1
|
Mahmood A, Bilyeu KD, Škrabišová M, Biová J, De Meyer EJ, Meinhardt CG, Usovsky M, Song Q, Lorenz AJ, Mitchum MG, Shannon G, Scaboo AM. Cataloging SCN resistance loci in North American public soybean breeding programs. FRONTIERS IN PLANT SCIENCE 2023; 14:1270546. [PMID: 38053759 PMCID: PMC10694258 DOI: 10.3389/fpls.2023.1270546] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Accepted: 10/16/2023] [Indexed: 12/07/2023]
Abstract
Soybean cyst nematode (SCN) is a destructive pathogen of soybeans responsible for annual yield loss exceeding $1.5 billion in the United States. Here, we conducted a series of genome-wide association studies (GWASs) to understand the genetic landscape of SCN resistance in the University of Missouri soybean breeding programs (Missouri panel), as well as germplasm and cultivars within the United States Department of Agriculture (USDA) Uniform Soybean Tests-Northern Region (NUST). For the Missouri panel, we evaluated the resistance of breeding lines to SCN populations HG 2.5.7 (Race 1), HG 1.2.5.7 (Race 2), HG 0 (Race 3), HG 2.5.7 (Race 5), and HG 1.3.6.7 (Race 14) and identified seven quantitative trait nucleotides (QTNs) associated with SCN resistance on chromosomes 2, 8, 11, 14, 17, and 18. Additionally, we evaluated breeding lines in the NUST panel for resistance to SCN populations HG 2.5.7 (Race 1) and HG 0 (Race 3), and we found three SCN resistance-associated QTNs on chromosomes 7 and 18. Through these analyses, we were able to decipher the impact of seven major genetic loci, including three novel loci, on resistance to several SCN populations and identified candidate genes within each locus. Further, we identified favorable allelic combinations for resistance to individual SCN HG types and provided a list of available germplasm for integration of these unique alleles into soybean breeding programs. Overall, this study offers valuable insight into the landscape of SCN resistance loci in U.S. public soybean breeding programs and provides a framework to develop new and improved soybean cultivars with diverse plant genetic modes of SCN resistance.
Collapse
Affiliation(s)
- Anser Mahmood
- Division of Plant Science and Technology, University of Missouri, Columbia, MO, United States
| | - Kristin D. Bilyeu
- Plant Genetics Research Unit, United States Department of Agriculture-Agricultural Research Service, University of Missouri, Columbia, MO, United States
| | - Mária Škrabišová
- Department of Biochemistry, Faculty of Science, Palacky University Olomouc, Olomouc, Czechia
| | - Jana Biová
- Department of Biochemistry, Faculty of Science, Palacky University Olomouc, Olomouc, Czechia
| | - Elizabeth J. De Meyer
- Division of Plant Science and Technology, University of Missouri, Columbia, MO, United States
| | - Clinton G. Meinhardt
- Division of Plant Science and Technology, University of Missouri, Columbia, MO, United States
| | - Mariola Usovsky
- Division of Plant Science and Technology, University of Missouri, Columbia, MO, United States
| | - Qijian Song
- Soybean Genomics and Improvement Laboratory, Beltsville Agricultural Research Center, United States Department of Agriculture-Agricultural Research Service (USDA-ARS), Beltsville, MD, United States
| | - Aaron J. Lorenz
- Department of Agronomy and Plant Genetics, University of Minnesota, St. Paul, MN, United States
| | - Melissa G. Mitchum
- Department of Plant Pathology and Institute of Plant Breeding, Genetics, and Genomics, University of Georgia, Athens, GA, United States
| | - Grover Shannon
- Division of Plant Science and Technology, University of Missouri, Columbia, MO, United States
| | - Andrew M. Scaboo
- Division of Plant Science and Technology, University of Missouri, Columbia, MO, United States
| |
Collapse
|
2
|
Lu X, Torabi S, de Lima Passianotto AL, Welacky T, Eskandari M. Quantitative trait loci and gene-specific markers associated with resistance to soybean cyst nematode HG type 2.5.7. MOLECULAR BREEDING : NEW STRATEGIES IN PLANT IMPROVEMENT 2022; 42:62. [PMID: 37313012 PMCID: PMC10248661 DOI: 10.1007/s11032-022-01330-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Accepted: 09/13/2022] [Indexed: 06/15/2023]
Abstract
Soybean cyst nematode (SCN) is one of the most damaging soybean (Glycine max) pests worldwide. More than 95% of SCN-resistant commercial cultivars in North America are derived from a single source of resistance named PI 88788, and the widespread use of this source in the past three decades has led to the selection of virulent biotypes of SCN, such as HG (Heterodera glycines) type 2.5.7 that can overcome the PI 88788-type resistance. The objectives of this study were to identify quantitative trait loci (QTL) and candidate genes underlying the resistance to HG type 2.5.7 isolate and to measure the impact of the resistance factors on seed yield. To achieve the goals, a recombinant inbreed line (RIL) population was established from a cross between an SCN-susceptible high-yielding elite soybean cultivar, OAC Calypso, and the cultivar LD07-3419, resistant to SCN HG type 2.5.7. The RILs resistant to HG type 2.5.7 were identified using greenhouse bioassay tested for differentiation of resistant sources using Kompetitive Allele-Specific PCR (KASP) assay at rhg1 and Rhg4 loci and also for rhg1 copy number variation using TaqMan assay. The RILs were also genotyped using genotype-by-sequencing and three SCN-related QTL were identified on chromosomes 9, 12, and 18 using composite interval mapping. In addition, 31 genes involved in protein kinase activity were identified within QTL regions as potential causal candidate genes underlying the resistance. No significant correlation was found between seed yield and the resistance to SCN in the RIL population evaluated under non-SCN-infested environments. Supplementary Information The online version contains supplementary material available at 10.1007/s11032-022-01330-8.
Collapse
Affiliation(s)
- Xin Lu
- Department of Plant Agriculture, University of Guelph, Guelph, Canada
| | - Sepideh Torabi
- Department of Plant Agriculture, University of Guelph, Guelph, Canada
| | | | - Tom Welacky
- Agriculturan and Agri-Food Canada, Harrow Research Station, Essex, Canada
| | - Milad Eskandari
- Department of Plant Agriculture, University of Guelph, Guelph, Canada
| |
Collapse
|
3
|
Proteomic, Transcriptomic, Mutational, and Functional Assays Reveal the Involvement of Both THF and PLP Sites at the GmSHMT08 in Resistance to Soybean Cyst Nematode. Int J Mol Sci 2022; 23:ijms231911278. [PMID: 36232579 PMCID: PMC9570156 DOI: 10.3390/ijms231911278] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 08/27/2022] [Accepted: 09/05/2022] [Indexed: 11/17/2022] Open
Abstract
The serine hydroxymethyltransferase (SHMT; E.C. 2.1.2.1) is involved in the interconversion of serine/glycine and tetrahydrofolate (THF)/5,10-methylene THF, playing a key role in one-carbon metabolism, the de novo purine pathway, cellular methylation reactions, redox homeostasis maintenance, and methionine and thymidylate synthesis. GmSHMT08 is the soybean gene underlying soybean cyst nematode (SCN) resistance at the Rhg4 locus. GmSHMT08 protein contains four tetrahydrofolate (THF) cofactor binding sites (L129, L135, F284, N374) and six pyridoxal phosphate (PLP) cofactor binding/catalysis sites (Y59, G106, G107, H134, S190A, H218). In the current study, proteomic analysis of a data set of protein complex immunoprecipitated using GmSHMT08 antibodies under SCN infected soybean roots reveals the presence of enriched pathways that mainly use glycine/serine as a substrate (glyoxylate cycle, redox homeostasis, glycolysis, and heme biosynthesis). Root and leaf transcriptomic analysis of differentially expressed genes under SCN infection supported the proteomic data, pointing directly to the involvement of the interconversion reaction carried out by the serine hydroxymethyltransferase enzyme. Direct site mutagenesis revealed that all mutated THF and PLP sites at the GmSHMT08 resulted in increased SCN resistance. We have shown the involvement of PLP sites in SCN resistance. Specially, the effect of the two Y59 and S190 PLP sites was more drastic than the tested THF sites. This unprecedented finding will help us to identify the biological outcomes of THF and PLP residues at the GmSHMT08 and to understand SCN resistance mechanisms.
Collapse
|
4
|
Basnet P, Meinhardt CG, Usovsky M, Gillman JD, Joshi T, Song Q, Diers B, Mitchum MG, Scaboo AM. Epistatic interaction between Rhg1-a and Rhg2 in PI 90763 confers resistance to virulent soybean cyst nematode populations. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2022; 135:2025-2039. [PMID: 35381870 PMCID: PMC9205835 DOI: 10.1007/s00122-022-04091-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Accepted: 03/25/2022] [Indexed: 05/19/2023]
Abstract
KEY MESSAGE An epistatic interaction between SCN resistance loci rhg1-a and rhg2 in PI 90763 imparts resistance against virulent SCN populations which can be employed to diversify SCN resistance in soybean cultivars. With more than 95% of the $46.1B soybean market dominated by a single type of genetic resistance, breeding for soybean cyst nematode (SCN)-resistant soybean that can effectively combat the widespread increase in virulent SCN populations presents a significant challenge. Rhg genes (for Resistance to Heterodera glycines) play a key role in resistance to SCN; however, their deployment beyond the use of the rhg1-b allele has been limited. In this study, quantitative trait loci (QTL) were mapped using PI 90763 through two biparental F3:4 recombinant inbred line (RIL) populations segregating for rhg1-a and rhg1-b alleles against a SCN HG type 1.2.5.7 (Race 2) population. QTL located on chromosome 18 (rhg1-a) and chromosome 11 (rhg2) were determined to confer SCN resistance in PI 90763. The rhg2 gene was fine-mapped to a 169-Kbp region pinpointing GmSNAP11 as the strongest candidate gene. We demonstrated a unique epistatic interaction between rhg1-a and rhg2 loci that not only confers resistance to multiple virulent SCN populations. Further, we showed that pyramiding rhg2 with the conventional mode of resistance, rhg1-b, is ineffective against these virulent SCN populations. This highlights the importance of pyramiding rhg1-a and rhg2 to maximize the impact of gene pyramiding strategies toward management of SCN populations virulent on rhg1-b sources of resistance. Our results lay the foundation for the next generation of soybean resistance breeding to combat the number one pathogen of soybean.
Collapse
Affiliation(s)
- Pawan Basnet
- Division of Plant Science and Technology, University of Missouri, Columbia, MO, 65211, USA
| | - Clinton G Meinhardt
- Division of Plant Science and Technology, University of Missouri, Columbia, MO, 65211, USA
| | - Mariola Usovsky
- Division of Plant Science and Technology, University of Missouri, Columbia, MO, 65211, USA
| | | | - Trupti Joshi
- Department of Health Management and Informatics, MUIDSI, and Bond Life Sciences Center, University of Missouri-Columbia, Columbia, MO, 65211, USA
| | - Qijian Song
- Soybean Genomics and Improvement Laboratory, Beltsville Agricultural Research Center, USDA-ARS, Beltsville, MD, USA
| | - Brian Diers
- Department of Crop Sciences, University of Illinois, Urbana-Champaign, IL, USA
| | - Melissa G Mitchum
- Department of Plant Pathology and Institute of Plant Breeding, Genetics and Genomics, University of Georgia, Athens, GA, USA
| | - Andrew M Scaboo
- Division of Plant Science and Technology, University of Missouri, Columbia, MO, 65211, USA.
| |
Collapse
|
5
|
Rambani A, Pantalone V, Yang S, Rice JH, Song Q, Mazarei M, Arelli PR, Meksem K, Stewart CN, Hewezi T. Identification of introduced and stably inherited DNA methylation variants in soybean associated with soybean cyst nematode parasitism. THE NEW PHYTOLOGIST 2020; 227:168-184. [PMID: 32112408 DOI: 10.1111/nph.16511] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Accepted: 02/18/2020] [Indexed: 06/10/2023]
Abstract
DNA methylation is a widespread epigenetic mark that contributes to transcriptome reprogramming during plant-pathogen interactions. However, the distinct role of DNA methylation in establishing resistant and susceptible responses remains largely unexplored. Here, we developed and used a pair of near-isogenic lines (NILs) to characterize DNA methylome landscapes of soybean roots during the susceptible and resistant interactions with soybean cyst nematode (SCN; Heterodera glycines). We also compared the methylomes of the NILs and their parents to identify introduced and stably inherited methylation variants. The genomes of the NILs were substantially differentially methylated under uninfected conditions. This difference was associated with differential gene expression that may prime the NIL responses to SCN infection. In response to SCN infection, the susceptible line exhibited reduced global methylation levels in both protein-coding genes and transposable elements, whereas the resistant line showed the opposite response, increased global methylation levels. Heritable and novel nonparental differentially methylated regions overlapping with genes associated with soybean response to SCN infection were identified and validated using transgenic hairy root system. Our analyses indicate that DNA methylation patterns associated with the susceptible and resistant interactions are highly specific and that novel and stably inherited methylation variants are of biological significance.
Collapse
Affiliation(s)
- Aditi Rambani
- Department of Plant Sciences, University of Tennessee, Knoxville, TN, 37996, USA
| | - Vince Pantalone
- Department of Plant Sciences, University of Tennessee, Knoxville, TN, 37996, USA
| | - Songnan Yang
- Department of Plant Sciences, University of Tennessee, Knoxville, TN, 37996, USA
| | - J Hollis Rice
- Department of Plant Sciences, University of Tennessee, Knoxville, TN, 37996, USA
| | - Qijian Song
- Soybean Genomics and Improvement Laboratory, USDA-ARS, Beltsville Agricultural Research Center, Beltsville, MD, 20705, USA
| | - Mitra Mazarei
- Department of Plant Sciences, University of Tennessee, Knoxville, TN, 37996, USA
| | | | - Khalid Meksem
- Department of Plant, Soil, and Agricultural Systems, Southern Illinois University, Carbondale, IL, 62901, USA
| | - C Neal Stewart
- Department of Plant Sciences, University of Tennessee, Knoxville, TN, 37996, USA
| | - Tarek Hewezi
- Department of Plant Sciences, University of Tennessee, Knoxville, TN, 37996, USA
| |
Collapse
|
6
|
Neupane S, Purintun JM, Mathew FM, Varenhorst AJ, Nepal MP. Molecular Basis of Soybean Resistance to Soybean Aphids and Soybean Cyst Nematodes. PLANTS 2019; 8:plants8100374. [PMID: 31561499 PMCID: PMC6843664 DOI: 10.3390/plants8100374] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Revised: 09/05/2019] [Accepted: 09/17/2019] [Indexed: 01/25/2023]
Abstract
Soybean aphid (SBA; Aphis glycines Matsumura) and soybean cyst nematode (SCN; Heterodera glycines Ichninohe) are major pests of the soybean (Glycine max [L.] Merr.). Substantial progress has been made in identifying the genetic basis of limiting these pests in both model and non-model plant systems. Classical linkage mapping and genome-wide association studies (GWAS) have identified major and minor quantitative trait loci (QTLs) in soybean. Studies on interactions of SBA and SCN effectors with host proteins have identified molecular cues in various signaling pathways, including those involved in plant disease resistance and phytohormone regulations. In this paper, we review the molecular basis of soybean resistance to SBA and SCN, and we provide a synthesis of recent studies of soybean QTLs/genes that could mitigate the effects of virulent SBA and SCN populations. We also review relevant studies of aphid–nematode interactions, particularly in the soybean–SBA–SCN system.
Collapse
Affiliation(s)
- Surendra Neupane
- Department of Biology and Microbiology, South Dakota State University, Brookings, SD 57007, USA.
| | - Jordan M Purintun
- Department of Biology and Microbiology, South Dakota State University, Brookings, SD 57007, USA.
| | - Febina M Mathew
- Department of Agronomy, Horticulture and Plant Science, South Dakota State University, Brookings, SD 57007, USA.
| | - Adam J Varenhorst
- Department of Agronomy, Horticulture and Plant Science, South Dakota State University, Brookings, SD 57007, USA.
| | - Madhav P Nepal
- Department of Biology and Microbiology, South Dakota State University, Brookings, SD 57007, USA.
| |
Collapse
|
7
|
Tran DT, Steketee CJ, Boehm JD, Noe J, Li Z. Genome-Wide Association Analysis Pinpoints Additional Major Genomic Regions Conferring Resistance to Soybean Cyst Nematode ( Heterodera glycines Ichinohe). FRONTIERS IN PLANT SCIENCE 2019; 10:401. [PMID: 31031779 PMCID: PMC6470319 DOI: 10.3389/fpls.2019.00401] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2018] [Accepted: 03/18/2019] [Indexed: 05/31/2023]
Abstract
Soybean cyst nematode (Heterodera glycines Ichinohe) (SCN) is the most destructive pest affecting soybeans [Glycine max (L.) Merr.] in the U.S. To date, only two major SCN resistance alleles, rhg1 and Rhg4, identified in PI 88788 (rhg1) and Peking (rhg1/Rhg4), residing on chromosomes (Chr) 18 and 8, respectively, have been widely used to develop SCN resistant cultivars in the U.S. Thus, some SCN populations have evolved to overcome the PI 88788 and Peking derived resistance, making it a priority for breeders to identify new alleles and sources of SCN resistance. Toward that end, 461 soybean accessions from various origins were screened using a greenhouse SCN bioassay and genotyped with Illumina SoySNP50K iSelect BeadChips and three KASP SNP markers developed at the Rhg1 and Rhg4 loci to perform a genome-wide association study (GWAS) and a haplotype analysis at the Rhg1 and Rhg4 loci. In total, 35,820 SNPs were used for GWAS, which identified 12 SNPs at four genomic regions on Chrs 7, 8, 10, and 18 that were significantly associated with SCN resistance (P < 0.001). Of those, three SNPs were located at Rhg1 and Rhg4, and 24 predicted genes were found near the significant SNPs on Chrs 7 and 10. KASP SNP genotyping results of the 462 accessions at the Rhg1 and Rhg4 loci identified 30 that carried PI 88788-type resistance, 50 that carried Peking-type resistance, and 58 that carried neither the Peking-type nor the PI 88788-type resistance alleles, indicating they may possess novel SCN resistance alleles. By using two subsets of SNPs near the Rhg1 and Rhg4 loci obtained from SoySNP iSelect BeadChips, a haplotype analysis of 461 accessions grouped those 58 accessions differently from the accessions carrying Peking or PI 88788 derived resistance, thereby validating the genotyping results at Rhg1 and Rhg4. The significant SNPs, candidate genes, and newly characterized SCN resistant accessions will be beneficial for the development of DNA markers to be used for marker-assisted breeding and developing soybean cultivars carrying novel sources of SCN resistance.
Collapse
Affiliation(s)
- Dung T. Tran
- Institute of Plant Breeding, Genetics and Genomics and Department of Crop and Soil Sciences, University of Georgia, Athens, GA, United States
| | - Clinton J. Steketee
- Institute of Plant Breeding, Genetics and Genomics and Department of Crop and Soil Sciences, University of Georgia, Athens, GA, United States
| | - Jeffrey D. Boehm
- Institute of Plant Breeding, Genetics and Genomics and Department of Crop and Soil Sciences, University of Georgia, Athens, GA, United States
| | - James Noe
- Department of Plant Pathology, University of Georgia, Athens, GA, United States
| | - Zenglu Li
- Institute of Plant Breeding, Genetics and Genomics and Department of Crop and Soil Sciences, University of Georgia, Athens, GA, United States
| |
Collapse
|
8
|
Swaminathan S, Abeysekara NS, Knight JM, Liu M, Dong J, Hudson ME, Bhattacharyya MK, Cianzio SR. Mapping of new quantitative trait loci for sudden death syndrome and soybean cyst nematode resistance in two soybean populations. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2018; 131:1047-1062. [PMID: 29582113 DOI: 10.1007/s00122-018-3057-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2017] [Accepted: 01/12/2018] [Indexed: 05/07/2023]
Abstract
KEY MESSAGE Novel QTL conferring resistance to both the SDS and SCN was detected in two RIL populations. Dual resistant RILs could be used in breeding programs for developing resistant soybean cultivars. Soybean cultivars, susceptible to the fungus Fusarium virguliforme, which causes sudden death syndrome (SDS), and to the soybean cyst nematode (SCN) (Heterodera glycines), suffer yield losses valued over a billion dollars annually. Both pathogens may occur in the same production fields. Planting of cultivars genetically resistant to both pathogens is considered one of the most effective means to control the two pathogens. The objective of the study was to map quantitative trait loci (QTL) underlying SDS and SCN resistances. Two recombinant inbred line (RIL) populations were developed by crossing 'A95-684043', a high-yielding maturity group (MG) II line resistant to SCN, with 'LS94-3207' and 'LS98-0582' of MG IV, resistant to both F. virguliforme and SCN. Two hundred F7 derived recombinant inbred lines from each population AX19286 (A95-684043 × LS94-3207) and AX19287 (A95-684043 × LS98-0582) were screened for resistance to each pathogen under greenhouse conditions. Five hundred and eighty and 371 SNP markers were used for mapping resistance QTL in each population. In AX19286, one novel SCN resistance QTL was mapped to chromosome 8. In AX19287, one novel SDS resistance QTL was mapped to chromosome 17 and one novel SCN resistance QTL was mapped to chromosome 11. Previously identified additional SDS and SCN resistance QTL were also detected in the study. Lines possessing superior resistance to both pathogens were also identified and could be used as germplasm sources for breeding SDS- and SCN-resistant soybean cultivars.
Collapse
Affiliation(s)
| | - Nilwala S Abeysekara
- Department of Plant Pathology and Microbiology, Iowa State University, Ames, IA, 50011, USA
- Department of Plant Pathology and Microbiology, University of California, Riverside, CA, 92507, USA
| | - Joshua M Knight
- Department of Agronomy, Iowa State University, Ames, IA, 50011, USA
| | - Min Liu
- Department of Agronomy, Iowa State University, Ames, IA, 50011, USA
- Department of Agronomy, Shenyang Agricultural University, 120 Dongling Ave, Shenyang, 110866, Liaoning, China
| | - Jia Dong
- Department of Crop Sciences, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| | - Matthew E Hudson
- Department of Crop Sciences, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| | | | - Silvia R Cianzio
- Department of Agronomy, Iowa State University, Ames, IA, 50011, USA.
| |
Collapse
|
9
|
Chang HX, Roth MG, Wang D, Cianzio SR, Lightfoot DA, Hartman GL, Chilvers MI. Integration of sudden death syndrome resistance loci in the soybean genome. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2018; 131:757-773. [PMID: 29435603 DOI: 10.1007/s00122-018-3063-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2017] [Accepted: 01/19/2018] [Indexed: 05/12/2023]
Abstract
KEY MESSAGE Complexity and inconsistencies in resistance mapping publications of soybean sudden death syndrome (SDS) result in interpretation difficulty. This review integrates SDS mapping literature and proposes a new nomenclature system for reproducible SDS resistance loci. Soybean resistance to sudden death syndrome (SDS) is composed of foliar resistance to phytotoxins and root resistance to pathogen invasion. There are more than 80 quantitative trait loci (QTL) and dozens of single nucleotide polymorphisms (SNPs) associated with soybean resistance to SDS. The validity of these QTL and SNPs is questionable because of the complexity in phenotyping methodologies, the disease synergism between SDS and soybean cyst nematode (SCN), the variability from the interactions between soybean genotypes and environments, and the inconsistencies in the QTL nomenclature. This review organizes SDS mapping results and proposes the Rfv (resistance to Fusarium virguliforme) nomenclature based on supporting criteria described in the text. Among ten reproducible loci receiving our Rfv nomenclature, Rfv18-01 is mostly supported by field studies and it co-localizes to the SCN resistance locus rhg1. The possibility that Rfv18-01 is a pleiotropic resistance locus and the concern about Rfv18-01 being confounded with Rhg1 is discussed. On the other hand, Rfv06-01, Rfv06-02, Rfv09-01, Rfv13-01, and Rfv16-01 were identified both by screening soybean leaves against phytotoxic culture filtrates and by evaluating SDS severity in fields. Future phenotyping using leaf- and root-specific resistance screening methodologies may improve the precision of SDS resistance, and advanced genetic studies may further clarify the interactions among soybean genotypes, F. virguliforme, SCN, and environments. The review provides a summary of the SDS resistance literature and proposes a framework for communicating SDS resistance loci for future research considering molecular interactions and genetic breeding for soybean SDS resistance.
Collapse
Affiliation(s)
- Hao-Xun Chang
- Department of Plant, Soil and Microbial Sciences, Michigan State University, East Lansing, MI, USA
| | - Mitchell G Roth
- Department of Plant, Soil and Microbial Sciences, Michigan State University, East Lansing, MI, USA
- Genetics Program, Michigan State University, East Lansing, MI, USA
| | - Dechun Wang
- Department of Plant, Soil and Microbial Sciences, Michigan State University, East Lansing, MI, USA
| | | | - David A Lightfoot
- Department of Plant, Soil and Agricultural Systems, Southern Illinois University, Carbondale, IL, USA.
| | - Glen L Hartman
- Department of Crop Sciences, University of Illinois at Urbana-Champaign, Urbana, IL, USA.
- USDA-Agricultural Research Service, Urbana, IL, USA.
| | - Martin I Chilvers
- Department of Plant, Soil and Microbial Sciences, Michigan State University, East Lansing, MI, USA.
- Genetics Program, Michigan State University, East Lansing, MI, USA.
| |
Collapse
|
10
|
Kim KS, Vuong TD, Qiu D, Robbins RT, Grover Shannon J, Li Z, Nguyen HT. Advancements in breeding, genetics, and genomics for resistance to three nematode species in soybean. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2016; 129:2295-2311. [PMID: 27796432 DOI: 10.1007/s00122-016-2816-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2016] [Accepted: 10/18/2016] [Indexed: 05/24/2023]
Abstract
KEY MESSAGE Integration of genetic analysis, molecular biology, and genomic approaches drastically enhanced our understanding of genetic control of nematode resistance and provided effective breeding strategies in soybeans. Three nematode species, including soybean cyst (SCN, Heterodera glycine), root-knot (RKN, Meloidogyne incognita), and reniform (RN, Rotylenchulus reniformis), are the most destructive pests and have spread to soybean growing areas worldwide. Host plant resistance has played an important role in their control. This review focuses on genetic, genomic studies, and breeding efforts over the past two decades to identify and improve host resistance to these three nematode species. Advancements in genetics, genomics, and bioinformatics have improved our understanding of the molecular and genetic mechanisms of nematode resistance and enabled researchers to generate large-scale genomic resources and marker-trait associations. Whole-genome resequencing, genotyping-by-sequencing, genome-wide association studies, and haplotype analyses have been employed to map and dissect genomic locations for nematode resistance. Recently, two major SCN-resistant loci, Rhg1 and Rhg4, were cloned and other novel resistance quantitative trait loci (QTL) have been discovered. Based on these discoveries, gene-specific DNA markers have been developed for both Rhg1 and Rhg4 loci, which were useful for marker-assisted selection. With RKN resistance QTL being mapped, candidate genes responsible for RKN resistance were identified, leading to the development of functional single nucleotide polymorphism markers. So far, three resistances QTL have been genetically mapped for RN resistance. With nematode species overcoming the host plant resistance, continuous efforts in the identification and deployment of new resistance genes are required to support the development of soybean cultivars with multiple and durable resistance to these pests.
Collapse
Affiliation(s)
- Ki-Seung Kim
- Division of Plant Sciences and National Center for Soybean Biotechnology, University of Missouri, Columbia, MO, 65211, USA.
- KSK's Current Address: LG Chem-FarmHannong, Ltd., Daejeon, 34115, Korea.
| | - Tri D Vuong
- Division of Plant Sciences and National Center for Soybean Biotechnology, University of Missouri, Columbia, MO, 65211, USA
| | - Dan Qiu
- Division of Plant Sciences and National Center for Soybean Biotechnology, University of Missouri, Columbia, MO, 65211, USA
| | - Robert T Robbins
- Department of Plant Pathology, University of Arkansas, Fayetteville, AR, 72701, USA
| | - J Grover Shannon
- Division of Plant Sciences, University of Missouri-Fisher Delta Research Center, Portageville, MO, 63873, USA
| | - Zenglu Li
- Center for Applied Genetic Technologies and Department of Crop and Soil Sciences, University of Georgia, Athens, GA, 30602, USA
| | - Henry T Nguyen
- Division of Plant Sciences and National Center for Soybean Biotechnology, University of Missouri, Columbia, MO, 65211, USA.
| |
Collapse
|
11
|
Zhou X, Wang J, Peng C, Zhu X, Yin J, Li W, He M, Wang J, Chern M, Yuan C, Wu W, Ma W, Qin P, Ma B, Wu X, Li S, Ronald P, Chen X. Four receptor-like cytoplasmic kinases regulate development and immunity in rice. PLANT, CELL & ENVIRONMENT 2016; 39:1381-1392. [PMID: 26679011 DOI: 10.1111/pce.12696] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2015] [Revised: 12/03/2015] [Accepted: 12/09/2015] [Indexed: 06/05/2023]
Abstract
Receptor-like cytoplasmic kinases (RLCKs) represent a large family of proteins in plants. However, few RLCKs have been well characterized. Here, we report the functional characterization of four rice RLCKs - OsRLCK57, OsRLCK107, OsRLCK118 and OsRLCK176 from subfamily VII. These OsRLCKs interact with the rice brassinosteroid receptor, OsBRI1 in yeast cell, but not the XA21 immune receptor. Transgenic lines silenced for each of these genes have enlarged leaf angles and are hypersensitive to brassinolide treatment compared to wild type rice. Transgenic plants silenced for OsRLCK57 had significantly fewer tillers and reduced panicle secondary branching, and lines silenced for OsRLCK107 and OsRLCK118 produce fewer seeds. Silencing of these genes decreased Xa21 gene expression and compromised XA21-mediated immunity to Xanthomonas oryzae pv. oryzae. Our study demonstrates that these OsRLCKs negatively regulate BR signalling, while positively regulating immune responses by contributing to the expression of the immune receptor XA21.
Collapse
Affiliation(s)
- Xiaogang Zhou
- State Key Laboratory of Hybrid Rice, Key Laboratory of Major Crop Diseases & Collaborative Innovation Center for Hybrid Rice in Yangtze River Basin, Sichuan Agricultural University at Wenjiang, Chengdu, Sichuan, 611130, China
| | - Jing Wang
- State Key Laboratory of Hybrid Rice, Key Laboratory of Major Crop Diseases & Collaborative Innovation Center for Hybrid Rice in Yangtze River Basin, Sichuan Agricultural University at Wenjiang, Chengdu, Sichuan, 611130, China
| | - Chunfang Peng
- State Key Laboratory of Hybrid Rice, Key Laboratory of Major Crop Diseases & Collaborative Innovation Center for Hybrid Rice in Yangtze River Basin, Sichuan Agricultural University at Wenjiang, Chengdu, Sichuan, 611130, China
| | - Xiaobo Zhu
- State Key Laboratory of Hybrid Rice, Key Laboratory of Major Crop Diseases & Collaborative Innovation Center for Hybrid Rice in Yangtze River Basin, Sichuan Agricultural University at Wenjiang, Chengdu, Sichuan, 611130, China
| | - Junjie Yin
- State Key Laboratory of Hybrid Rice, Key Laboratory of Major Crop Diseases & Collaborative Innovation Center for Hybrid Rice in Yangtze River Basin, Sichuan Agricultural University at Wenjiang, Chengdu, Sichuan, 611130, China
| | - Weitao Li
- State Key Laboratory of Hybrid Rice, Key Laboratory of Major Crop Diseases & Collaborative Innovation Center for Hybrid Rice in Yangtze River Basin, Sichuan Agricultural University at Wenjiang, Chengdu, Sichuan, 611130, China
| | - Min He
- State Key Laboratory of Hybrid Rice, Key Laboratory of Major Crop Diseases & Collaborative Innovation Center for Hybrid Rice in Yangtze River Basin, Sichuan Agricultural University at Wenjiang, Chengdu, Sichuan, 611130, China
| | - Jichun Wang
- State Key Laboratory of Hybrid Rice, Key Laboratory of Major Crop Diseases & Collaborative Innovation Center for Hybrid Rice in Yangtze River Basin, Sichuan Agricultural University at Wenjiang, Chengdu, Sichuan, 611130, China
| | - Mawsheng Chern
- Department of Plant Pathology and the Genome Center, University of California, Davis, CA, 95616, USA
| | - Can Yuan
- State Key Laboratory of Hybrid Rice, Key Laboratory of Major Crop Diseases & Collaborative Innovation Center for Hybrid Rice in Yangtze River Basin, Sichuan Agricultural University at Wenjiang, Chengdu, Sichuan, 611130, China
| | - Wenguan Wu
- State Key Laboratory of Hybrid Rice, Key Laboratory of Major Crop Diseases & Collaborative Innovation Center for Hybrid Rice in Yangtze River Basin, Sichuan Agricultural University at Wenjiang, Chengdu, Sichuan, 611130, China
| | - Weiwei Ma
- State Key Laboratory of Hybrid Rice, Key Laboratory of Major Crop Diseases & Collaborative Innovation Center for Hybrid Rice in Yangtze River Basin, Sichuan Agricultural University at Wenjiang, Chengdu, Sichuan, 611130, China
| | - Peng Qin
- State Key Laboratory of Hybrid Rice, Key Laboratory of Major Crop Diseases & Collaborative Innovation Center for Hybrid Rice in Yangtze River Basin, Sichuan Agricultural University at Wenjiang, Chengdu, Sichuan, 611130, China
| | - Bintian Ma
- State Key Laboratory of Hybrid Rice, Key Laboratory of Major Crop Diseases & Collaborative Innovation Center for Hybrid Rice in Yangtze River Basin, Sichuan Agricultural University at Wenjiang, Chengdu, Sichuan, 611130, China
| | - Xianjun Wu
- State Key Laboratory of Hybrid Rice, Key Laboratory of Major Crop Diseases & Collaborative Innovation Center for Hybrid Rice in Yangtze River Basin, Sichuan Agricultural University at Wenjiang, Chengdu, Sichuan, 611130, China
| | - Shigui Li
- State Key Laboratory of Hybrid Rice, Key Laboratory of Major Crop Diseases & Collaborative Innovation Center for Hybrid Rice in Yangtze River Basin, Sichuan Agricultural University at Wenjiang, Chengdu, Sichuan, 611130, China
| | - Pamela Ronald
- Department of Plant Pathology and the Genome Center, University of California, Davis, CA, 95616, USA
| | - Xuewei Chen
- State Key Laboratory of Hybrid Rice, Key Laboratory of Major Crop Diseases & Collaborative Innovation Center for Hybrid Rice in Yangtze River Basin, Sichuan Agricultural University at Wenjiang, Chengdu, Sichuan, 611130, China
| |
Collapse
|
12
|
Han Y, Zhao X, Cao G, Wang Y, Li Y, Liu D, Teng W, Zhang Z, Li D, Qiu L, Zheng H, Li W. Genetic characteristics of soybean resistance to HG type 0 and HG type 1.2.3.5.7 of the cyst nematode analyzed by genome-wide association mapping. BMC Genomics 2015; 16:598. [PMID: 26268218 PMCID: PMC4542112 DOI: 10.1186/s12864-015-1800-1] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2015] [Accepted: 07/27/2015] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND Soybean cyst nematode (SCN, Heterodera glycines Ichinohe) is one of the most fatal pests of soybean (Glycine max (L.) Merr.) worldwide and causes huge loss of soybean yield each year. Multiple sources of resistance are urgently needed for effective management of SCN via the development of resistant cultivars. The aim of the present study was to investigate the genetic architecture of resistance to SCN HG Type 0 (race 3) and HG Type 1.2.3.5.7 (race 4) in landraces and released elite soybean cultivars mostly from China. RESULTS A total of 440 diverse soybean landraces and elite cultivars were screened for resistance to SCN HG Type 0 and HG Type 1.2.3.5.7. Exactly 131 new sources of SCN resistance were identified. Lines were genotyped by SNP markers detected by the Specific Locus Amplified Fragment Sequencing (SLAF-seq) approach. A total of 36,976 SNPs were identified with minor allele frequencies (MAF) > 4% that were present in 97% of all the genotypes. Genome-wide association mapping showed that a total of 19 association signals were significantly related to the resistance for the two HG Types. Of the 19 association signals, eight signals overlapped with reported QTL including Rhg1 and Rhg4 genes. Another eight were located in the linked regions encompassing known QTL. Three QTL were found that were not previously reported. The average value of female index (FI) of soybean accessions with resistant alleles was significantly lower than those with susceptible alleles for each peak SNP. Disease resistance proteins with leucine rich regions, cytochrome P450s, protein kinases, zinc finger domain proteins, RING domain proteins, MYB and WRKY transcription activation families were identified. Such proteins may participate in the resistant reaction to SCN and were frequently found in the tightly linked genomic regions of the peak SNPs. CONCLUSIONS GWAS extended understanding of the genetic architecture of SCN resistance in multiple genetic backgrounds. Nineteen association signals were obtained for the resistance to the two Hg Types of SCN. The multiple beneficial alleles from resistant germplasm sources will be useful for the breeding of cultivars with improved resistance to SCN. Analysis of genes near association signals may facilitate the recognition of the causal gene(s) underlying SCN resistances.
Collapse
Affiliation(s)
- Yingpeng Han
- Key Laboratory of Soybean Biology in Chinese Ministry of Education (key Laboratory of Soybean Biology and Breeding/Genetics of Chinese Agriculture Ministry), Northeast Agricultural University, Harbin, 150030, China.
| | - Xue Zhao
- Key Laboratory of Soybean Biology in Chinese Ministry of Education (key Laboratory of Soybean Biology and Breeding/Genetics of Chinese Agriculture Ministry), Northeast Agricultural University, Harbin, 150030, China.
| | - Guanglu Cao
- Key Laboratory of Soybean Biology in Chinese Ministry of Education (key Laboratory of Soybean Biology and Breeding/Genetics of Chinese Agriculture Ministry), Northeast Agricultural University, Harbin, 150030, China.
| | - Yan Wang
- Key Laboratory of Soybean Biology in Chinese Ministry of Education (key Laboratory of Soybean Biology and Breeding/Genetics of Chinese Agriculture Ministry), Northeast Agricultural University, Harbin, 150030, China.
| | - Yinghui Li
- Institute of Crop Science, National Key Facility for Crop Gene Resources and Genetic Improvement (NFCRI) Chinese Academy of Agricultural Sciences, 100081, Beijing, China.
| | - Dongyuan Liu
- Bioinformatics Division, Biomarker Technologies Corporation, 101300, Beijing, China.
| | - Weili Teng
- Key Laboratory of Soybean Biology in Chinese Ministry of Education (key Laboratory of Soybean Biology and Breeding/Genetics of Chinese Agriculture Ministry), Northeast Agricultural University, Harbin, 150030, China.
| | - Zhiwu Zhang
- Key Laboratory of Soybean Biology in Chinese Ministry of Education (key Laboratory of Soybean Biology and Breeding/Genetics of Chinese Agriculture Ministry), Northeast Agricultural University, Harbin, 150030, China.
| | - Dongmei Li
- Key Laboratory of Soybean Biology in Chinese Ministry of Education (key Laboratory of Soybean Biology and Breeding/Genetics of Chinese Agriculture Ministry), Northeast Agricultural University, Harbin, 150030, China.
| | - Lijuan Qiu
- Institute of Crop Science, National Key Facility for Crop Gene Resources and Genetic Improvement (NFCRI) Chinese Academy of Agricultural Sciences, 100081, Beijing, China.
| | - Hongkun Zheng
- Bioinformatics Division, Biomarker Technologies Corporation, 101300, Beijing, China.
| | - Wenbin Li
- Key Laboratory of Soybean Biology in Chinese Ministry of Education (key Laboratory of Soybean Biology and Breeding/Genetics of Chinese Agriculture Ministry), Northeast Agricultural University, Harbin, 150030, China.
| |
Collapse
|
13
|
Shi Z, Liu S, Noe J, Arelli P, Meksem K, Li Z. SNP identification and marker assay development for high-throughput selection of soybean cyst nematode resistance. BMC Genomics 2015; 16:314. [PMID: 25903750 PMCID: PMC4407462 DOI: 10.1186/s12864-015-1531-3] [Citation(s) in RCA: 72] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2014] [Accepted: 04/13/2015] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Soybean cyst nematode (SCN) is the most economically devastating pathogen of soybean. Two resistance loci, Rhg1 and Rhg4 primarily contribute resistance to SCN race 3 in soybean. Peking and PI 88788 are the two major sources of SCN resistance with Peking requiring both Rhg1 and Rhg4 alleles and PI 88788 only the Rhg1 allele. Although simple sequence repeat (SSR) markers have been reported for both loci, they are linked markers and limited to be applied in breeding programs due to accuracy, throughput and cost of detection methods. The objectives of this study were to develop robust functional marker assays for high-throughput selection of SCN resistance and to differentiate the sources of resistance. RESULTS Based on the genomic DNA sequences of 27 soybean lines with known SCN phenotypes, we have developed Kompetitive Allele Specific PCR (KASP) assays for two Single nucleotide polymorphisms (SNPs) from Glyma08g11490 for the selection of the Rhg4 resistance allele. Moreover, the genomic DNA of Glyma18g02590 at the Rhg1 locus from 11 soybean lines and cDNA of Forrest, Essex, Williams 82 and PI 88788 were fully sequenced. Pairwise sequence alignment revealed seven SNPs/insertion/deletions (InDels), five in the 6th exon and two in the last exon. Using the same 27 soybean lines, we identified one SNP that can be used to select the Rhg1 resistance allele and another SNP that can be employed to differentiate Peking and PI 88788-type resistance. These SNP markers have been validated and a strong correlation was observed between the SNP genotypes and reactions to SCN race 3 using a panel of 153 soybean lines, as well as a bi-parental population, F5-derived recombinant inbred lines (RILs) from G00-3213xLG04-6000. CONCLUSIONS Three functional SNP markers (two for Rhg1 locus and one for Rhg4 locus) were identified that could provide genotype information for the selection of SCN resistance and differentiate Peking from PI 88788 source for most germplasm lines. The robust KASP SNP marker assays were developed. In most contexts, use of one or two of these markers is sufficient for high-throughput marker-assisted selection of plants that will exhibit SCN resistance.
Collapse
Affiliation(s)
- Zi Shi
- Center for Applied Genetic Technologies & Dep. of Crop and Soil Sciences, University of Georgia, Athens, GA, 30602, USA.
| | - Shiming Liu
- Department of Plant, Soil and Agriculture Systems, Southern Illinois University, Carbondale, IL, 62901, USA.
| | - James Noe
- Department of Plant Pathology, University of Georgia, Athens, GA, 30602, USA.
| | | | - Khalid Meksem
- Department of Plant, Soil and Agriculture Systems, Southern Illinois University, Carbondale, IL, 62901, USA.
| | - Zenglu Li
- Center for Applied Genetic Technologies & Dep. of Crop and Soil Sciences, University of Georgia, Athens, GA, 30602, USA.
| |
Collapse
|
14
|
Lightfoot DA, Iqbal MJ. Molecular mapping and breeding with microsatellite markers. Methods Mol Biol 2013; 1006:297-317. [PMID: 23546799 DOI: 10.1007/978-1-62703-389-3_20] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
In genetics databases for crop plant species across the world, there are thousands of mapped loci that underlie quantitative traits, oligogenic traits, and simple traits recognized by association mapping in populations. The number of loci will increase as new phenotypes are measured in more diverse genotypes and genetic maps based on saturating numbers of markers are developed. A period of locus reevaluation will decrease the number of important loci as those underlying mega-environmental effects are recognized. A second wave of reevaluation of loci will follow from developmental series analysis, especially for harvest traits like seed yield and composition. Breeding methods to properly use the accurate maps of QTL are being developed. New methods to map, fine map, and isolate the genes underlying the loci will be critical to future advances in crop biotechnology. Microsatellite markers are the most useful tool for breeders. They are codominant, abundant in all genomes, highly polymorphic so useful in many populations, and both economical and technically easy to use. The selective genotyping approaches, including genotype ranking (indexing) based on partial phenotype data combined with favorable allele data and bulked segregation event (segregant) analysis (BSA), will be increasingly important uses for microsatellites. Examples of the methods for developing and using microsatellites derived from genomic sequences are presented for monogenic, oligogenic, and polygenic traits. Examples of successful mapping, fine mapping, and gene isolation are given. When combined with high-throughput methods for genotyping and a genome sequence, the use of association mapping with microsatellite markers will provide critical advances in the analysis of crop traits.
Collapse
Affiliation(s)
- David A Lightfoot
- Department of Plant, Soil and General Agriculture, Center of Excellence in Soybean Research, Teaching and Outreach, Southern Illinois University at Carbondale, Carbondale, IL, USA
| | | |
Collapse
|
15
|
Srour A, Afzal AJ, Blahut-Beatty L, Hemmati N, Simmonds DH, Li W, Liu M, Town CD, Sharma H, Arelli P, Lightfoot DA. The receptor like kinase at Rhg1-a/Rfs2 caused pleiotropic resistance to sudden death syndrome and soybean cyst nematode as a transgene by altering signaling responses. BMC Genomics 2012; 13:368. [PMID: 22857610 PMCID: PMC3439264 DOI: 10.1186/1471-2164-13-368] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2011] [Accepted: 06/12/2012] [Indexed: 12/27/2022] Open
Abstract
BACKGROUND Soybean (Glycine max (L. Merr.)) resistance to any population of Heterodera glycines (I.), or Fusarium virguliforme (Akoi, O'Donnell, Homma & Lattanzi) required a functional allele at Rhg1/Rfs2. H. glycines, the soybean cyst nematode (SCN) was an ancient, endemic, pest of soybean whereas F. virguliforme causal agent of sudden death syndrome (SDS), was a recent, regional, pest. This study examined the role of a receptor like kinase (RLK) GmRLK18-1 (gene model Glyma_18_02680 at 1,071 kbp on chromosome 18 of the genome sequence) within the Rhg1/Rfs2 locus in causing resistance to SCN and SDS. RESULTS A BAC (B73p06) encompassing the Rhg1/Rfs2 locus was sequenced from a resistant cultivar and compared to the sequences of two susceptible cultivars from which 800 SNPs were found. Sequence alignments inferred that the resistance allele was an introgressed region of about 59 kbp at the center of which the GmRLK18-1 was the most polymorphic gene and encoded protein. Analyses were made of plants that were either heterozygous at, or transgenic (and so hemizygous at a new location) with, the resistance allele of GmRLK18-1. Those plants infested with either H. glycines or F. virguliforme showed that the allele for resistance was dominant. In the absence of Rhg4 the GmRLK18-1 was sufficient to confer nearly complete resistance to both root and leaf symptoms of SDS caused by F. virguliforme and provided partial resistance to three different populations of nematodes (mature female cysts were reduced by 30-50%). In the presence of Rhg4 the plants with the transgene were nearly classed as fully resistant to SCN (females reduced to 11% of the susceptible control) as well as SDS. A reduction in the rate of early seedling root development was also shown to be caused by the resistance allele of the GmRLK18-1. Field trials of transgenic plants showed an increase in foliar susceptibility to insect herbivory. CONCLUSIONS The inference that soybean has adapted part of an existing pathogen recognition and defense cascade (H.glycines; SCN and insect herbivory) to a new pathogen (F. virguliforme; SDS) has broad implications for crop improvement. Stable resistance to many pathogens might be achieved by manipulation the genes encoding a small number of pathogen recognition proteins.
Collapse
Affiliation(s)
- Ali Srour
- Department of Molecular Biology, Microbiology and Biochemistry, Southern Illinois University at Carbondale, Carbondale, IL 62901, USA
- Department of Plant Soil and Agricultural Systems, Southern Illinois University at Carbondale, Carbondale, IL 62901-4415, USA
| | - Ahmed J Afzal
- Department of Molecular Biology, Microbiology and Biochemistry, Southern Illinois University at Carbondale, Carbondale, IL 62901, USA
- Department of Plant Soil and Agricultural Systems, Southern Illinois University at Carbondale, Carbondale, IL 62901-4415, USA
- Department of Horticulture and Crop Science, Ohio State University, 2021 Coffey Rd, Columbus, OH 43210, USA
| | - Laureen Blahut-Beatty
- Agriculture and Agri-Food Canada, Building 21, 960 Carling Ave, Ottawa, ON K1A 0C6, USA
| | - Naghmeh Hemmati
- Department of Molecular Biology, Microbiology and Biochemistry, Southern Illinois University at Carbondale, Carbondale, IL 62901, USA
| | - Daina H Simmonds
- Agriculture and Agri-Food Canada, Building 21, 960 Carling Ave, Ottawa, ON K1A 0C6, USA
| | - Wenbin Li
- Key Laboratory of Soybean Biology in the Chinese Ministry of Education, Harbin University, Harbin, China
| | - Miao Liu
- Key Laboratory of Soybean Biology in the Chinese Ministry of Education, Harbin University, Harbin, China
| | | | - Hemlata Sharma
- Department of Molecular Biology, Microbiology and Biochemistry, Southern Illinois University at Carbondale, Carbondale, IL 62901, USA
- Department of Plant Breeding & Genetics, Rajasthan College of Agriculture, MPUAT, Udaipur, India
| | | | - David A Lightfoot
- Department of Molecular Biology, Microbiology and Biochemistry, Southern Illinois University at Carbondale, Carbondale, IL 62901, USA
- Department of Plant Soil and Agricultural Systems, Southern Illinois University at Carbondale, Carbondale, IL 62901-4415, USA
- Key Laboratory of Soybean Biology in the Chinese Ministry of Education, Harbin University, Harbin, China
- Genomics Core Facility; Center for Excellence the Illinois Soybean Center, Southern Illinois University at Carbondale, Carbondale, IL 62901-4415, USA
| |
Collapse
|
16
|
Mazarei M, Liu W, Al-Ahmad H, Arelli PR, Pantalone VR, Stewart CN. Gene expression profiling of resistant and susceptible soybean lines infected with soybean cyst nematode. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2011; 123:1193-206. [PMID: 21800143 DOI: 10.1007/s00122-011-1659-8] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2011] [Accepted: 07/07/2011] [Indexed: 05/07/2023]
Abstract
Soybean cyst nematode (SCN) is the most devastating pathogen of soybean. Information about the molecular basis of soybean-SCN interactions is needed to assist future development of effective management tools against this pathogen. Toward this end, soybean transcript abundance was measured using the Affymetrix Soybean Genome Array in a susceptible and a resistant reaction of soybean to SCN infection. Two genetically related soybean sister lines TN02-226 and TN02-275, which are resistant and susceptible, respectively, to the SCN race 2 infection were utilized in these experiments. Pairwise comparisons followed by false discovery rate analysis indicated that the expression levels of 162 transcripts changed significantly in the resistant line, of which 84 increased while 78 decreased. However, in the susceptible line, 1,694 transcripts changed significantly, of which 674 increased while 1,020 decreased. Comparative analyses of these transcripts indicated that a total of 51 transcripts were in common between resistance and susceptible responses. In this set, 42 transcripts increased in the resistant line, but decreased in the susceptible line. Quantitative real-time reverse-transcription polymerase chain reaction confirmed the results of microarray analysis. Of the transcripts to which a function could be assigned, genes were associated with metabolism, cell wall modification, signal transduction, transcription, and defense. Microarray analyses examining two genetically related soybean lines against the same SCN population provided additional insights into the specific changes in gene expression of a susceptible and a resistant reaction beneficial for identification of genes involved in defense.
Collapse
Affiliation(s)
- Mitra Mazarei
- Department of Plant Sciences, The University of Tennessee, 252 Ellington Plant Sciences, 2431 Joe Johnson Dr., Knoxville, TN 37996, USA.
| | | | | | | | | | | |
Collapse
|
17
|
Xu SS, Chu CG, Harris MO, Williams CE. Comparative analysis of genetic background in eight near-isogenic wheat lines with different H genes conferring resistance to Hessian fly. Genome 2011; 54:81-9. [DOI: 10.1139/g10-095] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Near-isogenic lines (NILs) are useful for plant genetic and genomic studies. However, the strength of conclusions from such studies depends on the similarity of the NILs’ genetic backgrounds. In this study, we investigated the genetic similarity for a set of NILs developed in the 1990s to study gene-for-gene interactions between wheat ( Triticum aestivum L.) and the Hessian fly ( Mayetiola destructor (Say)), an important pest of wheat. Each of the eight NILs carries a single H resistance gene and was created by successive backcrossing for two to six generations to susceptible T. aestivum ‘Newton’. We generated 256 target region amplification polymorphism (TRAP) markers and used them to calculate genetic similarity, expressed by the Nei and Li (NL) coefficient. Six of the NILs (H3, H5, H6, H9, H11, and H13) had the highly uniform genetic background of Newton, with NL coefficients from 0.97 to 0.99. However, genotypes with H10 or H12 were less similar to Newton, with NL coefficients of 0.86 and 0.93, respectively. Cluster analysis based on NL coefficients and pedigree analysis showed that the genetic similarity between each of the NILs and Newton was affected by both the number of backcrosses and the genetic similarity between Newton and the H gene donors. We thus generated an equation to predict the number of required backcrosses, given varying similarity of donor and recurrent parent. We also investigated whether the genetic residues of the donor parents that remained in the NILs were related to linkage drag. By using a complete set of ‘Chinese Spring’ nullisomic-tetrasomic lines, one third of the TRAP markers that showed polymorphism between the NILs and Newton were assigned to a specific chromosome. All of the assigned markers were located on chromosomes other than the chromosome carrying the H gene, suggesting that the genetic residues detected in this study were not due to linkage drag. Results will aid in the development and use of near-isogenic lines for studies of the functional genomics of wheat.
Collapse
Affiliation(s)
- S. S. Xu
- United States Department of Agriculture, Agricultural Research Service, Northern Crop Science Laboratory, Fargo, ND 58102, USA
- Department of Plant Sciences, North Dakota State University, Fargo, ND 58108, USA
- Department of Entomology, North Dakota State University, Fargo, ND 58108, USA
- United States Department of Agriculture, Agricultural Research Service, Crop Production and Pest Control Research Unit, West Lafayette, IN 47907, USA
| | - C. G. Chu
- United States Department of Agriculture, Agricultural Research Service, Northern Crop Science Laboratory, Fargo, ND 58102, USA
- Department of Plant Sciences, North Dakota State University, Fargo, ND 58108, USA
- Department of Entomology, North Dakota State University, Fargo, ND 58108, USA
- United States Department of Agriculture, Agricultural Research Service, Crop Production and Pest Control Research Unit, West Lafayette, IN 47907, USA
| | - M. O. Harris
- United States Department of Agriculture, Agricultural Research Service, Northern Crop Science Laboratory, Fargo, ND 58102, USA
- Department of Plant Sciences, North Dakota State University, Fargo, ND 58108, USA
- Department of Entomology, North Dakota State University, Fargo, ND 58108, USA
- United States Department of Agriculture, Agricultural Research Service, Crop Production and Pest Control Research Unit, West Lafayette, IN 47907, USA
| | - C. E. Williams
- United States Department of Agriculture, Agricultural Research Service, Northern Crop Science Laboratory, Fargo, ND 58102, USA
- Department of Plant Sciences, North Dakota State University, Fargo, ND 58108, USA
- Department of Entomology, North Dakota State University, Fargo, ND 58108, USA
- United States Department of Agriculture, Agricultural Research Service, Crop Production and Pest Control Research Unit, West Lafayette, IN 47907, USA
| |
Collapse
|
18
|
Tran LSP, Mochida K. Functional genomics of soybean for improvement of productivity in adverse conditions. Funct Integr Genomics 2010; 10:447-62. [PMID: 20582712 DOI: 10.1007/s10142-010-0178-z] [Citation(s) in RCA: 70] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2009] [Revised: 06/01/2010] [Accepted: 06/16/2010] [Indexed: 01/07/2023]
Abstract
Global soybean production is frequently impacted by various stresses, including both abiotic and biotic stresses. To develop soybean plants with enhanced tolerance to different stressors, functional genomics of soybean and a comprehensive understanding of available biotechnological resources and approaches are essential. In this review, we will discuss recent advances in soybean functional genomics which provide unprecedented opportunities to understand global patterns of gene expression, gene regulatory networks, various physiological, biochemical, and metabolic pathways as well as their association with the development of specific phenotypes. Soybean functional genomics, therefore, will ultimately enable us to develop new soybean varieties with improved productivity under adverse conditions by genetic engineering.
Collapse
|
19
|
Yesudas CR, Sharma H, Lightfoot DA. Identification of QTL in soybean underlying resistance to herbivory by Japanese beetles (Popillia japonica, Newman). TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2010; 121:353-62. [PMID: 20458460 DOI: 10.1007/s00122-010-1314-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2009] [Accepted: 03/02/2010] [Indexed: 05/16/2023]
Abstract
Soybean [Glycine max (L.) Merr.] was one of the most important legume crops in the world in 2010. Japanese beetles (JB; Popillia japonica, Newman) in the US were an introduced and potentially damaging insect pest for soybean. JBs are likely to spread across the US if global warming occurs. Resistance to JB in soybean was previously reported only in plant introductions. The aims here were to identify loci underlying resistance to JB herbivory in recombinant inbred lines (RILs) derived from the cross of Essex x Forrest cultivars (EF94) and to correlate those with loci with factors that confer insect resistance in soybean cultivars. The RIL population was used to map 413 markers, 238 satellite markers and 177 other DNA markers. Field data were from two environments over 2 years. Pest severity (PS) measured defoliation on a 0-9 scale. Pest incidence (PI) was the percentage of plants within each RIL with beetles on them. Antibiosis and antixenosis data were from feeding assays with detached leaves in petri plates. Five QTL were detected for the mean PS field trait (16% < R (2) < 27%). The loci were within the intervals Satt632-A2D8 on linkage group (LG) A2 (chromosome 8); Satt583-Satt415 on LG B1 (11); Satt009-Satt530 on LG N (3); and close to two markers OB02_140 (LG E; 20 cM from Satt572) and OZ15_150 LG (19 cM from Satt291 C2). Two QTL were detected for the mean PI field trait (16% < R (2) < 18%) close to Satt385 on LG A1 and Satt440 on LG I. The no choice feeding studies detected three QTL that were significant; two for antixenosis (22% < R (2) < 24%) between Satt632-A2D8 on LG A2 (8) and Sat_039-Satt160 on LG F (13); and a major locus effect (R (2) = 54%) for antibiosis on LG D2 (17) between Satt464-Satt488. Therefore, loci underlying resistance to JB herbivory were a mixture of major and minor gene effects. Some loci were within regions underlying resistance to soybean cyst nematode (LGs A2 and I) and root knot nematode (LG F) but not other major loci underlying resistance to nematode or insect pests (LGs G, H and M).
Collapse
Affiliation(s)
- C R Yesudas
- Plant Biotechnology and Genomics Core-Facility, Department of Plant, Soil, and Agricultural Systems, Southern Illinois University, Carbondale, IL 62901, USA
| | | | | |
Collapse
|