1
|
Jia L, Yang Y, Zhai H, He S, Xin G, Zhao N, Zhang H, Gao S, Liu Q. Production and characterization of a novel interspecific somatic hybrid combining drought tolerance and high quality of sweet potato and Ipomoea triloba L. PLANT CELL REPORTS 2022; 41:2159-2171. [PMID: 35943560 DOI: 10.1007/s00299-022-02912-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Accepted: 07/26/2022] [Indexed: 06/15/2023]
Abstract
A novel interspecific somatic hybrid combining drought tolerance and high quality of sweet potato and Ipomoea triloba L. was obtained and its genetic and epigenetic variations were studied. Somatic hybridization can be used to overcome the cross-incompatibility between sweet potato (Ipomoea batatas (L.) Lam.) and its wild relatives and transfer useful and desirable genes from wild relatives to cultivated plants. However, most of the interspecific somatic hybrids obtained to date cannot produce storage roots and do not exhibit agronomic characters. In the present study, a novel interspecific somatic hybrid, named XT1, was obtained through protoplast fusion between sweet potato cv. Xushu 18 and its wild relative I. triloba. This somatic hybrid produced storage roots and exhibited significantly higher drought tolerance and quality compared with its cultivated parent Xushu 18. Transcriptome and real-time quantitative PCR (qRT-PCR) analyses revealed that the well-known drought stress-responsive genes in XT1 and I. triloba were significantly up-regulated under drought stress. The genomic structural reconstructions between the two genomes of the fusion parents in XT1 were confirmed using genomic in situ hybridization (GISH) and specific nuclear and cytoplasmic DNA markers. The DNA methylation variations were characterized by methylation-sensitive amplified polymorphism (MSAP). This study not only reveals the significance of somatic hybridization in the genetic improvement of sweet potato but also provides valuable materials and knowledge for further investigating the mechanism of storage root formation in sweet potato.
Collapse
Affiliation(s)
- Licong Jia
- Key Laboratory of Sweet Potato Biology and Biotechnology, Ministry of Agriculture and Rural Affairs/Beijing Key Laboratory of Crop Genetic Improvement/Laboratory of Crop Heterosis & Utilization and Joint Laboratory for International Cooperation in Crop Molecular Breeding, Ministry of Education, College of Agronomy & Biotechnology, China Agricultural University, Beijing, 100193, China
- Institute of Grain and Oil Crops, Yantai Academy of Agricultural Sciences, Yantai, 265500, China
| | - Yufeng Yang
- Key Laboratory of Sweet Potato Biology and Biotechnology, Ministry of Agriculture and Rural Affairs/Beijing Key Laboratory of Crop Genetic Improvement/Laboratory of Crop Heterosis & Utilization and Joint Laboratory for International Cooperation in Crop Molecular Breeding, Ministry of Education, College of Agronomy & Biotechnology, China Agricultural University, Beijing, 100193, China
| | - Hong Zhai
- Key Laboratory of Sweet Potato Biology and Biotechnology, Ministry of Agriculture and Rural Affairs/Beijing Key Laboratory of Crop Genetic Improvement/Laboratory of Crop Heterosis & Utilization and Joint Laboratory for International Cooperation in Crop Molecular Breeding, Ministry of Education, College of Agronomy & Biotechnology, China Agricultural University, Beijing, 100193, China
| | - Shaozhen He
- Key Laboratory of Sweet Potato Biology and Biotechnology, Ministry of Agriculture and Rural Affairs/Beijing Key Laboratory of Crop Genetic Improvement/Laboratory of Crop Heterosis & Utilization and Joint Laboratory for International Cooperation in Crop Molecular Breeding, Ministry of Education, College of Agronomy & Biotechnology, China Agricultural University, Beijing, 100193, China
| | - Guosheng Xin
- Institute of Grain and Oil Crops, Yantai Academy of Agricultural Sciences, Yantai, 265500, China
| | - Ning Zhao
- Key Laboratory of Sweet Potato Biology and Biotechnology, Ministry of Agriculture and Rural Affairs/Beijing Key Laboratory of Crop Genetic Improvement/Laboratory of Crop Heterosis & Utilization and Joint Laboratory for International Cooperation in Crop Molecular Breeding, Ministry of Education, College of Agronomy & Biotechnology, China Agricultural University, Beijing, 100193, China
| | - Huan Zhang
- Key Laboratory of Sweet Potato Biology and Biotechnology, Ministry of Agriculture and Rural Affairs/Beijing Key Laboratory of Crop Genetic Improvement/Laboratory of Crop Heterosis & Utilization and Joint Laboratory for International Cooperation in Crop Molecular Breeding, Ministry of Education, College of Agronomy & Biotechnology, China Agricultural University, Beijing, 100193, China
| | - Shaopei Gao
- Key Laboratory of Sweet Potato Biology and Biotechnology, Ministry of Agriculture and Rural Affairs/Beijing Key Laboratory of Crop Genetic Improvement/Laboratory of Crop Heterosis & Utilization and Joint Laboratory for International Cooperation in Crop Molecular Breeding, Ministry of Education, College of Agronomy & Biotechnology, China Agricultural University, Beijing, 100193, China
| | - Qingchang Liu
- Key Laboratory of Sweet Potato Biology and Biotechnology, Ministry of Agriculture and Rural Affairs/Beijing Key Laboratory of Crop Genetic Improvement/Laboratory of Crop Heterosis & Utilization and Joint Laboratory for International Cooperation in Crop Molecular Breeding, Ministry of Education, College of Agronomy & Biotechnology, China Agricultural University, Beijing, 100193, China.
| |
Collapse
|
2
|
Xu W, Li Y, Li Y, Liu C, Wang Y, Xia G, Wang M. Asymmetric Somatic Hybridization Affects Synonymous Codon Usage Bias in Wheat. Front Genet 2021; 12:682324. [PMID: 34178040 PMCID: PMC8226224 DOI: 10.3389/fgene.2021.682324] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Accepted: 05/07/2021] [Indexed: 11/24/2022] Open
Abstract
Asymmetric somatic hybridization is an efficient strategy for crop breeding by introducing exogenous chromatin fragments, which leads to whole genomic shock and local chromosomal shock that induces genome-wide genetic variation including indel (insertion and deletion) and nucleotide substitution. Nucleotide substitution causes synonymous codon usage bias (SCUB), an indicator of genomic mutation and natural selection. However, how asymmetric somatic hybridization affects SCUB has not been addressed. Here, we explored this issue by comparing expressed sequence tags of a common wheat cultivar and its asymmetric somatic hybrid line. Asymmetric somatic hybridization affected SCUB and promoted the bias to A- and T-ending synonymous codon (SCs). SCUB frequencies in chromosomes introgressed with exogenous fragments were comparable to those in chromosomes without exogenous fragments, showing that exogenous fragments had no local chromosomal effect. Asymmetric somatic hybridization affected SCUB frequencies in indel-flanking sequences more strongly than in non-flanking sequences, and this stronger effect was present in both chromosomes with and without exogenous fragments. DNA methylation-driven SCUB shift was more pronounced than other SC pairs. SCUB shift was similar among seven groups of allelic chromosomes as well as three sub-genomes. Our work demonstrates that the SCUB shift induced by asymmetric somatic hybridization is attributed to the whole genomic shock, and DNA methylation is a putative force of SCUB shift during asymmetric somatic hybridization. Asymmetric somatic hybridization provides an available method for deepening the nature of SCUB shift and genetic variation induced by genomic shock.
Collapse
Affiliation(s)
- Wenjing Xu
- The Key Laboratory of Plant Development and Environmental Adaption, Ministry of Education, School of Life Science, Shandong University, Jinan, China
| | - Yingchun Li
- The Key Laboratory of Plant Development and Environmental Adaption, Ministry of Education, School of Life Science, Shandong University, Jinan, China
| | - Yajing Li
- The Key Laboratory of Plant Development and Environmental Adaption, Ministry of Education, School of Life Science, Shandong University, Jinan, China
| | - Chun Liu
- The Key Laboratory of Plant Development and Environmental Adaption, Ministry of Education, School of Life Science, Shandong University, Jinan, China
| | - Yanxia Wang
- Shijiazhuang Academy of Agriculture and Forestry Sciences, Shijiazhuang, China
| | - Guangmin Xia
- The Key Laboratory of Plant Development and Environmental Adaption, Ministry of Education, School of Life Science, Shandong University, Jinan, China
| | - Mengcheng Wang
- The Key Laboratory of Plant Development and Environmental Adaption, Ministry of Education, School of Life Science, Shandong University, Jinan, China
| |
Collapse
|
3
|
Wang M, Ji Y, Feng S, Liu C, Xiao Z, Wang X, Wang Y, Xia G. The non-random patterns of genetic variation induced by asymmetric somatic hybridization in wheat. BMC PLANT BIOLOGY 2018; 18:244. [PMID: 30332989 PMCID: PMC6192298 DOI: 10.1186/s12870-018-1474-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Accepted: 10/05/2018] [Indexed: 06/08/2023]
Abstract
BACKGROUND Asymmetric somatic hybridization is an efficient crop breeding approach by introducing several exogenous chromatin fragments, which leads to genomic shock and therefore induces genome-wide genetic variation. However, the fundamental question concerning the genetic variation such as whether it occurs randomly and suffers from selection pressure remains unknown. RESULTS Here, we explored this issue by comparing expressed sequence tags of a common wheat cultivar and its asymmetric somatic hybrid line. Both nucleotide substitutions and indels (insertions and deletions) had lower frequencies in coding sequences than in un-translated regions. The frequencies of nucleotide substitutions and indels were both comparable between chromosomes with and without introgressed fragments. Nucleotide substitutions distributed unevenly and were preferential to indel-flanking sequences, and the frequency of nucleotide substitutions at 5'-flanking sequences of indels was obviously higher in chromosomes with introgressed fragments than in those without exogenous fragment. Nucleotide substitutions and indels both had various frequencies among seven groups of allelic chromosomes, and the frequencies of nucleotide substitutions were strongly negatively correlative to those of indels. Among three sets of genomes, the frequencies of nucleotide substitutions and indels were both heterogeneous, and the frequencies of nucleotide substitutions exhibited drastically positive correlation to those of indels. CONCLUSIONS Our work demonstrates that the genetic variation induced by asymmetric somatic hybridization is attributed to both whole genomic shock and local chromosomal shock, which is a predetermined and non-random genetic event being closely associated with selection pressure. Asymmetric somatic hybrids provide a worthwhile model to further investigate the nature of genomic shock induced genetic variation.
Collapse
Affiliation(s)
- Mengcheng Wang
- The Key Laboratory of Plant Cell Engineering and Germplasm Innovation, Ministry of Education, School of Life Science, Shandong University, 27 Shandanan Road, Jinan, Shandong 250100 People’s Republic of China
| | - Yujie Ji
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095 China
| | - Shiting Feng
- The Key Laboratory of Plant Cell Engineering and Germplasm Innovation, Ministry of Education, School of Life Science, Shandong University, 27 Shandanan Road, Jinan, Shandong 250100 People’s Republic of China
| | - Chun Liu
- The Key Laboratory of Plant Cell Engineering and Germplasm Innovation, Ministry of Education, School of Life Science, Shandong University, 27 Shandanan Road, Jinan, Shandong 250100 People’s Republic of China
| | - Zhen Xiao
- The Key Laboratory of Plant Cell Engineering and Germplasm Innovation, Ministry of Education, School of Life Science, Shandong University, 27 Shandanan Road, Jinan, Shandong 250100 People’s Republic of China
| | - Xiaoping Wang
- The Key Laboratory of Plant Cell Engineering and Germplasm Innovation, Ministry of Education, School of Life Science, Shandong University, 27 Shandanan Road, Jinan, Shandong 250100 People’s Republic of China
| | - Yanxia Wang
- Shijiazhuang Academy of Agriculture and Forestry Sciences, Shijiazhuang, 050041 China
| | - Guangmin Xia
- The Key Laboratory of Plant Cell Engineering and Germplasm Innovation, Ministry of Education, School of Life Science, Shandong University, 27 Shandanan Road, Jinan, Shandong 250100 People’s Republic of China
| |
Collapse
|
4
|
Wang D, Zhang K, Dong L, Dong Z, Li Y, Hussain A, Zhai H. Molecular genetic and genomic analysis of wheat milling and end-use traits in China: Progress and perspectives. ACTA ACUST UNITED AC 2018. [DOI: 10.1016/j.cj.2017.10.001] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
5
|
Liu S, Li F, Kong L, Sun Y, Qin L, Chen S, Cui H, Huang Y, Xia G. Genetic and epigenetic changes in somatic hybrid introgression lines between wheat and tall wheatgrass. Genetics 2015; 199:1035-45. [PMID: 25670745 PMCID: PMC4391570 DOI: 10.1534/genetics.114.174094] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2014] [Accepted: 02/05/2015] [Indexed: 12/27/2022] Open
Abstract
Broad phenotypic variations were induced in derivatives of an asymmetric somatic hybridization of bread wheat (Triticum aestivum) and tall wheatgrass (Thinopyrum ponticum Podp); however, how these variations occurred was unknown. We explored the nature of these variations by cytogenetic assays and DNA profiling techniques to characterize six genetically stable somatic introgression lines. Karyotyping results show the six lines similar to their wheat parent, but GISH analysis identified the presence of a number of short introgressed tall wheatgrass chromatin segments. DNA profiling revealed many genetic and epigenetic differences, including sequences deletions, altered regulation of gene expression, changed patterns of cytosine methylation, and the reactivation of retrotransposons. Phenotypic variations appear to result from altered repetitive sequences combined with the epigenetic regulation of gene expression and/or retrotransposon transposition. The extent of genetic and epigenetic variation due to the maintenance of parent wheat cells in tissue culture was assessed and shown to be considerably lower than had been induced in the introgression lines. Asymmetric somatic hybridization provides appropriate material to explore the nature of the genetic and epigenetic variations induced by genomic shock.
Collapse
Affiliation(s)
- Shuwei Liu
- The Key Laboratory of Plant Cell Engineering and Germplasm Innovation, Ministry of Education, School of Life Sciences, Shandong University, Jinan 250100, Peoples' Republic of China
| | - Fei Li
- The Key Laboratory of Plant Cell Engineering and Germplasm Innovation, Ministry of Education, School of Life Sciences, Shandong University, Jinan 250100, Peoples' Republic of China
| | - Lina Kong
- The Key Laboratory of Plant Cell Engineering and Germplasm Innovation, Ministry of Education, School of Life Sciences, Shandong University, Jinan 250100, Peoples' Republic of China
| | - Yang Sun
- The Key Laboratory of Plant Cell Engineering and Germplasm Innovation, Ministry of Education, School of Life Sciences, Shandong University, Jinan 250100, Peoples' Republic of China
| | - Lumin Qin
- The Key Laboratory of Plant Cell Engineering and Germplasm Innovation, Ministry of Education, School of Life Sciences, Shandong University, Jinan 250100, Peoples' Republic of China
| | - Suiyun Chen
- The Key Laboratory of Plant Cell Engineering and Germplasm Innovation, Ministry of Education, School of Life Sciences, Shandong University, Jinan 250100, Peoples' Republic of China
| | - Haifeng Cui
- The Key Laboratory of Plant Cell Engineering and Germplasm Innovation, Ministry of Education, School of Life Sciences, Shandong University, Jinan 250100, Peoples' Republic of China
| | - Yinghua Huang
- U.S. Department of Agriculture/Agricultural Research Service Plant Science Research Laboratory, Stillwater, Oklahoma 74075
| | - Guangmin Xia
- The Key Laboratory of Plant Cell Engineering and Germplasm Innovation, Ministry of Education, School of Life Sciences, Shandong University, Jinan 250100, Peoples' Republic of China
| |
Collapse
|
6
|
Liu S, Xia G. The place of asymmetric somatic hybridization in wheat breeding. PLANT CELL REPORTS 2014; 33:595-603. [PMID: 24370665 DOI: 10.1007/s00299-013-1552-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2013] [Revised: 12/04/2013] [Accepted: 12/10/2013] [Indexed: 05/08/2023]
Abstract
Since its first development some 40 years ago, the application of the somatic hybridization technique has generated a body of hybrid plant material involving a wide combination of parental species. Until the late 1990s, the technique was ineffective in wheat, as regeneration from protoplasts was proving difficult to achieve. Since this time, however, a successful somatic hybridization protocol for wheat has been established and used to generate a substantial number of both symmetric and asymmetric somatic hybrids and derived materials, especially involving the parental combination bread wheat and tall wheatgrass (Thinopyrum ponticum). This review describes the current state of the art for somatic hybridization in wheat and focuses on its potential application for wheat improvement.
Collapse
Affiliation(s)
- Shuwei Liu
- The Key Laboratory of Plant Cell Engineering and Germplasm Innovation, Ministry of Education, School of Life Sciences, Shandong University, Jinan, 250100, China
| | | |
Collapse
|
7
|
Gao X, Liu SW, Sun Q, Xia GM. High frequency of HMW-GS sequence variation through somatic hybridization between Agropyron elongatum and common wheat. PLANTA 2010; 231:245-250. [PMID: 19902245 DOI: 10.1007/s00425-009-1040-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2009] [Accepted: 10/13/2009] [Indexed: 05/28/2023]
Abstract
A symmetric somatic hybridization was performed to combine the protoplasts of tall wheatgrass (Agropyron elongatum) and bread wheat (Triticum aestivum). Fertile regenerants were obtained which were morphologically similar to tall wheatgrass, but which contained some introgression segments from wheat. An SDS-PAGE analysis showed that a number of non-parental high-molecular weight glutenin subunits (HMW-GS) were present in the symmetric somatic hybridization derivatives. These sequences were amplified, cloned and sequenced, to deliver 14 distinct HMW-GS coding sequences, eight of which were of the y-type (Hy1-Hy8) and six x-type (Hx1-Hx6). Five of the cloned HMW-GS sequences were successfully expressed in E. coli. The analysis of their deduced peptide sequences showed that they all possessed the typical HMW-GS primary structure. Sequence alignments indicated that Hx5 and Hy1 were probably derived from the tall wheatgrass genes Aex5 and Aey6, while Hy2, Hy3, Hx1 and Hy6 may have resulted from slippage in the replication of a related biparental gene. We found that both symmetric and asymmetric somatic hybridization could promote the emergence of novel alleles. We discussed the origination of allelic variation of HMW-GS genes in somatic hybridization, which might be the result from the response to genomic shock triggered by the merger and interaction of biparent genomes.
Collapse
Affiliation(s)
- Xin Gao
- The Key Laboratory of Plant Cell Engineering and Germplasm Innovation, Ministry of Education, School of Life Science, Shandong University, 250100 Jinan, People's Republic of China
| | | | | | | |
Collapse
|
8
|
Xia G. Progress of chromosome engineering mediated by asymmetric somatic hybridization. J Genet Genomics 2009; 36:547-56. [PMID: 19782956 DOI: 10.1016/s1673-8527(08)60146-0] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2009] [Revised: 06/02/2009] [Accepted: 07/15/2009] [Indexed: 11/27/2022]
Abstract
Plant somatic hybridization has progressed steadily over the past 35 years. Many hybrid plants have been generated from fusion combinations of different phylogenetic species, some of which have been utilized in crop breeding programs. Among them, asymmetric hybrid, which usually contains a fraction of alien genome, has received more attention because of its importance in crop improvement. However, few studies have dealt with the heredity of the genome of somatic hybrid for a long time, which has limited the progress of this approach. Over recent ten years, along with the development of an effective cytogenetical tool "in situ hybridization (ISH)", asymmetric fusion of common wheat (Triticum aestivum L.) with different grasses or cereals has been greatly developed. Genetics, genomes, functional genes and agricultural traits of wheat asymmetric hybrids have been subject to systematic investigations using gene cloning, genomic in situ hybridization (GISH) and molecular makers. The future goal is to fully elucidate the functional relationships among improved agronomic traits, the genes and underlying molecular mechanisms, and the genome dynamics of somatic introgression lines. This will accelerate the development of elite germplasms via somatic hybridization and the application of these materials in the molecular improvement of crop plants.
Collapse
Affiliation(s)
- Guangmin Xia
- Key Laboratory of Plant Cell Engineering and Germplasm Innovation of Education Ministry, School of Life Sciences, Shandong University, Jinan 250100, China.
| |
Collapse
|