1
|
Kumar A, Chunduri V, Sharma S, Kumar A, Kumari A, Kapoor P, Kaur S, Garg M. Transfer of Thinopyrum elongatum chromosome-specific 1EL.1AS translocation to hard wheat could not improve targeted bread-making quality - Failure and lessons learned. J Cereal Sci 2021. [DOI: 10.1016/j.jcs.2021.103277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
2
|
Effect of wheat grain protein composition on end-use quality. Journal of Food Science and Technology 2020; 57:2771-2785. [PMID: 32624587 DOI: 10.1007/s13197-019-04222-6] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Revised: 11/24/2019] [Accepted: 12/17/2019] [Indexed: 01/08/2023]
Abstract
The quality of wheat products has been a new challenge next to wheat production which was achieved substantially during green revolution. The end-use quality of wheat is an essential factor for its commercial demand. The quality of wheat is largely based on the wheat storage proteins which extensively influences the dough properties. High molecular weight glutenin subunits (HMWGS), low molecular weight glutenin subunits (LMWGS) and gliadins significantly influence the end-use quality. Genomics and proteomics study of these gluten proteins of bread and durum wheat have explored new avenues for precise identification of the alleles and their role in end-use quality improvement. Secalin protein of Secale cereale encoded by Sec-1 loci and is associated with 1RS.1BL translocation has been known for deterioration of end-use quality. Chromosomal manipulations using various approaches have led to the development of new recombinant lines of wheat without secalin. Advanced techniques associated with assessment of end-use quality have integrated the knowledge of useful or deteriorating HMWGS/LMWGS alleles and their potential role in end-use quality. This review gives a comprehensive insight of different aspects of the end-use quality perspective for bread making in wheat along with some information on the immunological interference of gluten in celiac disease.
Collapse
|
3
|
Kumar A, Kapoor P, Chunduri V, Sharma S, Garg M. Potential of Aegilops sp. for Improvement of Grain Processing and Nutritional Quality in Wheat ( Triticum aestivum). FRONTIERS IN PLANT SCIENCE 2019; 10:308. [PMID: 30936886 PMCID: PMC6431632 DOI: 10.3389/fpls.2019.00308] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Accepted: 02/26/2019] [Indexed: 06/09/2023]
Abstract
Wheat is one of the most important staple crops in the world and good source of calories and nutrition. Its flour and dough have unique physical properties and can be processed to make unique products like bread, cakes, biscuits, pasta, noodles etc., which is not possible from other staple crops. Due to domestication, the genetic variability of the genes coding for different economically important traits in wheat is narrow. This genetic variability can be increased by utilizing its wild relatives. Its closest relative, genus Aegilops can be an important source of new alleles. Aegilops has played a very important role in evolution of tetraploid and hexaploid wheat. It consists of 22 species with C, D, M, N, S, T and U genomes with high allelic diversity relative to wheat. Its utilization for wheat improvement for various abiotic and biotic stresses has been reported by various scientific publications. Here in, for the first time, we review the potential of Aegilops for improvement of processing and nutritional traits in wheat. Among processing quality related gluten proteins; high molecular weight glutenins (HMW GS), being easiest to study have been explored in highest number of accessions or lines i.e., 681 belonging to 13 species and selected ones like Ae. searsii, Ae. geniculata and Ae. longissima have been linked with improved bread making quality of wheat. Gliadins and low molecular weight glutenins (LMW GS) have also been extensively explored for wheat improvement and Ae. umbellulata specific LMW GS have been linked with wheat bread making quality improvement. Aegilops has been explored for seed texture diversity and proteins like puroindolins (Pin) and grain softness proteins (GSP). For nutrition quality improvement, it has been screened for essential micronutrients like Fe, Zn, phytochemicals like carotenoids and dietary fibers like arabinoxylan and β-glucan. Ae. kotschyi and Ae. biuncialis transfer in wheat have been associated with higher Fe, Zn content. In this article we have tried to compile information available on exploration of nutritional and processing quality related traits in Aegilops section and their utilization for wheat improvement by different approaches.
Collapse
|
4
|
Phenotypic, cytogenetic, and molecular marker analysis of Brassica napus introgressants derived from an intergeneric hybridization with Orychophragmus. PLoS One 2019; 14:e0210518. [PMID: 30629679 PMCID: PMC6328085 DOI: 10.1371/journal.pone.0210518] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Accepted: 12/23/2018] [Indexed: 01/09/2023] Open
Abstract
Aneuploids of a single species that have lost or gained different chromosomes are useful for genomic analysis. The polyploid nature of many crops including oilseed rape (Brassica napus) allows these plants to tolerate the loss of individual chromosomes from homologous pairs, thus facilitating the development of aneuploid lines. Here, we selected 39 lines from advanced generations of an intergeneric hybridization between Brassica rapa and Orychophragmus violaceus with accidental pollination by B. napus. The lines showed a wide spectrum of phenotypic variations, with some traits specific to O. violaceus. Most lines had the same chromosome number (2n = 38) as B. napus. However, we also identified B. napus nulli-tetrasomics with 22 A-genome and 16 C-genome chromosomes and lines with the typical B. napus complement of 20 A-genome and 18 C-genome chromosomes, as revealed by FISH analysis using a C-genome specific probe. Other lines had 2n = 37 or 39 chromosomes, with variable numbers of A- or C-genome chromosomes. The formation of quadrivalents by four A-genome chromosomes with similar shapes suggests that they were derived from the same chromosome. The frequent homoeologous pairing between chromosomes of the A and C genomes points to their non-diploidized meiotic behavior. Sequence-related amplified polymorphism (SRAP) analysis revealed substantial genomic changes of the lines compared to B. rapa associated with O. violaceus specific DNA bands, but only a few genes were identified in these bands by DNA sequencing. These novel B. napus aneuploids and introgressants represent unique tools for studies of Brassica genetics and for Brassica breeding projects.
Collapse
|
5
|
Alvarez JB, Guzmán C. Interspecific and intergeneric hybridization as a source of variation for wheat grain quality improvement. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2018; 131:225-251. [PMID: 29285597 DOI: 10.1007/s00122-017-3042-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2017] [Accepted: 12/17/2017] [Indexed: 05/27/2023]
Abstract
The hybridization events with wild relatives and old varieties are an alternative source for enlarging the wheat quality variability. This review describes these process and their effects on the technological and nutritional quality. Wheat quality and its end-uses are mainly based on variation in three traits: grain hardness, gluten quality and starch. In recent times, the importance of nutritional quality and health-related aspects has increased the range of these traits with the inclusion of other grain components such as vitamins, fibre and micronutrients. One option to enlarge the genetic variability in wheat for all these components has been the use of wild relatives, together with underutilised or neglected wheat varieties or species. In the current review, we summarise the role of each grain component in relation to grain quality, their variation in modern wheat and the alternative sources in which wheat breeders have found novel variation.
Collapse
Affiliation(s)
- Juan B Alvarez
- Departamento de Genética, Escuela Técnica Superior de Ingeniería Agronómica y de Montes, Edificio Gregor Mendel, Campus de Rabanales, Universidad de Córdoba, CeiA3, 14071, Córdoba, Spain.
| | - Carlos Guzmán
- CIMMYT, Global Wheat Program, Km 45 Carretera México-Veracruz, El Batán, C.P. 56130, Texcoco, Estado de México, Mexico
| |
Collapse
|
6
|
Kumar A, Garg M, Kaur N, Chunduri V, Sharma S, Misser S, Kumar A, Tsujimoto H, Dou QW, Gupta RK. Rapid Development and Characterization of Chromosome Specific Translocation Line of Thinopyrum elongatum with Improved Dough Strength. FRONTIERS IN PLANT SCIENCE 2017; 8:1593. [PMID: 28959271 PMCID: PMC5604074 DOI: 10.3389/fpls.2017.01593] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/08/2017] [Accepted: 08/30/2017] [Indexed: 06/07/2023]
Abstract
The protein content and its type are principal factors affecting wheat (Triticum aestivum) end product quality. Among the wheat proteins, glutenin proteins, especially, high molecular weight glutenin subunits (HMW-GS) are major determinants of processing quality. Wheat and its primary gene pool have limited variation in terms of HMW-GS alleles. Wild relatives of wheat are an important source of genetic variation. For improvement of wheat processing quality its wild relative Thinopyrum elongatum with significant potential was utilized. An attempt was made to replace Th. elongatum chromosome long arm (1EL) carrying HMW-GS genes related to high dough strength with chromosome 1AL of wheat with least or negative effect on dough strength while retaining the chromosomes 1DL and 1BL with a positive effect on bread making quality. To create chromosome specific translocation line [1EL(1AS)], double monosomic of chromosomes 1E and 1A were created and further crossed with different cultivars and homoeologous pairing suppressor mutant line PhI . The primary selection was based upon glutenin and gliadin protein profiles, followed by sequential genomic in situ hybridization (GISH) and fluorescent in situ hybridization (FISH). These steps significantly reduced time, efforts, and economic cost in the generation of translocation line. In order to assess the effect of translocation on wheat quality, background recovery was carried out by backcrossing with recurrent parent for several generations and then selfing while selecting in each generation. Good recovery of parent background indicated the development of almost near isogenic line (NIL). Morphologically also translocation line was similar to recipient cultivar N61 that was further confirmed by seed storage protein profiles, RP-HPLC and scanning electron microscopy. The processing quality characteristics of translocation line (BC4F6) indicated significant improvement in the gluten performance index (GPI), dough mixing properties, dough strength, and extensibility. Our work aims to address the challenge of limited genetic diversity especially at chromosome 1A HMW-GS locus. We report successful development of chromosome 1A specific translocation line of Th. elongatum in wheat with improved dough strength.
Collapse
Affiliation(s)
- Aman Kumar
- National Agri-Food Biotechnology InstituteMohali, India
| | - Monika Garg
- National Agri-Food Biotechnology InstituteMohali, India
| | - Navneet Kaur
- National Agri-Food Biotechnology InstituteMohali, India
| | | | - Saloni Sharma
- National Agri-Food Biotechnology InstituteMohali, India
| | - Swati Misser
- National Agri-Food Biotechnology InstituteMohali, India
| | - Ashish Kumar
- National Agri-Food Biotechnology InstituteMohali, India
| | - Hisashi Tsujimoto
- United Graduate School of Agriculture, Tottori UniversityTottori, Japan
| | - Quan-Wen Dou
- Northwest Institute of Plateau Biology (CAS)Qinghai, China
| | - Raj K. Gupta
- Indian Institute of Wheat and Barley Research, Indian Council of Agricultural ResearchKarnal, India
| |
Collapse
|
7
|
Salmanowicz BP, Langner M, Mrugalska B, Ratajczak D, Górny AG. Grain quality characteristics and dough rheological properties in Langdon durum-wild emmer wheat chromosome substitution lines under nitrogen and water deficits. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2017; 97:2030-2041. [PMID: 27558295 DOI: 10.1002/jsfa.8006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2016] [Revised: 08/19/2016] [Accepted: 08/23/2016] [Indexed: 06/06/2023]
Abstract
BACKGROUND Wild emmer wheat could serve as a source of novel variation in grain quality and stress resistance for wheat breeding. A set of Triticum durum-T. dicoccoides chromosome substitution lines [LDN(DIC)] and the parental recipient cv. Langdon grown under contrasting water and nitrogen availability in the soil was examined in this study to identify differences in grain quality traits and dough rheological properties. RESULTS Significant genotypic variation was found among the materials for studied traits. This variation was also considerably affected by soil treatments and G × E interactions. The substitutions LDN(DIC-1A) and LDN(DIC-1B) showed separate differentiation in the composition of glutenin sub-units. The results indicated that primarily chromosome DIC-6B is stable source of an enhanced grain protein content and advantageous dough rheological properties. Similar features seem to be shown by the substitutions with the DIC-1A, DIC-2A and DIC-6A, but not under nitrogen shortage, when generally a considerable decrease was noticed in the range of genotypic variation in grain quality. CONCLUSIONS The substitution lines, particularly those with DIC-6B and DIC-6A and to a lesser extent DIC-1A and DIC-2A, were distinguished by advantageous grain quality traits, mixing properties and dough functionality and appear to be the most promising sources of innovative genes for wheat breeding. © 2016 Society of Chemical Industry.
Collapse
Affiliation(s)
- Bolesław P Salmanowicz
- Institute of Plant Genetics, Polish Academy of Sciences, 34 Strzeszynska Str., PL, 60-479, Poznan, Poland
| | - Monika Langner
- Institute of Plant Genetics, Polish Academy of Sciences, 34 Strzeszynska Str., PL, 60-479, Poznan, Poland
| | - Beata Mrugalska
- Faculty of Engineering Management, Poznañ University of Technology, 11 Strzelecka Str., PL, 60-965, Poznan, Poland
| | - Dominika Ratajczak
- Institute of Plant Genetics, Polish Academy of Sciences, 34 Strzeszynska Str., PL, 60-479, Poznan, Poland
| | - Andrzej G Górny
- Institute of Plant Genetics, Polish Academy of Sciences, 34 Strzeszynska Str., PL, 60-479, Poznan, Poland
| |
Collapse
|
8
|
Garg M, Kumar R, Singh RP, Tsujimoto H. Development of an Aegilops longissima substitution line with improved bread-making quality. J Cereal Sci 2014. [DOI: 10.1016/j.jcs.2014.05.006] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
9
|
Klindworth DL, Hareland GA, Elias EM, Ohm JB, Puhr D, Xu SS. Interactions of Genotype and Glutenin Subunit Composition on Breadmaking Quality of Durum 1AS•1AL-1DL Translocation Lines. Cereal Chem 2014. [DOI: 10.1094/cchem-08-13-0165-r] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Affiliation(s)
- Daryl L. Klindworth
- USDA-ARS Cereal Crops Research Unit, Northern Crop Science Laboratory, Fargo, ND 58102. Mention of trade names or commercial products in this article is solely for the purpose of providing specific information and does not imply recommendation or endorsement by the U.S. Department of Agriculture. USDA is an equal opportunity provider and employer
- Corresponding author. Phone: (701) 239-1342. Fax: (701) 239-1369. E-mail:
| | - Gary A. Hareland
- USDA-ARS Cereal Crops Research Unit, Northern Crop Science Laboratory, Fargo, ND 58102. Mention of trade names or commercial products in this article is solely for the purpose of providing specific information and does not imply recommendation or endorsement by the U.S. Department of Agriculture. USDA is an equal opportunity provider and employer
| | - Elias M. Elias
- Department of Plant Sciences, North Dakota State University, Fargo, ND 58108
| | - Jae-Bom Ohm
- USDA-ARS Cereal Crops Research Unit, Northern Crop Science Laboratory, Fargo, ND 58102. Mention of trade names or commercial products in this article is solely for the purpose of providing specific information and does not imply recommendation or endorsement by the U.S. Department of Agriculture. USDA is an equal opportunity provider and employer
| | - Dehdra Puhr
- USDA-ARS Cereal Crops Research Unit, Northern Crop Science Laboratory, Fargo, ND 58102. Mention of trade names or commercial products in this article is solely for the purpose of providing specific information and does not imply recommendation or endorsement by the U.S. Department of Agriculture. USDA is an equal opportunity provider and employer
| | - Steven S. Xu
- USDA-ARS Cereal Crops Research Unit, Northern Crop Science Laboratory, Fargo, ND 58102. Mention of trade names or commercial products in this article is solely for the purpose of providing specific information and does not imply recommendation or endorsement by the U.S. Department of Agriculture. USDA is an equal opportunity provider and employer
| |
Collapse
|
10
|
Molecular, physicochemical and rheological characteristics of introgressive Triticale/Triticum monococcum ssp. monococcum lines with wheat 1D/1A chromosome substitution. Int J Mol Sci 2013; 14:15595-614. [PMID: 23896593 PMCID: PMC3759875 DOI: 10.3390/ijms140815595] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2013] [Revised: 06/27/2013] [Accepted: 07/15/2013] [Indexed: 11/17/2022] Open
Abstract
Three sets of hexaploid introgressive triticale lines, with Triticum monococcum ssp. monococcum (cultivated einkorn wheat) genes and a bread wheat chromosome 1D substituted for chromosome 1A, and one set of secondary triticale lines were evaluated for grain and flour physicochemical and dough rheological characteristics in two generations (F7 and F8). Genomic in situ hybridization (GISH) and fluorescence in situ hybridization (FISH) confirmed the 1D/1A chromosome substitution. The presence or absence of einkorn high-molecular-weight (HMW) glutenin subunits and the wheat Glu-D1d locus encoding the 5 + 10 subunits was assessed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE), capillary zone electrophoresis, and allele-specific molecular markers. Significant differences were found among physicochemical properties (with the exception of the Hagberg falling number) of all introgressive Triticale/T. monococcum lines and the secondary triticale lines. The wheat 1D/1A chromosome substitution also affected these properties. The results showed that in all introgressive triticale lines, the protein and gluten content, Zeleny sedimentation value, and water absorption capacity, were increased. The rheological parameters estimated using micro-farinograph, reomixer, and Kieffer dough extensibility systems also showed an appreciable increase in dough-mixing properties, maximum resistance to extension (Rmax), and dough extensibility. Introgressive Triticale/T. monococcum lines with 5 + 10 subunits have particularly favorable rheological parameters. The results obtained in this study suggest that the cultivated einkorn genome Am, in the context of hexaploid secondary triticale lines and with a wheat 1D/1A substitution, has the potential to improve gluten polymer interactions and be a valuable genetic resource for triticale quality improvement.
Collapse
|
11
|
Kishii M, Dou Q, Garg M, Ito M, Tanaka H, Tsujimoto H. Production of wheat-Psathyrostachys huashanica chromosome addition lines. Genes Genet Syst 2010; 85:281-6. [DOI: 10.1266/ggs.85.281] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Affiliation(s)
- Masahiro Kishii
- Kihara Institute for Biological Research, Yokohama City University
| | - Quanwen Dou
- Laboratory of Plant Genetics and Breeding Science, Faculty of Agriculture, Tottori University
| | - Monika Garg
- Laboratory of Plant Genetics and Breeding Science, Faculty of Agriculture, Tottori University
| | - Miyuki Ito
- Laboratory of Plant Genetics and Breeding Science, Faculty of Agriculture, Tottori University
| | - Hiroyuki Tanaka
- Laboratory of Plant Genetics and Breeding Science, Faculty of Agriculture, Tottori University
| | - Hisashi Tsujimoto
- Laboratory of Plant Genetics and Breeding Science, Faculty of Agriculture, Tottori University
| |
Collapse
|
12
|
Garg M, Tanaka H, Ishikawa N, Takata K, Yanaka M, Tsujimoto H. Agropyron elongatum HMW-glutenins have a potential to improve wheat end-product quality through targeted chromosome introgression. J Cereal Sci 2009. [DOI: 10.1016/j.jcs.2009.06.012] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
13
|
Garg M, Tanaka H, Ishikawa N, Takata K, Yanaka M, Tsujimoto H. A Novel Pair of HMW Glutenin Subunits fromAegilops searsiiImproves Quality of Hexaploid Wheat. Cereal Chem 2009. [DOI: 10.1094/cchem-86-1-0026] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Affiliation(s)
- Monika Garg
- Laboratory of Plant Genetics and Breeding Science, Faculty of Agriculture, Tottori University, Tottori, 680-8553 Japan
| | - Hiroyuki Tanaka
- Laboratory of Plant Genetics and Breeding Science, Faculty of Agriculture, Tottori University, Tottori, 680-8553 Japan
| | - Naoyuki Ishikawa
- National Agricultural Research Center for Western Region, Fukuyama, 721-8514 Japan
| | - Kanenori Takata
- National Agricultural Research Center for Western Region, Fukuyama, 721-8514 Japan
| | - Mikiko Yanaka
- National Agricultural Research Center for Western Region, Fukuyama, 721-8514 Japan
| | - Hisashi Tsujimoto
- Laboratory of Plant Genetics and Breeding Science, Faculty of Agriculture, Tottori University, Tottori, 680-8553 Japan
- Corresponding author. Phone: +81-857-315352. Fax: +81-857-315352. E-mail:
| |
Collapse
|
14
|
Garg M, Elamein HMM, Tanaka H, Tsujimoto H. Preferential elimination of chromosome 1D from homoeologous group-1 alien addition lines in hexaploid wheat. Genes Genet Syst 2008; 82:403-8. [PMID: 17991995 DOI: 10.1266/ggs.82.403] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Alien chromosome addition lines are useful genetic material for studying the effect of an individual chromosome in the same genetic background. However, addition lines are sometimes unstable and tend to lose the alien chromosome in subsequent generations. In this study, we report preferential removal of chromosome 1D rather than the alien chromosome from homoeologous group-1 addition lines. The Agropyron intermedium chromosome 1Agi (1E) addition line, created in the background of 'Vilmorin 27', showed loss of a part of chromosome 1D, thereby losing its HMW glutenin locus. Even in the case of Aegilops longissima and Ae. peregrina, the genomes of which are closer to the B genome than D genome, chromosome 1D was lost from chromosome 1Sl and 1Sv addition lines in cv. 'Chinese Spring' rather than chromosome 1B during transfer from one generation to another. A similar observation was also observed in the case of a chromosome 1E disomic addition line of Ag. elongatum and alloplasmic common wheat line with Ag. intermedium ssp. trichophorum cytoplasm. The reason for this strange observation is thought to lie in the history of wheat evolution, the size of chromosome 1D compared to 1A and 1B, or differing pollen competition abilities.
Collapse
Affiliation(s)
- Monika Garg
- Laboratory of Plant Genetics and Breeding Science, United Graduate School of Agricultural Sciences, Tottori University, Japan
| | | | | | | |
Collapse
|