1
|
Honfi AI, Reutemann AV, Schneider JS, Escobar LM, Martínez EJ, Daviña JR. Chromosome Morphology and Heterochromatin Patterns in Paspalum notatum: Insights into Polyploid Genome Structure. Genes (Basel) 2025; 16:242. [PMID: 40149394 PMCID: PMC11942103 DOI: 10.3390/genes16030242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2025] [Revised: 02/14/2025] [Accepted: 02/18/2025] [Indexed: 03/29/2025] Open
Abstract
BACKGROUND/OBJECTIVES Paspalum notatum is a key multipurpose species native to American grasslands. This study provides, for the first time, a detailed karyotype analysis of diploid (2n = 2x = 20) and tetraploid (2n = 4x = 40) accessions of P. notatum, the most common cytotypes within the species. METHODS The constitutive heterochromatin patterns revealed using CMA-DA-DAPI staining and genome size estimations are novel contributions to the understanding of the N genome in Paspalum. RESULTS Chromosomes were small (1.1-2.3 µm), with the diploid karyotype comprising nine metacentric pairs (one bearing microsatellites on the short arms, pair 6) and one submetacentric pair. In tetraploids, the diploid karyotype was duplicated. Heterochromatin analysis revealed two CMA++/DAPI- bands located on the short arm and satellite of chromosome 6 in diploids, while tetraploids exhibited two to three CMA++/DAPI- and one to two CMA++/DAPI0 bands. The proportion of GC-rich heterochromatin represented 2.8 and 3.47% of the total chromosome length in diploid and tetraploid cytotypes, respectively. Genome size analysis revealed a reduction in monoploid genome size in tetraploids (1Cx = 0.678 pg) compared to diploids (1Cx = 0.71 pg), consistent with the autopolyploid origin hypothesis. CONCLUSIONS These findings provide essential cytogenetic insights and suggest only minor structural changes in the N genome following polyploidization, which could guide future studies integrating genomic and cytogenetic maps of P. notatum.
Collapse
Affiliation(s)
- Ana I. Honfi
- Programa de Estudios Florísticos y Genética Vegetal, Instituto de Biología Subtropical (CONICET-UNaM), Facultad de Ciencias Exactas, Químicas y Naturales, Universidad Nacional de Misiones (FCEQyN-UNaM), Misiones 3300, Argentina; (J.S.S.); (L.M.E.); (J.R.D.)
| | - A. Verena Reutemann
- Laboratorio de Genética y Mejoramiento de Especies Forrajeras, Instituto de Botánica del Nordeste (CONICET-UNNE), Facultad de Ciencias Agrarias, Universidad Nacional del Nordeste (FCA-UNNE), Corrientes 3400, Argentina; (A.V.R.); (E.J.M.)
| | - Juan S. Schneider
- Programa de Estudios Florísticos y Genética Vegetal, Instituto de Biología Subtropical (CONICET-UNaM), Facultad de Ciencias Exactas, Químicas y Naturales, Universidad Nacional de Misiones (FCEQyN-UNaM), Misiones 3300, Argentina; (J.S.S.); (L.M.E.); (J.R.D.)
| | - Lucas M. Escobar
- Programa de Estudios Florísticos y Genética Vegetal, Instituto de Biología Subtropical (CONICET-UNaM), Facultad de Ciencias Exactas, Químicas y Naturales, Universidad Nacional de Misiones (FCEQyN-UNaM), Misiones 3300, Argentina; (J.S.S.); (L.M.E.); (J.R.D.)
| | - Eric J. Martínez
- Laboratorio de Genética y Mejoramiento de Especies Forrajeras, Instituto de Botánica del Nordeste (CONICET-UNNE), Facultad de Ciencias Agrarias, Universidad Nacional del Nordeste (FCA-UNNE), Corrientes 3400, Argentina; (A.V.R.); (E.J.M.)
| | - Julio R. Daviña
- Programa de Estudios Florísticos y Genética Vegetal, Instituto de Biología Subtropical (CONICET-UNaM), Facultad de Ciencias Exactas, Químicas y Naturales, Universidad Nacional de Misiones (FCEQyN-UNaM), Misiones 3300, Argentina; (J.S.S.); (L.M.E.); (J.R.D.)
| |
Collapse
|
2
|
May D, Sanchez S, Gilby J, Altpeter F. Multi-allelic gene editing in an apomictic, tetraploid turf and forage grass ( Paspalum notatum Flüggé) using CRISPR/Cas9. FRONTIERS IN PLANT SCIENCE 2023; 14:1225775. [PMID: 37521929 PMCID: PMC10373592 DOI: 10.3389/fpls.2023.1225775] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Accepted: 06/23/2023] [Indexed: 08/01/2023]
Abstract
Polyploidy is common among grasses (Poaceae) and poses challenges for conventional breeding. Genome editing technology circumvents crossing and selfing, enabling targeted modifications to multiple gene copies in a single generation while maintaining the heterozygous context of many polyploid genomes. Bahiagrass (Paspalum notatum Flüggé; 2n=4x=40) is an apomictic, tetraploid C4 species that is widely grown in the southeastern United States as forage in beef cattle production and utility turf. The chlorophyll biosynthesis gene magnesium chelatase (MgCh) was selected as a rapid readout target for establishing genome editing in tetraploid bahiagrass. Vectors containing sgRNAs, Cas9 and nptII were delivered to callus cultures by biolistics. Edited plants were characterized through PCR-based assays and DNA sequencing, and mutagenesis frequencies as high as 99% of Illumina reads were observed. Sequencing of wild type (WT) bahiagrass revealed a high level of sequence variation in MgCh likely due to the presence of at least two copies with possibly eight different alleles, including pseudogenes. MgCh mutants exhibited visible chlorophyll depletion with up to 82% reductions in leaf greenness. Two lines displayed progression of editing over time which was linked to somatic editing. Apomictic progeny of a chimeric MgCh editing event were obtained and allowed identification of uniformly edited progeny plants among a range of chlorophyll depletion phenotypes. Sanger sequencing of a highly edited mutant revealed elevated frequency of a WT allele, probably due to frequent homology-directed repair (HDR). To our knowledge these experiments comprise the first report of genome editing applied in perennial, warm-season turf or forage grasses. This technology will accelerate bahiagrass cultivar development.
Collapse
Affiliation(s)
- David May
- Agronomy Department, Institute of Food and Agricultural Sciences, University of Florida, Gainesville, FL, United States
| | - Sara Sanchez
- Agronomy Department, Institute of Food and Agricultural Sciences, University of Florida, Gainesville, FL, United States
| | - Jennifer Gilby
- Agronomy Department, Institute of Food and Agricultural Sciences, University of Florida, Gainesville, FL, United States
| | - Fredy Altpeter
- Agronomy Department, Institute of Food and Agricultural Sciences, University of Florida, Gainesville, FL, United States
- Genetics Institute, University of Florida, Gainesville, FL, United States
- Plant Cellular and Molecular Biology Program, Institute of Food and Agricultural Sciences, University of Florida, Gainesville, FL, United States
| |
Collapse
|
3
|
Stockdale JN, Millwood RJ. Transgene Bioconfinement: Don't Flow There. PLANTS (BASEL, SWITZERLAND) 2023; 12:1099. [PMID: 36903958 PMCID: PMC10005267 DOI: 10.3390/plants12051099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 02/23/2023] [Accepted: 02/24/2023] [Indexed: 06/18/2023]
Abstract
The adoption of genetically engineered (GE) crops has led to economic and environmental benefits. However, there are regulatory and environmental concerns regarding the potential movement of transgenes beyond cultivation. These concerns are greater for GE crops with high outcrossing frequencies to sexually compatible wild relatives and those grown in their native region. Newer GE crops may also confer traits that enhance fitness, and introgression of these traits could negatively impact natural populations. Transgene flow could be lessened or prevented altogether through the addition of a bioconfinement system during transgenic plant production. Several bioconfinement approaches have been designed and tested and a few show promise for transgene flow prevention. However, no system has been widely adopted despite nearly three decades of GE crop cultivation. Nonetheless, it may be necessary to implement a bioconfinement system in new GE crops or in those where the potential of transgene flow is high. Here, we survey such systems that focus on male and seed sterility, transgene excision, delayed flowering, as well as the potential of CRISPR/Cas9 to reduce or eliminate transgene flow. We discuss system utility and efficacy, as well as necessary features for commercial adoption.
Collapse
|
4
|
Bellido AM, Souza Canadá ED, Permingeat HR, Echenique V. Genetic Transformation of Apomictic Grasses: Progress and Constraints. FRONTIERS IN PLANT SCIENCE 2021; 12:768393. [PMID: 34804102 PMCID: PMC8602796 DOI: 10.3389/fpls.2021.768393] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Accepted: 10/05/2021] [Indexed: 05/17/2023]
Abstract
The available methods for plant transformation and expansion beyond its limits remain especially critical for crop improvement. For grass species, this is even more critical, mainly due to drawbacks in in vitro regeneration. Despite the existence of many protocols in grasses to achieve genetic transformation through Agrobacterium or biolistic gene delivery, their efficiencies are genotype-dependent and still very low due to the recalcitrance of these species to in vitro regeneration. Many plant transformation facilities for cereals and other important crops may be found around the world in universities and enterprises, but this is not the case for apomictic species, many of which are C4 grasses. Moreover, apomixis (asexual reproduction by seeds) represents an additional constraint for breeding. However, the transformation of an apomictic clone is an attractive strategy, as the transgene is immediately fixed in a highly adapted genetic background, capable of large-scale clonal propagation. With the exception of some species like Brachiaria brizantha which is planted in approximately 100 M ha in Brazil, apomixis is almost non-present in economically important crops. However, as it is sometimes present in their wild relatives, the main goal is to transfer this trait to crops to fix heterosis. Until now this has been a difficult task, mainly because many aspects of apomixis are unknown. Over the last few years, many candidate genes have been identified and attempts have been made to characterize them functionally in Arabidopsis and rice. However, functional analysis in true apomictic species lags far behind, mainly due to the complexity of its genomes, of the trait itself, and the lack of efficient genetic transformation protocols. In this study, we review the current status of the in vitro culture and genetic transformation methods focusing on apomictic grasses, and the prospects for the application of new tools assayed in other related species, with two aims: to pave the way for discovering the molecular pathways involved in apomixis and to develop new capacities for breeding purposes because many of these grasses are important forage or biofuel resources.
Collapse
Affiliation(s)
- Andrés M. Bellido
- Departamento de Agronomía, Centro de Recursos Naturales Renovables de la Zona Semiárida (CERZOS – CCT – CONICET Bahía Blanca), Universidad Nacional del Sur (UNS), Bahía Blanca, Argentina
| | | | | | - Viviana Echenique
- Departamento de Agronomía, Centro de Recursos Naturales Renovables de la Zona Semiárida (CERZOS – CCT – CONICET Bahía Blanca), Universidad Nacional del Sur (UNS), Bahía Blanca, Argentina
| |
Collapse
|
5
|
Acuña CA, Martínez EJ, Zilli AL, Brugnoli EA, Espinoza F, Marcón F, Urbani MH, Quarin CL. Reproductive Systems in Paspalum: Relevance for Germplasm Collection and Conservation, Breeding Techniques, and Adoption of Released Cultivars. FRONTIERS IN PLANT SCIENCE 2019; 10:1377. [PMID: 31824520 PMCID: PMC6881461 DOI: 10.3389/fpls.2019.01377] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/02/2019] [Accepted: 10/07/2019] [Indexed: 06/10/2023]
Abstract
The objective of this review is to analyze and describe the impact that mode of reproduction in Paspalum has on germplasm conservation, genetic improvement, and commercialization of cultivars. Germplasm collection and conservation can now be rethought considering the newly available information related to how diversity is allocated in nature and how it can be transferred between the sexual and apomictic germplasm using novel breeding approaches. An inventory of species and accessions conserved around the world is analyzed in relation to the main germplasm banks. Because of the importance of apomixis in Paspalum species different breeding approaches have been used and tested. Knowledge related to the inheritance of apomixis, variable expressivity of the trait and techniques for early identification of apomicts has helped to improve the efficiency of the breeding methods. Novel breeding techniques are also being developed and are described regarding its advantages and limitations. Finally, the impact of reproductive mode on the adoption of the released cultivars is discussed.
Collapse
Affiliation(s)
- Carlos A. Acuña
- Instituto de Botánica del Nordeste, Consejo Nacional de Investigaciones Científicas y Técnicas, Facultad de Ciencias Agrarias, Universidad Nacional del Nordeste, Corrientes, Argentina
| | | | | | | | | | | | | | | |
Collapse
|
6
|
Abstract
Convincing evidence has accumulated that unintended transgene escape occurs in oilseed rape, maize, cotton and creeping bentgrass. The escaped transgenes are found in variant cultivars, in wild type plants as well as in hybrids of sexually compatible species. The fact that in some cases stacked events are present that have not been planted commercially, implies unintended recombination of transgenic traits. As the consequences of this continuous transgene escape for the ecosystem cannot be reliably predicted, I propose to use more sophisticated approaches of gene technology in future. If possible GM plants should be constructed using either site-directed mutagenesis or cisgenic strategies to avoid the problem of transgene escape. In cases where a transgenic trait is needed, efficient containment should be the standard approach. Various strategies available or in development are discussed. Such a cautious approach in developing novel types of GM crops will enhance the sustainable potential of GM crops and thus increase the public trust in green gene technology.
Collapse
Affiliation(s)
- Gerhart U Ryffel
- a Institut für Zellbiologie (Tumorforschung); Universitätsklinikum Essen ; Essen , Germany
| |
Collapse
|
7
|
Ortiz JPA, Quarin CL, Pessino SC, Acuña C, Martínez EJ, Espinoza F, Hojsgaard DH, Sartor ME, Cáceres ME, Pupilli F. Harnessing apomictic reproduction in grasses: what we have learned from Paspalum. ANNALS OF BOTANY 2013; 112:767-87. [PMID: 23864004 PMCID: PMC3747805 DOI: 10.1093/aob/mct152] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2012] [Accepted: 05/13/2013] [Indexed: 05/19/2023]
Abstract
BACKGROUND Apomixis is an alternative route of plant reproduction that produces individuals genetically identical to the mother plant through seeds. Apomixis is desirable in agriculture, because it guarantees the perpetuation of superior genotypes (i.e. heterotic hybrid seeds) by self-seeding without loss of hybrid vigour. The Paspalum genus, an archetypal model system for mining apomixis gene(s), is composed of about 370 species that have extremely diverse reproductive systems, including self-incompatibility, self-fertility, full sexual reproduction, and facultative or obligate apomixis. Barriers to interspecific hybridization are relaxed in this genus, allowing the production of new hybrids from many different parental combinations. Paspalum is also tolerant to various parental genome contributions to the endosperm, allowing analyses of how sexually reproducing crop species might escape from dosage effects in the endosperm. SCOPE In this article, the available literature characterizing apomixis in Paspalum spp. and its use in breeding is critically reviewed. In particular, a comparison is made across species of the structure and function of the genomic region controlling apomixis in order to identify a common core region shared by all apomictic Paspalum species and where apomixis genes are likely to be localized. Candidate genes are discussed, either as possible genetic determinants (including homologs to signal transduction and RNA methylation genes) or as downstream factors (such as cell-to-cell signalling and auxin response genes) depending, respectively, on their co-segregation with apomixis or less. Strategies to validate the role of candidate genes in apomictic process are also discussed, with special emphasis on plant transformation in natural apomictic species.
Collapse
Affiliation(s)
- Juan Pablo A. Ortiz
- Instituto de Botánica del Nordeste (IBONE-CONICET), Facultad de Ciencias Agrarias, Universidad Nacional del Nordeste, Corrientes, Argentina
- Laboratorio de Biología Molecular, Facultad de Ciencias Agrarias, Universidad Nacional de Rosario, Zavalla, Argentina
| | - Camilo L. Quarin
- Instituto de Botánica del Nordeste (IBONE-CONICET), Facultad de Ciencias Agrarias, Universidad Nacional del Nordeste, Corrientes, Argentina
| | - Silvina C. Pessino
- Laboratorio de Biología Molecular, Facultad de Ciencias Agrarias, Universidad Nacional de Rosario, Zavalla, Argentina
| | - Carlos Acuña
- Instituto de Botánica del Nordeste (IBONE-CONICET), Facultad de Ciencias Agrarias, Universidad Nacional del Nordeste, Corrientes, Argentina
| | - Eric J. Martínez
- Instituto de Botánica del Nordeste (IBONE-CONICET), Facultad de Ciencias Agrarias, Universidad Nacional del Nordeste, Corrientes, Argentina
| | - Francisco Espinoza
- Instituto de Botánica del Nordeste (IBONE-CONICET), Facultad de Ciencias Agrarias, Universidad Nacional del Nordeste, Corrientes, Argentina
| | - Diego H. Hojsgaard
- Albrecht-von-Haller Institute for Plant Sciences, Department of Systematic Botany, Georg-August-University of Göttingen, Göttingen, Germany
| | - Maria E. Sartor
- Instituto de Botánica del Nordeste (IBONE-CONICET), Facultad de Ciencias Agrarias, Universidad Nacional del Nordeste, Corrientes, Argentina
| | - Maria E. Cáceres
- CNR-Istituto di Genetica Vegetale, Research Division: Perugia, Via della Madonna alta 130, I-06128 Perugia, Italy
| | - Fulvio Pupilli
- CNR-Istituto di Genetica Vegetale, Research Division: Perugia, Via della Madonna alta 130, I-06128 Perugia, Italy
- For correspondence. E-mail
| |
Collapse
|
8
|
Sang Y, Millwood RJ, Neal Stewart C. Gene use restriction technologies for transgenic plant bioconfinement. PLANT BIOTECHNOLOGY JOURNAL 2013; 11:649-658. [PMID: 23730743 DOI: 10.1111/pbi.12084] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2013] [Revised: 04/03/2013] [Accepted: 04/09/2013] [Indexed: 06/02/2023]
Abstract
The advances of modern plant technologies, especially genetically modified crops, are considered to be a substantial benefit to agriculture and society. However, so-called transgene escape remains and is of environmental and regulatory concern. Genetic use restriction technologies (GURTs) provide a possible solution to prevent transgene dispersal. Although GURTs were originally developed as a way for intellectual property protection (IPP), we believe their maximum benefit could be in the prevention of gene flow, that is, bioconfinement. This review describes the underlying signal transduction and components necessary to implement any GURT system. Furthermore, we review the similarities and differences between IPP- and bioconfinement-oriented GURTs, discuss the GURTs' design for impeding transgene escape and summarize recent advances. Lastly, we go beyond the state of the science to speculate on regulatory and ecological effects of implementing GURTs for bioconfinement.
Collapse
Affiliation(s)
- Yi Sang
- Department of Plant Sciences, University of Tennessee, Knoxville, TN, USA
| | | | | |
Collapse
|
9
|
Wang ZY, Brummer EC. Is genetic engineering ever going to take off in forage, turf and bioenergy crop breeding? ANNALS OF BOTANY 2012; 110:1317-25. [PMID: 22378838 PMCID: PMC3478041 DOI: 10.1093/aob/mcs027] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2011] [Accepted: 01/05/2012] [Indexed: 05/17/2023]
Abstract
BACKGROUND Genetic engineering offers the opportunity to generate unique genetic variation that is either absent in the sexually compatible gene pool or has very low heritability. The generation of transgenic plants, coupled with breeding, has led to the production of widely used transgenic cultivars in several major cash crops, such as maize, soybean, cotton and canola. The process for regulatory approval of genetically engineered crops is slow and subject to extensive political interference. The situation in forage grasses and legumes is more complicated. SCOPE Most widely grown forage, turf and bioenergy species (e.g. tall fescue, perennial ryegrass, switchgrass, alfalfa, white clover) are highly self-incompatible and outcrossing. Compared with inbreeding species, they have a high potential to pass their genes to adjacent plants. A major biosafety concern in these species is pollen-mediated transgene flow. Because human consumption is indirect, risk assessment of transgenic forage, turf and bioenergy species has focused on their environmental or ecological impacts. Although significant progress has been made in genetic modification of these species, commercialization of transgenic cultivars is very limited because of the stringent and costly regulatory requirements. To date, the only transgenic forage crop deregulated in the US is 'Roundup Ready' (RR) alfalfa. The approval process for RR alfalfa was complicated, involving several rounds of regulation, deregulation and re-regulation. Nevertheless, commercialization of RR alfalfa is an important step forward in regulatory approval of a perennial outcrossing forage crop. As additional transgenic forage, turf and bioenergy crops are generated and tested, different strategies have been developed to meet regulatory requirements. Recent progress in risk assessment and deregulation of transgenic forage and turf species is summarized and discussed.
Collapse
Affiliation(s)
- Zeng-Yu Wang
- Forage Improvement Division, The Samuel Roberts Noble Foundation, Ardmore, OK 73401, USA.
| | | |
Collapse
|
10
|
Cloning plants by seeds: Inheritance models and candidate genes to increase fundamental knowledge for engineering apomixis in sexual crops. J Biotechnol 2011; 159:291-311. [PMID: 21906637 DOI: 10.1016/j.jbiotec.2011.08.028] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2011] [Revised: 08/16/2011] [Accepted: 08/17/2011] [Indexed: 01/02/2023]
Abstract
Apomixis is desirable in agriculture as a reproductive strategy for cloning plants by seeds. Because embryos derive from the parthenogenic development of apomeiotic egg cells, apomixis excludes fertilization in addition to meiotic segregation and recombination, resulting in offspring that are exact replicas of the parent. Introgression of apomixis from wild relatives to crop species and transformation of sexual genotypes into apomictically reproducing ones are long-held goals of plant breeding. In fact, it is generally accepted that the introduction of apomixis into agronomically important crops will have revolutionary implications for agriculture. This review deals with the current genetic and molecular findings that have been collected from model species to elucidate the mechanisms of apomeiosis, parthenogenesis and apomixis as a whole. Our goal is to critically determine whether biotechnology can combine key genes known to control the expression of the processes miming the main components of apomixis in plants. Two natural apomicts, as the eudicot Hypericum perforatum L. (St. John's wort) and the monocot Paspalum spp. (crowngrass), and the sexual model species Arabidopsis thaliana are ideally suited for such investigations at the genomic and biotechnological levels. Some novel views and original concepts have been faced on this review, including (i) the parallel between Y-chromosome and apomixis-bearing chromosome (e.g., comparative genomic analyses revealed common features as repression of recombination events, accumulation of transposable elements and degeneration of genes) from the most primitive (Hypericum-type) to the most advanced (Paspalum-type) in evolutionary terms, and (ii) the link between apomixis and gene-specific silencing mechanisms (i.e., likely based on chromatin remodelling factors), with merging lines of evidence regarding the role of auxin in cell fate specification of embryo sac and egg cell development in Arabidopsis. The production of engineered plants exhibiting apomictic-like phenotypes is critically reviewed and discussed.
Collapse
|
11
|
Kwit C, Moon HS, Warwick SI, Stewart CN. Transgene introgression in crop relatives: molecular evidence and mitigation strategies. Trends Biotechnol 2011; 29:284-93. [PMID: 21388698 DOI: 10.1016/j.tibtech.2011.02.003] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2010] [Revised: 01/31/2011] [Accepted: 02/04/2011] [Indexed: 10/18/2022]
Abstract
Incorporation of crop genes into wild and weedy relative populations (i.e. introgression) has long been of interest to ecologists and weed scientists. Potential negative outcomes that result from crop transgene introgression (e.g. extinction of native wild relative populations; invasive spread by wild or weedy hosts) have not been documented, and few examples of transgene introgression exist. However, molecular evidence of introgression from non-transgenic crops to their relatives continues to emerge, even for crops deemed low-risk candidates for transgene introgression. We posit that transgene introgression monitoring and mitigation strategies are warranted in cases in which transgenes are predicted to confer selective advantages and disadvantages to recipient hosts. The utility and consequences of such strategies are examined, and future directions provided.
Collapse
Affiliation(s)
- Charles Kwit
- Department of Plant Sciences, University of Tennessee, Knoxville, TN 37996, USA.
| | | | | | | |
Collapse
|