1
|
Sundaresha S, Sharma S, Shandil RK, Sharma S, Thakur V, Bhardwaj V, Kaushik SK, Singh BP, Chakrabarti SK. An insight into the downstream analysis of RB gene in F1 RB potato lines imparting field resistance to late blight. FUNCTIONAL PLANT BIOLOGY : FPB 2018; 45:1026-1037. [PMID: 32291002 DOI: 10.1071/fp17299] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2017] [Accepted: 04/04/2018] [Indexed: 06/11/2023]
Abstract
Earlier studies have shown that level of late blight resistance conferred by the classical R gene (RB Rpi-blb1) is dependent on genetic background of the recipient genotype. This was revealed in the analysis of late blight response that belonged to a group of F1 progeny obtained from the cross between Kufri Jyoti and SP951, which showed wide variation in late blight resistance response in spite of possessing the same RB gene. The global gene expression pattern in the RB potato lines was studied in response to late blight infection using cDNA microarray analysis to reveal the background effect. Leaf samples were collected at 0, 24, 72 and 120h post inoculation (hpi) with Phytophthora infestans for gene expression analysis using 61031 gene sequences. Significantly upregulated (1477) and downregulated (4245) genes common in the RB-transgenic F1 lines at 24 and 72 hpi were classified into several categories based on GO identifiers and majority of genes were assigned putative biological functions. Highest expression of an NBS-LRR along with protease, pectin esterase inhibitors, chaperones and reactive oxygen species genes were observed which affirmed a significant role of these categories in the defence response of RB-KJ lines. Results suggest that the immune priming of plant receptors are likely to be involved in stability and functionality of RB to induce resistance against P. infestans. This study is important for effective deployment of RB gene in the host background and contributes immensely to scientific understanding of R gene interaction with host protein complexes to regulate defence system in plants.
Collapse
Affiliation(s)
- S Sundaresha
- ICAR-Central Potato Research Institute, Shimla - 171 001, Himachal Pradesh, India
| | - Sanjeev Sharma
- ICAR-Central Potato Research Institute, Shimla - 171 001, Himachal Pradesh, India
| | - Rajesh K Shandil
- ICAR-Central Potato Research Institute, Shimla - 171 001, Himachal Pradesh, India
| | - Sadhana Sharma
- ICAR-Central Potato Research Institute, Shimla - 171 001, Himachal Pradesh, India
| | - Vandana Thakur
- ICAR-Central Potato Research Institute, Shimla - 171 001, Himachal Pradesh, India
| | - Vinay Bhardwaj
- ICAR-Central Potato Research Institute, Shimla - 171 001, Himachal Pradesh, India
| | - Surinder K Kaushik
- ICAR-National Bureau of Plant Genetic Resources, New Delhi -110012, India
| | - Bir Pal Singh
- ICAR-Central Potato Research Institute, Shimla - 171 001, Himachal Pradesh, India
| | - Swarup K Chakrabarti
- ICAR-Central Potato Research Institute, Shimla - 171 001, Himachal Pradesh, India
| |
Collapse
|
2
|
Shandil RK, Chakrabarti SK, Singh BP, Sharma S, Sundaresha S, Kaushik SK, Bhatt AK, Sharma NN. Genotypic background of the recipient plant is crucial for conferring RB gene mediated late blight resistance in potato. BMC Genet 2017; 18:22. [PMID: 28274218 PMCID: PMC5343411 DOI: 10.1186/s12863-017-0490-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2016] [Accepted: 03/03/2017] [Indexed: 11/17/2022] Open
Abstract
BACKGROUND Late blight, caused by oomycetes pathogen Phytophthora infestans (Mont.) de Bary, is the most devastating potato disease in the world. RB gene from Solanum bulbocastanum has been shown to impart broad spectrum resistance against P. infestans races. In this study Katahdin transgenic event SP951 was used as male parent to cross with the popular Indian potato cultivars viz., Kufri Bahar (KB) and Kufri Jyoti (KJ) to enhance the late blight resistance. RESULTS Populations of 271 F1seedlings from the crosses KB × SP951 (87) and KJ × SP951 (184) were screened for inheritance of RB transgene through PCR and bioassay. Disease response based on AUDPC of different hybrid lines varied from immunity to complete susceptibility. High degree of resistance (<25% infection) was observed in KJ × SP951 derived seedlings (85.2%), whereas level of resistance in KB × SP951 (36.4% infection) derived seedlings was of low order. CONCLUSION This study provides valuable genetic materials for development of potentially durable late blight resistant potato varieties. Besides, it also corroborates the fact that efficacy of R gene is not solely dependent on its presence in the variety but largely depends on the genetic background of the recipient genotype.
Collapse
Affiliation(s)
- Rajesh K Shandil
- ICAR-Central Potato Research Institute, Shimla, 171001, Himachal Pradesh, India
| | - Swarup K Chakrabarti
- ICAR-Central Potato Research Institute, Shimla, 171001, Himachal Pradesh, India.
| | - Bir Pal Singh
- ICAR-Central Potato Research Institute, Shimla, 171001, Himachal Pradesh, India
| | - Sanjeev Sharma
- ICAR-Central Potato Research Institute, Shimla, 171001, Himachal Pradesh, India
| | - S Sundaresha
- ICAR-Central Potato Research Institute, Shimla, 171001, Himachal Pradesh, India
| | - Surinder K Kaushik
- Division of Germplasm Evaluation, ICAR-National Bureau of Plant Genetic Resources, Pusa Campus, New Delhi, India
| | - Arvind K Bhatt
- Department of Biotechnology, Himachal Pradesh University, Shimla, H.P, India
| | | |
Collapse
|
3
|
Gao L, Bradeen JM. Contrasting Potato Foliage and Tuber Defense Mechanisms against the Late Blight Pathogen Phytophthora infestans. PLoS One 2016; 11:e0159969. [PMID: 27441721 PMCID: PMC4956046 DOI: 10.1371/journal.pone.0159969] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2016] [Accepted: 07/11/2016] [Indexed: 11/27/2022] Open
Abstract
The late blight pathogen Phytophthora infestans can attack both potato foliage and tubers. When inoculated with P. infestans, foliage of nontransformed 'Russet Burbank' (WT) develops late blight disease while that of transgenic 'Russet Burbank' line SP2211 (+RB) does not. We compared the foliar transcriptome responses of these two lines to P. infestans inoculation using an RNA-seq approach. A total of 515 million paired end RNA-seq reads were generated, representing the transcription of 29,970 genes. We also compared the differences and similarities of defense mechanisms against P. infestans in potato foliage and tubers. Differentially expressed genes, gene groups and ontology bins were identified to show similarities and differences in foliage and tuber defense mechanisms. Our results suggest that R gene dosage and shared biochemical pathways (such as ethylene and stress bins) contribute to RB-mediated incompatible potato-P. infestans interactions in both the foliage and tubers. Certain ontology bins such as cell wall and lipid metabolisms are potentially organ-specific.
Collapse
Affiliation(s)
- Liangliang Gao
- Department of Plant Pathology, University of Minnesota, St Paul, Minnesota, United States of America
- Department of Agronomy and Plant Genetics, University of Minnesota, St Paul, Minnesota, United States of America
| | - James M. Bradeen
- Department of Plant Pathology, University of Minnesota, St Paul, Minnesota, United States of America
- Stakman-Borlaug Center for Sustainable Plant Health, University of Minnesota, St. Paul, Minnesota, United States of America
| |
Collapse
|
4
|
Millett BP, Gao L, Iorizzo M, Carputo D, Bradeen JM. Potato Tuber Blight Resistance Phenotypes Correlate with RB Transgene Transcript Levels in an Age-Dependent Manner. PHYTOPATHOLOGY 2015; 105:1131-1136. [PMID: 25775104 DOI: 10.1094/phyto-10-14-0291-r] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Plants have evolved strategies and mechanisms to detect and respond to pathogen attack. Different organs of the same plant may be subjected to different environments (e.g., aboveground versus belowground) and pathogens with different lifestyles. Accordingly, plants commonly need to tailor defense strategies in an organ-specific manner. Phytophthora infestans, causal agent of potato late blight disease, infects both aboveground foliage and belowground tubers. We examined the efficacy of transgene RB (known for conferring foliar late blight resistance) in defending against tuber late blight disease. Our results indicate that the presence of the transgene has a positive yet only marginally significant effect on tuber disease resistance on average. However, a significant association between transgene transcript levels and tuber resistance was established for specific transformed lines in an age-dependent manner, with higher transcript levels indicating enhanced tuber resistance. Thus, RB has potential to function in both foliage and tuber to impart late blight resistance. Our data suggest that organ-specific resistance might result directly from transcriptional regulation of the resistance gene itself.
Collapse
Affiliation(s)
- Benjamin P Millett
- First, second, third, and fifth authors: Department of Plant Pathology, University of Minnesota, St. Paul 55108; second author: Department of Agronomy and Plant Genetics, University of Minnesota, St. Paul; third and fourth authors: Department of Agricultural Sciences, University of Naples Federico II, Portici (NA), Italy; and fifth author: Stakman-Borlaug Center for Sustainable Plant Health, University of Minnesota, St. Paul
| | - Liangliang Gao
- First, second, third, and fifth authors: Department of Plant Pathology, University of Minnesota, St. Paul 55108; second author: Department of Agronomy and Plant Genetics, University of Minnesota, St. Paul; third and fourth authors: Department of Agricultural Sciences, University of Naples Federico II, Portici (NA), Italy; and fifth author: Stakman-Borlaug Center for Sustainable Plant Health, University of Minnesota, St. Paul
| | - Massimo Iorizzo
- First, second, third, and fifth authors: Department of Plant Pathology, University of Minnesota, St. Paul 55108; second author: Department of Agronomy and Plant Genetics, University of Minnesota, St. Paul; third and fourth authors: Department of Agricultural Sciences, University of Naples Federico II, Portici (NA), Italy; and fifth author: Stakman-Borlaug Center for Sustainable Plant Health, University of Minnesota, St. Paul
| | - Domenico Carputo
- First, second, third, and fifth authors: Department of Plant Pathology, University of Minnesota, St. Paul 55108; second author: Department of Agronomy and Plant Genetics, University of Minnesota, St. Paul; third and fourth authors: Department of Agricultural Sciences, University of Naples Federico II, Portici (NA), Italy; and fifth author: Stakman-Borlaug Center for Sustainable Plant Health, University of Minnesota, St. Paul
| | - James M Bradeen
- First, second, third, and fifth authors: Department of Plant Pathology, University of Minnesota, St. Paul 55108; second author: Department of Agronomy and Plant Genetics, University of Minnesota, St. Paul; third and fourth authors: Department of Agricultural Sciences, University of Naples Federico II, Portici (NA), Italy; and fifth author: Stakman-Borlaug Center for Sustainable Plant Health, University of Minnesota, St. Paul
| |
Collapse
|
5
|
Xie Z, Si W, Gao R, Zhang X, Yang S. Evolutionary analysis of RB/Rpi-blb1 locus in the Solanaceae family. Mol Genet Genomics 2015; 290:2173-86. [PMID: 26008792 DOI: 10.1007/s00438-015-1068-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2014] [Accepted: 05/12/2015] [Indexed: 11/28/2022]
Abstract
Late blight caused by the oomycete Phytophthora infestans is one of the most severe threats to potato production worldwide. Numerous studies suggest that the most effective protective strategy against the disease would be to provide potato cultivars with durable resistance (R) genes. However, little is known about the origin and evolutional history of these durable R-genes in potato. Addressing this might foster better understanding of the dynamics of these genes in nature and provide clues for identifying potential candidate R-genes. Here, a systematic survey was executed at RB/Rpi-blb1 locus, an exclusive broad-spectrum R-gene locus in potato. As indicated by synteny analysis, RB/Rpi-blb1 homologs were identified in all tested genomes, including potato, tomato, pepper, and Nicotiana, suggesting that the RB/Rpi-blb1 locus has an ancient origin. Two evolutionary patterns, similar to those reported on RGC2 in Lactuca, and Pi2/9 in rice, were detected at this locus. Type I RB/Rpi-blb1 homologs have frequent copy number variations and sequence exchanges, obscured orthologous relationships, considerable nucleotide divergence, and high non-synonymous to synonymous substitutions (Ka/Ks) between or within species, suggesting rapid diversification and balancing selection in response to rapid changes in the oomycete pathogen genomes. These characteristics may serve as signatures for cloning of late blight resistance genes.
Collapse
Affiliation(s)
- Zhengqing Xie
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, 210093, China
| | - Weina Si
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, 210093, China
| | - Rongchao Gao
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, 210093, China
| | - Xiaohui Zhang
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, 210093, China.
| | - Sihai Yang
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, 210093, China.
| |
Collapse
|
6
|
Rodewald J, Trognitz B. Solanum resistance genes against Phytophthora infestans and their corresponding avirulence genes. MOLECULAR PLANT PATHOLOGY 2013; 14:740-57. [PMID: 23710878 PMCID: PMC6638693 DOI: 10.1111/mpp.12036] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Resistance genes against Phytophthora infestans (Rpi genes), the most important potato pathogen, are still highly valued in the breeding of Solanum spp. for enhanced resistance. The Rpi genes hitherto explored are localized most often in clusters, which are similar between the diverse Solanum genomes. Their distribution is not independent of late maturity traits. This review provides a summary of the most recent important revelations on the genomic position and cloning of Rpi genes, and the structure, associations, mode of action and activity spectrum of Rpi and corresponding avirulence (Avr) proteins. Practical implications for research into and application of Rpi genes are deduced and combined with an outlook on approaches to address remaining issues and interesting questions. It is evident that the potential of Rpi genes has not been exploited fully.
Collapse
Affiliation(s)
- Jan Rodewald
- Department of Health and Environment, Austrian Institute of Technology, Konrad-Lorenz-Straße 24, 3430, Tulln, Austria.
| | | |
Collapse
|
7
|
Gao L, Tu ZJ, Millett BP, Bradeen JM. Insights into organ-specific pathogen defense responses in plants: RNA-seq analysis of potato tuber-Phytophthora infestans interactions. BMC Genomics 2013; 14:340. [PMID: 23702331 PMCID: PMC3674932 DOI: 10.1186/1471-2164-14-340] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2012] [Accepted: 05/17/2013] [Indexed: 12/03/2022] Open
Abstract
Background The late blight pathogen Phytophthora infestans can attack both potato foliage and tubers. Although interaction transcriptome dynamics between potato foliage and various pathogens have been reported, no transcriptome study has focused specifically upon how potato tubers respond to pathogen infection. When inoculated with P. infestans, tubers of nontransformed ‘Russet Burbank’ (WT) potato develop late blight disease while those of transgenic ‘Russet Burbank’ line SP2211 (+RB), which expresses the potato late blight resistance gene RB (Rpi-blb1), do not. We compared transcriptome responses to P. infestans inoculation in tubers of these two lines. Results We demonstrated the practicality of RNA-seq to study tetraploid potato and present the first RNA-seq study of potato tuber diseases. A total of 483 million paired end Illumina RNA-seq reads were generated, representing the transcription of around 30,000 potato genes. Differentially expressed genes, gene groups and ontology bins that exhibited differences between the WT and +RB lines were identified. P. infestans transcripts, including those of known effectors, were also identified. Conclusion Faster and stronger activation of defense related genes, gene groups and ontology bins correlate with successful tuber resistance against P. infestans. Our results suggest that the hypersensitive response is likely a general form of resistance against the hemibiotrophic P. infestans—even in potato tubers, organs that develop below ground.
Collapse
Affiliation(s)
- Liangliang Gao
- Department of Plant Pathology, University of Minnesota, Saint Paul, MN 55108, USA
| | | | | | | |
Collapse
|
8
|
Li L, Tacke E, Hofferbert HR, Lübeck J, Strahwald J, Draffehn AM, Walkemeier B, Gebhardt C. Validation of candidate gene markers for marker-assisted selection of potato cultivars with improved tuber quality. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2013; 126:1039-52. [PMID: 23299900 PMCID: PMC3607734 DOI: 10.1007/s00122-012-2035-z] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2012] [Accepted: 12/16/2012] [Indexed: 05/20/2023]
Abstract
Tuber yield, starch content, starch yield and chip color are complex traits that are important for industrial uses and food processing of potato. Chip color depends on the quantity of reducing sugars glucose and fructose in the tubers, which are generated by starch degradation. Reducing sugars accumulate when tubers are stored at low temperatures. Early and efficient selection of cultivars with superior yield, starch yield and chip color is hampered by the fact that reliable phenotypic selection requires multiple year and location trials. Application of DNA-based markers early in the breeding cycle, which are diagnostic for superior alleles of genes that control natural variation of tuber quality, will reduce the number of clones to be evaluated in field trials. Association mapping using genes functional in carbohydrate metabolism as markers has discovered alleles of invertases and starch phosphorylases that are associated with tuber quality traits. Here, we report on new DNA variants at loci encoding ADP-glucose pyrophosphorylase and the invertase Pain-1, which are associated with positive or negative effect with chip color, tuber starch content and starch yield. Marker-assisted selection (MAS) and marker validation were performed in tetraploid breeding populations, using various combinations of 11 allele-specific markers associated with tuber quality traits. To facilitate MAS, user-friendly PCR assays were developed for specific candidate gene alleles. In a multi-parental population of advanced breeding clones, genotypes were selected for having different combinations of five positive and the corresponding negative marker alleles. Genotypes combining five positive marker alleles performed on average better than genotypes with four negative alleles and one positive allele. When tested individually, seven of eight markers showed an effect on at least one quality trait. The direction of effect was as expected. Combinations of two to three marker alleles were identified that significantly improved average chip quality after cold storage and tuber starch content. In F1 progeny of a single-cross combination, MAS with six markers did not give the expected result. Reasons and implications for MAS in potato are discussed.
Collapse
Affiliation(s)
- Li Li
- Max Planck Institute for Plant Breeding Research, 50829 Cologne, Germany
- Present Address: State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, 150040 Harbin, People’s Republic of China
| | | | | | - Jens Lübeck
- Saka-Pflanzenzucht GbR, 24340 Windeby, Germany
| | | | - Astrid M. Draffehn
- Max Planck Institute for Plant Breeding Research, 50829 Cologne, Germany
| | - Birgit Walkemeier
- Max Planck Institute for Plant Breeding Research, 50829 Cologne, Germany
| | | |
Collapse
|
9
|
Gebhardt C. Bridging the gap between genome analysis and precision breeding in potato. Trends Genet 2013; 29:248-56. [DOI: 10.1016/j.tig.2012.11.006] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2012] [Revised: 11/01/2012] [Accepted: 11/15/2012] [Indexed: 12/16/2022]
|
10
|
Danan S, Veyrieras JB, Lefebvre V. Construction of a potato consensus map and QTL meta-analysis offer new insights into the genetic architecture of late blight resistance and plant maturity traits. BMC PLANT BIOLOGY 2011; 11:16. [PMID: 21247437 PMCID: PMC3037844 DOI: 10.1186/1471-2229-11-16] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2010] [Accepted: 01/19/2011] [Indexed: 05/17/2023]
Abstract
BACKGROUND Integrating QTL results from independent experiments performed on related species helps to survey the genetic diversity of loci/alleles underlying complex traits, and to highlight potential targets for breeding or QTL cloning. Potato (Solanum tuberosum L.) late blight resistance has been thoroughly studied, generating mapping data for many Rpi-genes (R-genes to Phytophthora infestans) and QTLs (quantitative trait loci). Moreover, late blight resistance was often associated with plant maturity. To get insight into the genomic organization of late blight resistance loci as compared to maturity QTLs, a QTL meta-analysis was performed for both traits. RESULTS Nineteen QTL publications for late blight resistance were considered, seven of them reported maturity QTLs. Twenty-one QTL maps and eight reference maps were compiled to construct a 2,141-marker consensus map on which QTLs were projected and clustered into meta-QTLs. The whole-genome QTL meta-analysis reduced by six-fold late blight resistance QTLs (by clustering 144 QTLs into 24 meta-QTLs), by ca. five-fold maturity QTLs (by clustering 42 QTLs into eight meta-QTLs), and by ca. two-fold QTL confidence interval mean. Late blight resistance meta-QTLs were observed on every chromosome and maturity meta-QTLs on only six chromosomes. CONCLUSIONS Meta-analysis helped to refine the genomic regions of interest frequently described, and provided the closest flanking markers. Meta-QTLs of late blight resistance and maturity juxtaposed along chromosomes IV, V and VIII, and overlapped on chromosomes VI and XI. The distribution of late blight resistance meta-QTLs is significantly independent from those of Rpi-genes, resistance gene analogs and defence-related loci. The anchorage of meta-QTLs to the potato genome sequence, recently publicly released, will especially improve the candidate gene selection to determine the genes underlying meta-QTLs. All mapping data are available from the Sol Genomics Network (SGN) database.
Collapse
Affiliation(s)
- Sarah Danan
- Institut National de la Recherche Agronomique (INRA), UR 1052 Génétique et Amélioration des Fruits et Légumes (GAFL), BP94, 84140 Montfavet, France
| | - Jean-Baptiste Veyrieras
- Institut National de la Recherche Agronomique (INRA-UPS-INA PG-CNRS), UMR 320 Génétique Végétale, Ferme du Moulon, 91190 Gif-sur-Yvette, France
| | - Véronique Lefebvre
- Institut National de la Recherche Agronomique (INRA), UR 1052 Génétique et Amélioration des Fruits et Légumes (GAFL), BP94, 84140 Montfavet, France
| |
Collapse
|
11
|
Danan S, Chauvin JE, Caromel B, Moal JD, Pellé R, Lefebvre V. Major-effect QTLs for stem and foliage resistance to late blight in the wild potato relatives Solanum sparsipilum and S. spegazzinii are mapped to chromosome X. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2009; 119:705-719. [PMID: 19533081 DOI: 10.1007/s00122-009-1081-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2008] [Accepted: 05/21/2009] [Indexed: 05/27/2023]
Abstract
To find out new resistance sources to late blight in the wild germplasm for potato breeding, we examined the polygenic resistance of Solanum sparsipilum and S. spegazzinii by a quantitative trait locus (QTL) analysis. We performed stem and foliage tests under controlled conditions in two diploid mapping progenies. Four traits were selected for QTL detection. A total of 30 QTLs were mapped, with a large-effect QTL region on chromosome X detected in both potato relatives. The mapping of literature-derived markers highlighted colinearities with published late blight QTLs or R-genes. Results showed (a) the resistance potential of S. sparsipilum and S. spegazzinii for late blight control, and (b) the efficacy of the stem test as a complement to the foliage test to break down the complex late blight resistance into elementary components. The relationships of late blight resistance QTLs with R-genes and maturity QTLs are discussed.
Collapse
Affiliation(s)
- Sarah Danan
- INRA, UR 1052 GAFL Génétique et Amélioration des Fruits et Légumes, BP 94, 84140, Montfavet, France
| | | | | | | | | | | |
Collapse
|
12
|
Bradeen JM, Iorizzo M, Mollov DS, Raasch J, Kramer LC, Millett BP, Austin-Phillips S, Jiang J, Carputo D. Higher copy numbers of the potato RB transgene correspond to enhanced transcript and late blight resistance levels. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2009; 22:437-446. [PMID: 19271958 DOI: 10.1094/mpmi-22-4-0437] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Late blight of potato ranks among the costliest of crop diseases worldwide. Host resistance offers the best means for controlling late blight, but previously deployed single resistance genes have been short-lived in their effectiveness. The foliar blight resistance gene RB, previously cloned from the wild potato Solanum bulbocastanum, has proven effective in greenhouse tests of transgenic cultivated potato. In this study, we examined the effects of the RB transgene on foliar late blight resistance in transgenic cultivated potato under field production conditions. In a two-year replicated trial, the RB transgene, under the control of its endogenous promoter, provided effective disease resistance in various genetic backgrounds, including commercially prominent potato cultivars, without fungicides. RB copy numbers and transcript levels were estimated with transgene-specific assays. Disease resistance was enhanced as copy numbers and transcript levels increased. The RB gene, like many other disease resistance genes, is constitutively transcribed at low levels. Transgenic potato lines with an estimated 15 copies of the RB transgene maintain high RB transcript levels and were ranked among the most resistant of 57 lines tested. We conclude that even in these ultra-high copy number lines, innate RNA silencing mechanisms have not been fully activated. Our findings suggest resistance-gene transcript levels may have to surpass a threshold before triggering RNA silencing. Strategies for the deployment of RB are discussed in light of the current research.
Collapse
Affiliation(s)
- James M Bradeen
- University of Minnesota, Department of Plant Pathology, St. Paul, 55108, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Petti C, Wendt T, Meade C, Mullins E. Evidence of genotype dependency within Agrobacterium tumefaciens in relation to the integration of vector backbone sequence in transgenic Phytophthora infestans-tolerant potato. J Biosci Bioeng 2009; 107:301-6. [DOI: 10.1016/j.jbiosc.2008.11.012] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2008] [Accepted: 11/06/2008] [Indexed: 11/29/2022]
|
14
|
Millett BP, Mollov DS, Iorizzo M, Carputo D, Bradeen JM. Changes in disease resistance phenotypes associated with plant physiological age are not caused by variation in R gene transcript abundance. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2009; 22:362-368. [PMID: 19245330 DOI: 10.1094/mpmi-22-3-0362] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Foliar late blight is one of the most important diseases of potato. Foliar blight resistance has been shown to change as a plant ages. In other pathosystems, resistance (R) gene transcript levels appear to be correlated to disease resistance. The cloning of the broad-spectrum, foliar blight resistance gene RB provided the opportunity to explore how foliar blight resistance and R-gene transcript levels vary with plant age. Plants of Solanum bulbocastanum PT29, from which RB, including the native promoter and other flanking regions, was cloned, and S. tuberosum cv. Dark Red Norland (nontransformed and RB-transformed) representing three different developmental stages were screened for resistance to late blight and RB transcript levels. Preflowering plants of all genotypes exhibited the highest levels of resistance, followed by postflowering and near-senescing plants. The RB transgene significantly affected resistance, enhancing resistance levels of all RB-containing lines, especially in younger plants. RB transgene transcripts were detected at all plant ages, despite weak correlation with disease resistance. Consistent transcript levels in plants of different physiological ages with variable levels of disease resistance demonstrate that changes in disease-resistance phenotypes associated with plant age cannot be attributed to changes in R-gene transcript abundance.
Collapse
Affiliation(s)
- Benjamin P Millett
- Department of Plant Pathology, University of Minnesota, St. Paul, MN 55108, USA
| | | | | | | | | |
Collapse
|