highly resistant to bacterial blight and blast.
Collapse
Affiliation(s)
- Ke-Ming Hu
- Huazhong Agricultural University, Wuhan 430070, China
| | | | | | | | | |
Collapse
|