1
|
Chang Y, Liu Y, Wang L, Wang S, Wu J. Global transcriptome analysis reveals resistance genes in the early response of common bean (Phaseolus vulgaris L.) to Colletotrichum lindemuthianum. BMC Genomics 2024; 25:579. [PMID: 38858660 PMCID: PMC11165746 DOI: 10.1186/s12864-024-10497-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Accepted: 06/05/2024] [Indexed: 06/12/2024] Open
Abstract
BACKGROUND Disease can drastically impair common bean (Phaseolus vulgaris L.) production. Anthracnose, caused by the fungal pathogen Colletotrichum lindemuthianum (Sacc. and Magnus) Briosi and Cavara, is one of the diseases that are widespread and cause serious economic loss in common bean. RESULTS Transcriptome analysis of the early response of common bean to anthracnose was performed using two resistant genotypes, Hongyundou and Honghuayundou, and one susceptible genotype, Jingdou. A total of 9,825 differentially expressed genes (DEGs) responding to pathogen infection and anthracnose resistance were identified by differential expression analysis. By using weighted gene coexpression network analysis (WGCNA), 2,051 DEGs were found to be associated with two resistance-related modules. Among them, 463 DEGs related to anthracnose resistance were considered resistance-related candidate genes. Nineteen candidate genes were coexpressed with three resistance genes, Phvul.001G243600, Phvul.001G243700 and Phvul.001G243800. To further identify resistance genes, 46 candidate genes were selected for experimental validation using salicylic acid (SA) and methyl jasmonate (MeJA). The results indicated that 38 candidate genes that responded to SA/MeJA treatment may be involved in anthracnose resistance in common bean. CONCLUSIONS This study identified 38 resistance-related candidate genes involved in the early response of common bean, and 19 resistance-related candidate genes were coexpressed with anthracnose resistance genes. This study identified putative resistance genes for further resistance genetic investigation and provides an important reference for anthracnose resistance breeding in common bean.
Collapse
Affiliation(s)
- Yujie Chang
- Key Laboratory of Grain Crop Genetic Resources Evaluation and Utilization, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Yonghui Liu
- Key Laboratory of Grain Crop Genetic Resources Evaluation and Utilization, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Lanfen Wang
- Key Laboratory of Grain Crop Genetic Resources Evaluation and Utilization, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Shumin Wang
- Key Laboratory of Grain Crop Genetic Resources Evaluation and Utilization, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Jing Wu
- Key Laboratory of Grain Crop Genetic Resources Evaluation and Utilization, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China.
| |
Collapse
|
2
|
Lovatto M, Vidigal Filho PS, Gonçalves-Vidigal MC, Vaz Bisneta M, Calvi AC, Gilio TAS, Nascimento EA, Melotto M. Alterations in Gene Expression during Incompatible Interaction between Amendoim Cavalo Common Bean and Colletotrichum lindemuthianum. PLANTS (BASEL, SWITZERLAND) 2024; 13:1245. [PMID: 38732460 PMCID: PMC11085365 DOI: 10.3390/plants13091245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 02/12/2024] [Accepted: 02/18/2024] [Indexed: 05/13/2024]
Abstract
Anthracnose, caused by the fungus Colletotrichum lindemuthianum, poses a significant and widespread threat to the common bean crop. The use of plant genetic resistance has proven to be the most effective strategy for managing anthracnose disease. The Amendoim Cavalo (AC) Andean cultivar has resistance against multiple races of C. lindemuthianum, which is conferred by the Co-AC gene. Fine mapping of this resistance gene to common bean chromosome Pv01 enabled the identification of Phvul.001G244300, Phvul.001G244400, and Phvul.001G244500 candidate genes for further validation. In this study, the relative expression of Co-AC candidate genes was assessed, as well as other putative genes in the vicinity of this locus and known resistance genes, in the AC cultivar following inoculation with the race 73 of C. lindemuthianum. Gene expression analysis revealed significantly higher expression levels of Phvul.001G244500. Notably, Phvul.001G244500 encodes a putative Basic Helix-Loop-Helix transcription factor, suggesting its involvement in the regulation of defense responses. Furthermore, a significant modulation of the expression of defense-related genes PR1a, PR1b, and PR2 was observed in a time-course experiment. These findings contribute to the development of improved strategies for breeding anthracnose-resistant common bean cultivars, thereby mitigating the impact of this pathogen on crop yields and ensuring sustainable bean production.
Collapse
Affiliation(s)
- Maike Lovatto
- Departamento de Agronomia, Universidade Estadual de Maringá, Maringá, PR 87020-900, Brazil
| | | | | | - Mariana Vaz Bisneta
- Departamento de Agronomia, Universidade Estadual de Maringá, Maringá, PR 87020-900, Brazil
| | - Alexandre Catto Calvi
- Departamento de Agronomia, Universidade Estadual de Maringá, Maringá, PR 87020-900, Brazil
| | | | - Eduardo A. Nascimento
- Departamento de Agronomia, Universidade Estadual de Maringá, Maringá, PR 87020-900, Brazil
| | - Maeli Melotto
- Department of Plant Sciences, University of California, Davis, CA 95616, USA
| |
Collapse
|
3
|
Lovatto M, Gonçalves-Vidigal MC, Vaz Bisneta M, Calvi AC, Mazucheli J, Vidigal Filho PS, Miranda EGR, Melotto M. Responsiveness of Candidate Genes on CoPv01CDRK/PhgPv01CDRK Loci in Common Bean Challenged by Anthracnose and Angular Leaf Spot Pathogens. Int J Mol Sci 2023; 24:16023. [PMID: 38003212 PMCID: PMC10671028 DOI: 10.3390/ijms242216023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 09/13/2023] [Accepted: 09/15/2023] [Indexed: 11/26/2023] Open
Abstract
Anthracnose (ANT) and angular leaf spot (ALS) are significant diseases in common bean, leading to considerable yield losses under specific environmental conditions. The California Dark Red Kidney (CDRK) bean cultivar is known for its resistance to multiple races of both pathogens. Previous studies have identified the CoPv01CDRK/PhgPv01CDRK resistance loci on chromosome Pv01. Here, we evaluated the expression levels of ten candidate genes near the CoPv01CDRK/PhgPv01CDRK loci and plant defense genes using quantitative real-time PCR in CDRK cultivar inoculated with races 73 of Colletotrichum lindemuthianum and 63-39 of Pseudocercospora griseola. Gene expression analysis revealed that the Phvul.001G246300 gene exhibited the most elevated levels, showing remarkable 7.8-fold and 8.5-fold increases for ANT and ALS, respectively. The Phvul.001G246300 gene encodes an abscisic acid (ABA) receptor with pyrabactin resistance, PYR1-like (PYL) protein, which plays a central role in the crosstalk between ABA and jasmonic acid responses. Interestingly, our results also showed that the other defense genes were initially activated. These findings provide critical insights into the molecular mechanisms underlying plant defense against these diseases and could contribute to the development of more effective disease management strategies in the future.
Collapse
Affiliation(s)
- Maike Lovatto
- Departamento de Agronomia, Universidade Estadual de Maringá, Maringá 87020-900, Brazil
| | | | - Mariana Vaz Bisneta
- Departamento de Agronomia, Universidade Estadual de Maringá, Maringá 87020-900, Brazil
| | - Alexandre Catto Calvi
- Departamento de Agronomia, Universidade Estadual de Maringá, Maringá 87020-900, Brazil
| | - Josmar Mazucheli
- Departamento de Estatística, Universidade Estadual de Maringá, Maringá 87020-900, Brazil
| | | | | | - Maeli Melotto
- Department of Plant Sciences, University of California, Davis, CA 95616, USA
| |
Collapse
|
4
|
Gomes-Messias LM, Vianello RP, Marinho GR, Rodrigues LA, Coelho AG, Pereira HS, Melo LC, de Souza TLPO. Genetic mapping of the Andean anthracnose resistance gene present in the common bean cultivar BRSMG Realce. FRONTIERS IN PLANT SCIENCE 2022; 13:1033687. [PMID: 36507385 PMCID: PMC9728541 DOI: 10.3389/fpls.2022.1033687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Accepted: 10/28/2022] [Indexed: 06/17/2023]
Abstract
The rajado seeded Andean bean (Phaseolus vulgaris L.) cultivar BRSMG Realce (striped seed coat) developed by Embrapa expressed a high level of anthracnose resistance, caused by Colletotrichum lindemuthianum, in field and greenhouse screenings. The main goal of this study was to evaluate the inheritance of anthracnose resistance in BRSMG Realce, map the resistance locus or major gene cluster previously named as Co-Realce, identify resistance-related positional genes, and analyze potential markers linked to the resistance allele. F2 plants derived from the cross BRSMG Realce × BRS FC104 (Mesoamerican) and from the cross BRSMG Realce × BRS Notável (Mesoamerican) were inoculated with the C. lindemuthianum races 475 and 81, respectively. The BRSMG Realce × BRS FC104 F2 population was also genotyped using the DArTseq technology. Crosses between BRSMG Realce and BAT 93 (Mesoamerican) were also conducted and resulting F2 plants were inoculated with the C. lindemuthianum races 65 and 1609, individually. The results shown that anthracnose resistance in BRSMG Realce is controlled by a single locus with complete dominance. A genetic map including 1,118 SNP markers was built and shown 78% of the markers mapped at a distances less than 5.0 cM, with a total genetic length of 4,473.4 cM. A major locus (Co-Realce) explaining 54.6% of the phenotypic variation of symptoms caused by the race 475 was identified in Pv04, flanked by the markers snp1327 and snp12782 and 4.48 cM apart each other. These SNPs are useful for marker-assisted selection, due to an estimated selection efficiency of 99.2%. The identified resistance allele segregates independently of the resistance allele Co-33 (Pv04) present in BAT 93. The mapped genomic region with 704,867 bp comprising 63 putative genes, 44 of which were related to the pathogen-host interaction. Based on all these results and evidence, anthracnose resistance in BRSMG Realce should be considered as monogenic, useful for breeding purpose. It is proposed that locus Co-Realce is unique and be provisionally designated as CoPv04R until be officially nominated in accordance with the rules established by the Bean Improvement Cooperative Genetics Committee.
Collapse
|
5
|
Taboada G, Abán CL, Mercado Cárdenas G, Spedaletti Y, Aparicio González M, Maita E, Ortega-Baes P, Galván M. Characterization of fungal pathogens and germplasm screening for disease resistance in the main production area of the common bean in Argentina. FRONTIERS IN PLANT SCIENCE 2022; 13:986247. [PMID: 36161011 PMCID: PMC9490223 DOI: 10.3389/fpls.2022.986247] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Accepted: 08/04/2022] [Indexed: 06/16/2023]
Abstract
The common bean (Phaseolus vulgaris L.) is the most important grain legume in the human diet, mainly in Africa and Latin America. Argentina is one of the five major producers of the common bean in the world, and the main cultivation areas are concentrated in the northwestern provinces of this country. Crop production of the common bean is often affected by biotic factors like some endemic fungal diseases, which exert a major economic impact on the region. The most important fungal diseases affecting the common bean in Argentina are white mold caused by Sclerotinia sclerotiorum, angular leaf spot caused by Pseudocercospora griseola, web blight and root rot caused by Rhizoctonia solani, which can cause production losses of up to 100% in the region. At the present, the most effective strategy for controlling these diseases is the use of genetic resistance. In this sense, population study and characterization of fungal pathogens are essential for developing cultivars with durable resistance. In this review we report diversity studies carried out on these three fungal pathogens affecting the common bean in northwestern Argentina, analyzing more than 200 isolates by means of molecular, morphological and pathogenic approaches. Also, the screening of physiological resistance in several common bean commercial lines and wild native germplasm is reviewed. This review contributes to the development of sustainable management strategies and cultural practices in bean production aimed to minimize yield losses due to fungal diseases in the common bean.
Collapse
Affiliation(s)
- Gisel Taboada
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) CCT-Salta, Salta, Argentina
- Instituto Nacional de Tecnología Agropecuaria (INTA) EEA Salta, Salta, Argentina
| | - Carla L. Abán
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) CCT-Salta, Salta, Argentina
- Instituto Nacional de Tecnología Agropecuaria (INTA) EEA Salta, Salta, Argentina
| | | | - Yamila Spedaletti
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) CCT-Salta, Salta, Argentina
- Instituto Nacional de Tecnología Agropecuaria (INTA) EEA Salta, Salta, Argentina
| | - Mónica Aparicio González
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) CCT-Salta, Salta, Argentina
- Instituto Nacional de Tecnología Agropecuaria (INTA) EEA Salta, Salta, Argentina
| | - Efrain Maita
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) CCT-Salta, Salta, Argentina
- Laboratorio de Investigaciones Botánicas (LABIBO), Facultad de Ciencias Naturales, Universidad Nacional de Salta, Salta, Argentina
| | - Pablo Ortega-Baes
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) CCT-Salta, Salta, Argentina
- Laboratorio de Investigaciones Botánicas (LABIBO), Facultad de Ciencias Naturales, Universidad Nacional de Salta, Salta, Argentina
| | - Marta Galván
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) CCT-Salta, Salta, Argentina
- Instituto Nacional de Tecnología Agropecuaria (INTA) EEA Salta, Salta, Argentina
| |
Collapse
|
6
|
Shafi S, Saini DK, Khan MA, Bawa V, Choudhary N, Dar WA, Pandey AK, Varshney RK, Mir RR. Delineating meta-quantitative trait loci for anthracnose resistance in common bean ( Phaseolus vulgaris L.). FRONTIERS IN PLANT SCIENCE 2022; 13:966339. [PMID: 36092444 PMCID: PMC9453441 DOI: 10.3389/fpls.2022.966339] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Accepted: 08/01/2022] [Indexed: 05/03/2023]
Abstract
Anthracnose, caused by the fungus Colletotrichum lindemuthianum, is one of the devastating disease affecting common bean production and productivity worldwide. Several quantitative trait loci (QTLs) for anthracnose resistance have been identified. In order to make use of these QTLs in common bean breeding programs, a detailed meta-QTL (MQTL) analysis has been conducted. For the MQTL analysis, 92 QTLs related to anthracnose disease reported in 18 different earlier studies involving 16 mapping populations were compiled and projected on to the consensus map. This meta-analysis led to the identification of 11 MQTLs (each involving QTLs from at least two different studies) on 06 bean chromosomes and 10 QTL hotspots each involving multiple QTLs from an individual study on 07 chromosomes. The confidence interval (CI) of the identified MQTLs was found 3.51 times lower than the CI of initial QTLs. Marker-trait associations (MTAs) reported in published genome-wide association studies (GWAS) were used to validate nine of the 11 identified MQTLs, with MQTL4.1 overlapping with as many as 40 MTAs. Functional annotation of the 11 MQTL regions revealed 1,251 genes including several R genes (such as those encoding for NBS-LRR domain-containing proteins, protein kinases, etc.) and other defense related genes. The MQTLs, QTL hotspots and the potential candidate genes identified during the present study will prove useful in common bean marker-assisted breeding programs and in basic studies involving fine mapping and cloning of genomic regions associated with anthracnose resistance in common beans.
Collapse
Affiliation(s)
- Safoora Shafi
- Division of Genetics and Plant Breeding, Faculty of Agriculture, SKUAST-Kashmir, Wadura, India
| | - Dinesh Kumar Saini
- Department of Plant Breeding and Genetics, Punjab Agricultural University, Ludhiana, Punjab, India
| | - Mohd Anwar Khan
- Division of Genetics and Plant Breeding, Faculty of Agriculture, SKUAST-Kashmir, Wadura, India
| | - Vanya Bawa
- Division of Genetics & Plant Breeding, Faculty of Agriculture, SKUAST-Jammu, Chatha, Jammu and Kashmir, India
| | - Neeraj Choudhary
- Division of Genetics & Plant Breeding, Faculty of Agriculture, SKUAST-Jammu, Chatha, Jammu and Kashmir, India
| | - Waseem Ali Dar
- Mountain Agriculture Research and Extension Station, SKUAST-Kashmir, Bandipora, Jammu and Kashmir, India
| | - Arun K. Pandey
- College of Life Sciences, China Jiliang University, Hangzhou, China
| | - Rajeev Kumar Varshney
- State Agricultural Biotechnology Centre, Centre for Crop & Food Innovation, Food Futures Institute, Murdoch University, Murdoch, WA, Australia
| | - Reyazul Rouf Mir
- Division of Genetics and Plant Breeding, Faculty of Agriculture, SKUAST-Kashmir, Wadura, India
| |
Collapse
|
7
|
Nabi A, Lateef I, Nisa Q, Banoo A, Rasool RS, Shah MD, Ahmad M, Padder BA. Phaseolus vulgaris-Colletotrichum lindemuthianum Pathosystem in the Post-Genomic Era: An Update. Curr Microbiol 2022; 79:36. [PMID: 34982236 DOI: 10.1007/s00284-021-02711-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2021] [Accepted: 10/27/2021] [Indexed: 11/24/2022]
Abstract
Phaseolus vulgaris-Colletotrichum lindemuthianum is one among the oldest host and pathogen interface. Researchers have taken painstaking efforts across the world for understanding the dialogue during early and late phases of interaction. Collectively, these efforts resulted in the deluge of information that helped the researchers to underpin the interface. The latest molecular biology techniques furnished novel detection methods for the anthracnose pathogen, refined the understanding of pathogen population dynamics, and provided the insights on co-evolutionary common bean resistance and C. lindemuthianum virulence dynamics. One of the important breakthroughs came when the Phaseolus vulgaris and its corresponding anthracnose pathogen (C. lindemuthianum) genomes were decoded in 2014 and 2017, respectively. Availability of both the genomes yielded a significant genomic information that helped bean communities to fine map the economically important traits and to identify the pathogenicity determinants and effector molecules. The interface is in a continuous development as knowledge of the anthracnose resistance genes, their precise physical locations, and the identification of effector proteins; the fungus arsenals are being routinely updated. Hence, we revisited the interface and tried to provide an overview of host pathogen dialogue in the genomic era. Additionally, we compiled the sporadic information on this pathosystem from India and provided its futuristic road map to shape its research in the world and northern India, the major dry bean area in the country.
Collapse
Affiliation(s)
- Aasiya Nabi
- Plant Virology and Molecular Plant Pathology Laboratory, SKUAST-Kashmir, Shalimar, Srinagar, 190025, India
| | - Irtifa Lateef
- Plant Virology and Molecular Plant Pathology Laboratory, SKUAST-Kashmir, Shalimar, Srinagar, 190025, India
| | - Qadrul Nisa
- Plant Virology and Molecular Plant Pathology Laboratory, SKUAST-Kashmir, Shalimar, Srinagar, 190025, India
| | - Aqleema Banoo
- Plant Virology and Molecular Plant Pathology Laboratory, SKUAST-Kashmir, Shalimar, Srinagar, 190025, India
| | - Rovidha S Rasool
- Plant Virology and Molecular Plant Pathology Laboratory, SKUAST-Kashmir, Shalimar, Srinagar, 190025, India
| | - M D Shah
- Plant Virology and Molecular Plant Pathology Laboratory, SKUAST-Kashmir, Shalimar, Srinagar, 190025, India
| | - Mushtaq Ahmad
- Plant Virology and Molecular Plant Pathology Laboratory, SKUAST-Kashmir, Shalimar, Srinagar, 190025, India
| | - Bilal A Padder
- Plant Virology and Molecular Plant Pathology Laboratory, SKUAST-Kashmir, Shalimar, Srinagar, 190025, India.
| |
Collapse
|
8
|
Genome-wide association mapping reveals race-specific SNP markers associated with anthracnose resistance in carioca common beans. PLoS One 2021; 16:e0251745. [PMID: 34010322 PMCID: PMC8133444 DOI: 10.1371/journal.pone.0251745] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Accepted: 04/30/2021] [Indexed: 11/24/2022] Open
Abstract
Brazil is the largest consumer of dry edible beans (Phaseolus vulgaris L.) in the world, 70% of consumption is of the carioca variety. Although the variety has high yield, it is susceptible to several diseases, among them, anthracnose (ANT) can lead to losses of up to 100% of production. The most effective strategy to overcome ANT, a disease caused by the fungus Colletotrichum lindemuthianum, is the development of resistant cultivars. For that reason, the selection of carioca genotypes resistant to multiple ANT races and the identification of loci/markers associated with genetic resistance are extremely important for the genetic breeding process. Using a carioca diversity panel (CDP) with 125 genotypes and genotyped by BeadChip BARCBean6K_3 and a carioca segregating population AM (AND-277 × IAC-Milênio) genotyped by sequencing (GBS). Multiple interval mapping (MIM) and genome-wide association studies (GWAS) were used as mapping tools for the resistance genes to the major ANT physiological races present in the country. In general, 14 single nucleotide polymorphisms (SNPs) showed high significance for resistance by GWAS, and loci associated with multiple races were also identified, as the Co-3 locus. The SNPs ss715642306 and ss715649427 in linkage disequilibrium (LD) at the beginning of chromosome Pv04 were associated with all the races used, and 16 genes known to be related to plant immunity were identified in this region. Using the resistant cultivars and the markers associated with significant quantitative resistance loci (QRL), discriminant analysis of principal components (DAPC) was performed considering the allelic contribution to resistance. Through the DAPC clustering, cultivar sources with high potential for durable anthracnose resistance were recommended. The MIM confirmed the presence of the Co-14locus in the AND-277 cultivar which revealed that it was the only one associated with resistance to ANT race 81. Three other loci were associated with race 81 on chromosomes Pv03, Pv10, and Pv11. This is the first study to identify new resistance loci in the AND-277 cultivar. Finally, the same Co-14locus was also significant for the CDP at the end of Pv01. The new SNPs identified, especially those associated with more than one race, present great potential for use in marker-assisted and early selection of inbred lines.
Collapse
|
9
|
Richard MMS, Gratias A, Alvarez Diaz JC, Thareau V, Pflieger S, Meziadi C, Blanchet S, Marande W, Bitocchi E, Papa R, Miklas PN, Geffroy V. A common bean truncated CRINKLY4 kinase controls gene-for-gene resistance to the fungus Colletotrichum lindemuthianum. JOURNAL OF EXPERIMENTAL BOTANY 2021; 72:3569-3581. [PMID: 33693665 DOI: 10.1093/jxb/erab082] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Accepted: 03/05/2021] [Indexed: 05/27/2023]
Abstract
Identifying the molecular basis of resistance to pathogens is critical to promote a chemical-free cropping system. In plants, nucleotide-binding leucine-rich repeat constitute the largest family of disease resistance (R) genes, but this resistance can be rapidly overcome by the pathogen, prompting research into alternative sources of resistance. Anthracnose, caused by the fungus Colletotrichum lindemuthianum, is one of the most important diseases of common bean. This study aimed to identify the molecular basis of Co-x, an anthracnose R gene conferring total resistance to the extremely virulent C. lindemuthianum strain 100. To that end, we sequenced the Co-x 58 kb target region in the resistant JaloEEP558 (Co-x) common bean and identified KTR2/3, an additional gene encoding a truncated and chimeric CRINKLY4 kinase, located within a CRINKLY4 kinase cluster. The presence of KTR2/3 is strictly correlated with resistance to strain 100 in a diversity panel of common beans. Furthermore, KTR2/3 expression is up-regulated 24 hours post-inoculation and its transient expression in a susceptible genotype increases resistance to strain 100. Our results provide evidence that Co-x encodes a truncated and chimeric CRINKLY4 kinase probably resulting from an unequal recombination event that occurred recently in the Andean domesticated gene pool. This atypical R gene may act as a decoy involved in indirect recognition of a fungal effector.
Collapse
Affiliation(s)
- Manon M S Richard
- Université Paris-Saclay, CNRS, INRAE, Univ Evry, Institute of Plant Sciences Paris-Saclay (IPS2), Orsay, France
- Université de Paris, CNRS, INRAE, Institute of Plant Sciences Paris Saclay (IPS2), Orsay, France
- Molecular Plant Pathology, Swammerdam Institute for Life Sciences (SILS), University of Amsterdam, Amsterdam, The Netherlands
| | - Ariane Gratias
- Université Paris-Saclay, CNRS, INRAE, Univ Evry, Institute of Plant Sciences Paris-Saclay (IPS2), Orsay, France
- Université de Paris, CNRS, INRAE, Institute of Plant Sciences Paris Saclay (IPS2), Orsay, France
| | - Juan C Alvarez Diaz
- Université Paris-Saclay, CNRS, INRAE, Univ Evry, Institute of Plant Sciences Paris-Saclay (IPS2), Orsay, France
- Université de Paris, CNRS, INRAE, Institute of Plant Sciences Paris Saclay (IPS2), Orsay, France
| | - Vincent Thareau
- Université Paris-Saclay, CNRS, INRAE, Univ Evry, Institute of Plant Sciences Paris-Saclay (IPS2), Orsay, France
- Université de Paris, CNRS, INRAE, Institute of Plant Sciences Paris Saclay (IPS2), Orsay, France
| | - Stéphanie Pflieger
- Université Paris-Saclay, CNRS, INRAE, Univ Evry, Institute of Plant Sciences Paris-Saclay (IPS2), Orsay, France
- Université de Paris, CNRS, INRAE, Institute of Plant Sciences Paris Saclay (IPS2), Orsay, France
| | - Chouaib Meziadi
- Université Paris-Saclay, CNRS, INRAE, Univ Evry, Institute of Plant Sciences Paris-Saclay (IPS2), Orsay, France
- Université de Paris, CNRS, INRAE, Institute of Plant Sciences Paris Saclay (IPS2), Orsay, France
| | - Sophie Blanchet
- Université Paris-Saclay, CNRS, INRAE, Univ Evry, Institute of Plant Sciences Paris-Saclay (IPS2), Orsay, France
- Université de Paris, CNRS, INRAE, Institute of Plant Sciences Paris Saclay (IPS2), Orsay, France
| | | | - Elena Bitocchi
- Dipartimento di Scienze Agrarie, Alimentari ed Ambientali, Università Politecnica delle Marche, Ancona, Italy
| | - Roberto Papa
- Dipartimento di Scienze Agrarie, Alimentari ed Ambientali, Università Politecnica delle Marche, Ancona, Italy
| | - Phillip N Miklas
- USDA ARS, Grain Legume Genet & Physiol Res Unit, Prosser, WA, USA
| | - Valérie Geffroy
- Université Paris-Saclay, CNRS, INRAE, Univ Evry, Institute of Plant Sciences Paris-Saclay (IPS2), Orsay, France
- Université de Paris, CNRS, INRAE, Institute of Plant Sciences Paris Saclay (IPS2), Orsay, France
| |
Collapse
|
10
|
de Almeida CP, de Carvalho Paulino JF, Bonfante GFJ, Perseguini JMKC, Santos IL, Gonçalves JGR, Patrício FRA, Taniguti CH, Gesteira GDS, Garcia AAF, Song Q, Carbonell SAM, Chiorato AF, Benchimol-Reis LL. Angular Leaf Spot Resistance Loci Associated With Different Plant Growth Stages in Common Bean. FRONTIERS IN PLANT SCIENCE 2021; 12:647043. [PMID: 33927738 PMCID: PMC8078856 DOI: 10.3389/fpls.2021.647043] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Accepted: 03/23/2021] [Indexed: 06/12/2023]
Abstract
Angular leaf spot (ALS) is a disease that causes major yield losses in the common bean crop. Studies based on different isolates and populations have already been carried out to elucidate the genetic mechanisms of resistance to ALS. However, understanding of the interaction of this resistance with the reproductive stages of common bean is lacking. The aim of the present study was to identify ALS resistance loci at different plant growth stages (PGS) by association and linkage mapping approaches. An BC2F3 inter-gene pool cross population (AND 277 × IAC-Milênio - AM population) profiled with 1,091 SNPs from genotyping by sequencing (GBS) was used for linkage mapping, and a carioca diversity panel (CDP) genotyped by 5,398 SNPs from BeadChip assay technology was used for association mapping. Both populations were evaluated for ALS resistance at the V2 and V3 PGSs (controlled conditions) and R8 PGS (field conditions). Different QTL (quantitative trait loci) were detected for the three PGSs and both populations, showing a different quantitative profile of the disease at different plant growth stages. For the three PGS, multiple interval mapping (MIM) identified seven significant QTL, and the Genome-wide association study (GWAS) identified fourteen associate SNPs. Several loci validated regions of previous studies, and Phg-1, Phg-2, Phg-4, and Phg-5, among the 5 loci of greatest effects reported in the literature, were detected in the CDP. The AND 277 cultivar contained both the Phg-1 and the Phg-5 QTL, which is reported for the first time in the descendant cultivar CAL143 as ALS10.1UC. The novel QTL named ALS11.1AM was located at the beginning of chromosome Pv11. Gene annotation revealed several putative resistance genes involved in the ALS response at the three PGSs, and with the markers and loci identified, new specific molecular markers can be developed, representing a powerful tool for common bean crop improvement and for gain in ALS resistance.
Collapse
Affiliation(s)
| | | | | | | | - Isabella Laporte Santos
- Centro de Pesquisa em Recursos Genéticos Vegetais, Instituto Agronômico - IAC, Campinas, Brazil
| | | | | | - Cristiane Hayumi Taniguti
- Departamento de Genética, Escola Superior de Agricultura “Luiz de Queiroz”, Universidade de São Paulo, Piracicaba, Brazil
| | - Gabriel de Siqueira Gesteira
- Departamento de Genética, Escola Superior de Agricultura “Luiz de Queiroz”, Universidade de São Paulo, Piracicaba, Brazil
| | - Antônio Augusto Franco Garcia
- Departamento de Genética, Escola Superior de Agricultura “Luiz de Queiroz”, Universidade de São Paulo, Piracicaba, Brazil
| | - Qijian Song
- USDA-ARS, Soybean Genomics and Improvement Lab, Beltsville, MD, United States
| | | | | | | |
Collapse
|
11
|
de Almeida CP, Paulino JFDC, Morais Carbonell SA, Chiorato AF, Song Q, Di Vittori V, Rodriguez M, Papa R, Benchimol-Reis LL. Genetic Diversity, Population Structure, and Andean Introgression in Brazilian Common Bean Cultivars after Half a Century of Genetic Breeding. Genes (Basel) 2020; 11:E1298. [PMID: 33143347 PMCID: PMC7694079 DOI: 10.3390/genes11111298] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Revised: 10/27/2020] [Accepted: 10/28/2020] [Indexed: 12/29/2022] Open
Abstract
Brazil is the largest consumer and third highest producer of common beans (Phaseolus vulgaris L.) worldwide. Since the 1980s, the commercial Carioca variety has been the most consumed in Brazil, followed by Black and Special beans. The present study evaluates genetic diversity and population structure of 185 Brazilian common bean cultivars using 2827 high-quality single-nucleotide polymorphisms (SNPs). The Andean allelic introgression in the Mesoamerican accessions was investigated, and a Carioca panel was tested using an association mapping approach. The results distinguish the Mesoamerican from the Andean accessions, with a prevalence of Mesoamerican accessions (94.6%). When considering the commercial classes, low levels of genetic differentiation were seen, and the Carioca group showed the lowest genetic diversity. However, gain in gene diversity and allelic richness was seen for the modern Carioca cultivars. A set of 1060 'diagnostic SNPs' that show alternative alleles between the pure Mesoamerican and Andean accessions were identified, which allowed the identification of Andean allelic introgression events and shows that there are putative introgression segments in regions enriched with resistance genes. Finally, genome-wide association studies revealed SNPs significantly associated with flowering time, pod maturation, and growth habit, showing that the Carioca Association Panel represents a powerful tool for crop improvements.
Collapse
Affiliation(s)
- Caléo Panhoca de Almeida
- Centro de Pesquisa em Recursos Genéticos Vegetais, Instituto Agronômico (IAC), Campinas, São Paulo 13075-630, Brazil; (J.F.d.C.P.); (L.L.B.-R.)
| | - Jean Fausto de Carvalho Paulino
- Centro de Pesquisa em Recursos Genéticos Vegetais, Instituto Agronômico (IAC), Campinas, São Paulo 13075-630, Brazil; (J.F.d.C.P.); (L.L.B.-R.)
| | | | - Alisson Fernando Chiorato
- Centro de Grãos e Fibras, Instituto Agronômico (IAC), Campinas, São Paulo 13075-630, Brazil; (S.A.M.C.); (A.F.C.)
| | - Qijian Song
- Soybean Genomics and Improvement Laboratory, US Department of Agriculture–Agricultural Research Service (USDA-ARS), Beltsville, MD 20705, USA;
| | - Valerio Di Vittori
- Dipartimento di Scienze Agrarie, Alimentari ed Ambientali, Università Politecnica dele Marche, 60131 Ancona, Italy; (V.D.V.); (R.P.)
- Max-Planck-Institute of Molecular Plant Physiology, Am Müehlenberg 1, 14476 Potsdam-Golm, Germany
| | - Monica Rodriguez
- Dipartimento di Agraria, Università degli Studi di Sassari, 07100 Sassari, Italy;
- Centro per la Cobservazione e Valorizzazione della Biodiversità Vegetale (CBV), Università degli Studi di Sassari, 07040 Alghero, Italy
| | - Roberto Papa
- Dipartimento di Scienze Agrarie, Alimentari ed Ambientali, Università Politecnica dele Marche, 60131 Ancona, Italy; (V.D.V.); (R.P.)
| | - Luciana Lasry Benchimol-Reis
- Centro de Pesquisa em Recursos Genéticos Vegetais, Instituto Agronômico (IAC), Campinas, São Paulo 13075-630, Brazil; (J.F.d.C.P.); (L.L.B.-R.)
| |
Collapse
|
12
|
Gilio TAS, Hurtado-Gonzales OP, Gonçalves-Vidigal MC, Valentini G, Ferreira Elias JC, Song Q, Pastor-Corrales MA. Fine mapping of an anthracnose-resistance locus in Andean common bean cultivar Amendoim Cavalo. PLoS One 2020; 15:e0239763. [PMID: 33027258 PMCID: PMC7540868 DOI: 10.1371/journal.pone.0239763] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2020] [Accepted: 09/12/2020] [Indexed: 11/19/2022] Open
Abstract
Anthracnose, caused by the fungal pathogen Colletotrichum lindemuthianum, is one of the world's most destructive diseases of common bean. The use of resistant cultivars is the most cost-effective strategy to manage this disease; however, durable resistance is difficult to achieve due to the vast virulence diversity of the anthracnose pathogen. Finding new genes with broad-spectrum resistance increases the prospect of designing an effective anthracnose-management strategy. Genetic analysis confirmed the presence of a single, dominant anthracnose-resistance locus in AC, which we provisionally named Co-AC. Bulk segregant analysis and genetic mapping of two F2 populations from the crosses AC × PI207262 and AC × G 2333 were used to determine the position of the Co-AC locus in a 631 Kbp genomic region flanked by the SNP markers SS56 and SS92 on the lower arm of chromosome Pv01. By genotyping 77 F3 plants from the AC × PI207262 cross using nine additional markers, we fine-mapped the Co-AC locus to a significantly smaller genomic region (9.4 Kbp) flanked by the SNP markers SS102 and SS165. This 9.4 Kbp region harbors three predicted genes based on the common bean reference genome, notably including the gene model Phvul.001G244300, which encodes Clathrin heavy chain 1, a protein that supports specific stomatal regulation functions and might play a role in plant defense signaling. Because the Co-AC resistance locus is linked in cis, it can be selected with great efficiency using molecular markers. These results will be very useful for breeding programs aimed at developing bean cultivars with anthracnose resistance using marker-assisted selection. This study revealed the broad-spectrum resistance of AC to C. lindemuthianum and the existence of the Co-AC anthracnose-resistance locus. Fine mapping positioned this locus in a small genomic region on the lower end of chromosome Pv01 that contained three candidate genes for the Co-AC locus.
Collapse
Affiliation(s)
- Thiago Alexandre Santana Gilio
- Departamento de Agronomia, Universidade Estadual de Maringá, Maringá, Paraná, Brazil
- Programa de pós-graduação em genética e melhoramento de plantas, Universidade do Estado de Mato Grosso, Cáceres, Mato Grosso, Brazil
| | - Oscar P. Hurtado-Gonzales
- Soybean Genomics and Improvement Laboratory, United States Department of Agriculture, Agricultural Research Service, Beltsville, Maryland, United States of America
| | | | - Giseli Valentini
- Departamento de Agronomia, Universidade Estadual de Maringá, Maringá, Paraná, Brazil
| | | | - Qijian Song
- Soybean Genomics and Improvement Laboratory, United States Department of Agriculture, Agricultural Research Service, Beltsville, Maryland, United States of America
| | - Marcial A. Pastor-Corrales
- Soybean Genomics and Improvement Laboratory, United States Department of Agriculture, Agricultural Research Service, Beltsville, Maryland, United States of America
| |
Collapse
|
13
|
Banoo A, Nabi A, Rasool RS, Mahiya-Farooq, Shah MD, Ahmad M, Sofi PA, Aasiya-Nabi, Itoo H, Sharma PN, Padder BA. North-Western Himalayan Common Beans: Population Structure and Mapping of Quantitative Anthracnose Resistance Through Genome Wide Association Study. FRONTIERS IN PLANT SCIENCE 2020; 11:571618. [PMID: 33123180 PMCID: PMC7573075 DOI: 10.3389/fpls.2020.571618] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Accepted: 09/04/2020] [Indexed: 08/31/2023]
Abstract
Common bean (Phaseolus vulgaris L.) is an important legume crop of north-western (NW) Himalayan region and the major disease that causes catastrophic loss to the crop is anthracnose, which is caused by Colletotrichum lindemuthianum. The pathogen is highly diverse and most of the commercial cultivars are susceptible to different races prevalent in the region. The lack of information on the genomic regions associated with anthracnose resistance in NW Himalayan common bean population prompted us to dissect Quantitative Resistance Loci (QRLs) against major anthracnose races. In this study, 188 common bean landraces collected from NW region were screened against five important anthracnose races and 113 bean genotypes showed resistance to one or multiple races. Genotyping by sequencing (GBS) was performed on a panel of 192 bean lines (4 controls plus 188 Indian beans) and 22,589 SNPs were obtained that are evenly distributed. Population structure analysis of 192 bean genotypes categorized 188 Indian beans into two major clusters representing Andean and Mesoamerican gene pools with obvious admixtures. Many QRLs associated with anthracnose resistance to Indian C. lindemuthianum virulences (race 3, 87, and 503) are located at Pv04 within the gene models that encode typical resistance gene signatures. The QRLs associated with race 73 are located on Pv08 and overlaps with Co-4 anthracnose resistance gene. A SNP located at distal end of Pv11 in a gene model Phvul.011G202300 which encodes a LRR with a typical NB-ARC domain showed association with race 73 resistance. Common bean genomic regions located at Pv03, Pv09, and Pv11 showed association with resistance to anthracnose race 2047. The present study showed presence of many novel bean genomic regions associated with anthracnose resistance. The presence of Co-4 and Co-2 genes in our material is encouraging for breeding durable anthracnose resistant cultivars for the region.
Collapse
Affiliation(s)
- Aqleema Banoo
- Plant Virology and Molecular Plant Pathology Laboratory, Division of Plant Pathology, SKUAST-Kashmir, Srinagar, India
| | - Asha Nabi
- Directorate of Extension, SKUAST-Kashmir, Srinagar, India
| | - Rovidha S. Rasool
- Plant Virology and Molecular Plant Pathology Laboratory, Division of Plant Pathology, SKUAST-Kashmir, Srinagar, India
| | - Mahiya-Farooq
- Plant Virology and Molecular Plant Pathology Laboratory, Division of Plant Pathology, SKUAST-Kashmir, Srinagar, India
| | - Mehraj D. Shah
- Plant Virology and Molecular Plant Pathology Laboratory, Division of Plant Pathology, SKUAST-Kashmir, Srinagar, India
| | - Mushtaq Ahmad
- Directorate of Extension, SKUAST-Kashmir, Srinagar, India
| | - Parvaze A. Sofi
- Division of Genetics and Plant Breeding, Faculty of Agriculture, SKUAST-Kashmir, Wadura, India
| | - Aasiya-Nabi
- Plant Virology and Molecular Plant Pathology Laboratory, Division of Plant Pathology, SKUAST-Kashmir, Srinagar, India
| | - Hamidullah Itoo
- Ambri Apple Research Centre, SKUAST-Kashmir, Srinagar, India
| | - P. N. Sharma
- Department of Plant Pathology, CSK HPKV, Palampur, India
| | - Bilal A. Padder
- Plant Virology and Molecular Plant Pathology Laboratory, Division of Plant Pathology, SKUAST-Kashmir, Srinagar, India
| |
Collapse
|
14
|
Gonçalves-Vidigal MC, Gilio TAS, Valentini G, Vaz-Bisneta M, Vidigal Filho PS, Song Q, Oblessuc PR, Melotto M. New Andean source of resistance to anthracnose and angular leaf spot: Fine-mapping of disease-resistance genes in California Dark Red Kidney common bean cultivar. PLoS One 2020; 15:e0235215. [PMID: 32598372 PMCID: PMC7323968 DOI: 10.1371/journal.pone.0235215] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Accepted: 06/10/2020] [Indexed: 12/19/2022] Open
Abstract
Anthracnose (ANT) and angular leaf spot (ALS) caused by Colletotrichum lindemuthianum and Pseudocercospora griseola, respectively, are devastating diseases of common bean around the world. Therefore, breeders are constantly searching for new genes with broad-spectrum resistance against ANT and ALS. This study aimed to characterize the genetic resistance of California Dark Red Kidney (CDRK) to C. lindemuthianum races 73, 2047, and 3481 and P. griseola race 63-39 through inheritance, allelism testing, and molecular analyses. Genetic analysis of response to ANT and ALS in recombinant inbred lines (RILs) from a CDRK × Yolano cross (CY) showed that the resistance of CDRK cultivar is conferred by a single dominant loci, which we named CoPv01CDRK/PhgPv01CDRK. Allelism tests performed with race 3481showed that the resistance gene in CDRK is independent of the Co-1 and Co-AC. We conducted co-segregation analysis in genotypes of 110 CY RILs and phenotypes of the RILs in response to different races of the ANT and ALS pathogens. The results revealed that CoPv01CDRK and PhgPv01CDRK are coinherited, conferring resistance to all races. Genetic mapping of the CY population placed the CoPv01CDRK/PhgPv01CDRK loci in a 245 Kb genomic region at the end of Pv01. By genotyping 19 RILs from the CY population using three additional markers, we fine-mapped the CoPv01CDRK/PhgPv01CDRK loci to a smaller genomic region of 33 Kb. This 33 Kb region harbors five predicted genes based on the common bean reference genome. These results can be applied in breeding programs to develop bean cultivars with ANT and ALS resistance using marker-assisted selection.
Collapse
Affiliation(s)
- M. C. Gonçalves-Vidigal
- Departamento de Agronomia, Universidade Estadual de Maringá, Av. Colombo, Maringá, Paraná, Brazil
| | - T. A. S. Gilio
- Departamento de Agronomia, Universidade Estadual de Maringá, Av. Colombo, Maringá, Paraná, Brazil
| | - G. Valentini
- Departamento de Agronomia, Universidade Estadual de Maringá, Av. Colombo, Maringá, Paraná, Brazil
| | - M. Vaz-Bisneta
- Departamento de Agronomia, Universidade Estadual de Maringá, Av. Colombo, Maringá, Paraná, Brazil
| | - P. S. Vidigal Filho
- Departamento de Agronomia, Universidade Estadual de Maringá, Av. Colombo, Maringá, Paraná, Brazil
| | - Q. Song
- Soybean Genomics and Improvement Laboratory, USDA-ARS, BARC-West, Beltsville, Maryland, United States of America
| | - P. R. Oblessuc
- Department of Plant Sciences, University of California, Davis, California, United States of America
| | - M. Melotto
- Department of Plant Sciences, University of California, Davis, California, United States of America
| |
Collapse
|
15
|
Nay MM, Mukankusi CM, Studer B, Raatz B. Haplotypes at the Phg-2 Locus Are Determining Pathotype-Specificity of Angular Leaf Spot Resistance in Common Bean. FRONTIERS IN PLANT SCIENCE 2019; 10:1126. [PMID: 31572421 PMCID: PMC6753878 DOI: 10.3389/fpls.2019.01126] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Accepted: 08/15/2019] [Indexed: 05/11/2023]
Abstract
Angular leaf spot (ALS) is one of the most devastating diseases of common bean (Phaseolus vulgaris L.) and causes serious yield losses worldwide. ALS resistance is reportedly pathotype-specific, but little is known about the efficacy of resistance loci against different pathotypes. Here, we report on ALS resistance evaluations of 316 bean lines under greenhouse and field conditions at multiple sites in Colombia and Uganda. Surprisingly, genome-wide association studies revealed only two of the five previously described resistance loci to be significantly associated with ALS resistance. Phg-2 on chromosome eight was crucial for ALS resistance in all trials, while the resistance locus Phg-4 on chromosome 4 was effective against one particular pathotype. Further dissection of Phg-2 uncovered an unprecedented diversity of functional haplotypes for a resistance locus in common bean. DNA sequence-based clustering identified eleven haplotype groups at Phg-2. One haplotype group conferred broad-spectrum ALS resistance, six showed pathotype-specific effects, and the remaining seven did not exhibit clear resistance patterns. Our research highlights the importance of ALS pathotype-specificity for durable resistance management strategies in common bean. Molecular markers co-segregating with resistance loci and haplotypes will increase breeding efficiency for ALS resistance and allow to react faster to future changes in pathogen pressure and composition.
Collapse
Affiliation(s)
- Michelle M. Nay
- Molecular Plant Breeding, Institute of Agricultural Sciences, ETH Zurich, Zurich, Switzerland
| | - Clare M. Mukankusi
- Bean Program, International Center for Tropical Agriculture (CIAT), Kampala, Uganda
| | - Bruno Studer
- Molecular Plant Breeding, Institute of Agricultural Sciences, ETH Zurich, Zurich, Switzerland
| | - Bodo Raatz
- Bean Program, International Center for Tropical Agriculture (CIAT), Cali, Colombia
| |
Collapse
|
16
|
Mukankusi C, Raatz B, Nkalubo S, Berhanu F, Binagwa P, Kilango M, Williams M, Enid K, Chirwa R, Beebe S. Genomics, genetics and breeding of common bean in Africa: A review of tropical legume project. PLANT BREEDING = ZEITSCHRIFT FUR PFLANZENZUCHTUNG 2019; 138:401-414. [PMID: 31728074 PMCID: PMC6839041 DOI: 10.1111/pbr.12573] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2017] [Accepted: 01/16/2018] [Indexed: 05/11/2023]
Abstract
Common bean (Phaseolus vulgaris L.) is an important legume crop worldwide. The International Centre for Tropical Agriculture (CIAT) and its national partners in Africa aim to overcome production constraints of common bean and address the food, nutrition needs and market demands through development of multitrait bean varieties. Breeding is guided by principles of market-driven approaches to develop client-demanded varieties. Germplasm accessions from especially two sister species, P. coccineus and P. acutifolius, have been utilized as sources of resistance to major production constraints and interspecific lines deployed. Elucidation of plant mechanisms governing pest and disease resistance, abiotic stress tolerance and grain nutritional quality guides the selection methods used by the breeders. Molecular markers are used to select for resistance to key diseases and insect pests. Efforts have been made to utilize modern genomic tools to increase scale, efficiency, accuracy and speed of breeding. Through gender-responsive participatory variety selection, market-demanded varieties have been released in several African countries. These new bean varieties are a key component of sustainable food systems in the tropics.
Collapse
Affiliation(s)
- Clare Mukankusi
- International Centre for Tropical Agriculture (CIAT)KampalaUganda
| | - Bodo Raatz
- International Centre for Tropical Agriculture (CIAT)CaliColombia
| | - Stanley Nkalubo
- National Crops Resources Research Institute (NaCRRI)KampalaUganda
| | - Fenta Berhanu
- Melkassa Agricultural Research CentreOromia RegionAdama townEthiopia
| | - Papias Binagwa
- Selian Agricultural Research Institute (SARI)ArushaTanzania
| | - Michael Kilango
- Uyole Agricultural Research Institute (ARI‐Uyole)MbeyaTanzania
| | | | - Katungi Enid
- International Centre for Tropical Agriculture (CIAT)KampalaUganda
| | - Rowland Chirwa
- International Centre for Tropical Agriculture (CIAT)LilongweMalawi
| | - Steve Beebe
- International Centre for Tropical Agriculture (CIAT)CaliColombia
| |
Collapse
|
17
|
Nay MM, Souza TLPO, Raatz B, Mukankusi CM, Gonçalves-Vidigal MC, Abreu AFB, Melo LC, Pastor-Corrales MA. A Review of Angular Leaf Spot Resistance in Common Bean. CROP SCIENCE 2019; 59:1376-1391. [PMID: 33343018 PMCID: PMC7680949 DOI: 10.2135/cropsci2018.09.0596] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Accepted: 02/05/2019] [Indexed: 05/05/2023]
Abstract
Angular leaf spot (ALS), caused by Pseudocercospora griseola, is one of the most devastating diseases of common bean (Phaseolus vulgaris L.) in tropical and subtropical production areas. Breeding for ALS resistance is difficult due to the extensive virulence diversity of P. griseola and the recurrent appearance of new virulent races. Five major loci, Phg-1 to Phg-5, conferring ALS resistance have been named, and markers tightly linked to these loci have been reported. Quantitative trait loci (QTLs) have also been described, but the validation of some QTLs is still pending. The Phg-1, Phg-4, and Phg-5 loci are from common bean cultivars of the Andean gene pool, whereas Phg-2 and Phg-3 are from beans of the Mesoamerican gene pool. The reference genome of common bean and high-throughput sequencing technologies are enabling the development of molecular markers closely linked to the Phg loci, more accurate mapping of the resistance loci, and the comparison of their genomic positions. The objective of this report is to provide a comprehensive review of ALS resistance in common bean. Furthermore, we are reporting three case studies of ALS resistance breeding in Latin America and Africa. This review will serve as a reference for future resistance mapping studies and as a guide for the selection of resistance loci in breeding programs aiming to develop common bean cultivars with durable ALS resistance.
Collapse
Affiliation(s)
| | | | - Bodo Raatz
- Centro Internacional de Agricultura Tropical (CIAT), Cali, Colombia
| | | | | | | | | | | |
Collapse
|
18
|
Murube E, Campa A, Ferreira JJ. Integrating genetic and physical positions of the anthracnose resistance genes described in bean chromosomes Pv01 and Pv04. PLoS One 2019; 14:e0212298. [PMID: 30763410 PMCID: PMC6375601 DOI: 10.1371/journal.pone.0212298] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Accepted: 01/30/2019] [Indexed: 12/21/2022] Open
Abstract
A complex landscape of anthracnose resistance genes (Co-) located at the telomeric regions of the bean chromosomes Pv01 and Pv04 has been reported. The aim of this work was to investigate the genetic and physical positions of genes conferring resistance to races 6, 38, 39, 357, 65, and 73 as well as the relationships among the resistance genes identified herein and the previously described Co- genes in these telomeric regions. The linkage analysis using a genetic map of 497 SNPs from the recombinant inbred line population Xana/BAT93 revealed that the gene conferring resistance to race 65 in cultivar Xana (Co-165-X) was located in the Co-1 cluster, at the distal end of chromosome Pv01. The fine mapping of Co-165-X indicated that it was positioned between the physical positions 49,512,545 and 49,658,821 bp. This delimited physical position agrees with the positions of the previously mapped genes Co- 14, Co-x, Co-14, Co-1HY, and Co-Pa. Responses to races 6, 38, 39, and 357 in BAT93 exhibited co-segregation suggesting that the same gene, or very closely linked genes, were involved in the control. The linkage analysis showed that the resistance gene to race 38 in the genotype BAT93 (Co-338-B) was located at the beginning of chromosome Pv04, in the genetic position of the Co-3 cluster, and was flanked by markers with physical positions between 1,286,490 and 2,047,754 bp. Thus, the genes Co-3, Co-9, Co-10, Co-16, and Co-338-B, found in this work, form part of the same anthracnose resistance cluster at the beginning of chromosome Pv04, which is consistent with the discontinuous distribution of typical R genes annotated in the underlying genomic region. Resistance loci involved in the response to race 73 in the genotypes Xana (R) and BAT93 (R) were mapped to the same positions on clusters Co-1 and Co-3, respectively. The positioning of the resistance genes in the bean genome based on fine linkage mapping should play an important role in the characterization and differentiation of the anthracnose resistance genes. The assignment of Co- genes to clusters of race specific genes can help simplify the current scenario of anthracnose resistance.
Collapse
Affiliation(s)
- Ester Murube
- Plant Genetic Group, Area of Horticultural and Forest Crops, SERIDA, Villaviciosa Asturias, Spain
| | - Ana Campa
- Plant Genetic Group, Area of Horticultural and Forest Crops, SERIDA, Villaviciosa Asturias, Spain
| | - Juan José Ferreira
- Plant Genetic Group, Area of Horticultural and Forest Crops, SERIDA, Villaviciosa Asturias, Spain
| |
Collapse
|
19
|
Okii D, Badji A, Odong T, Talwana H, Tukamuhabwa P, Male A, Mukankusi C, Gepts P. Recombination fraction and genetic linkage among key disease resistance genes ( Co-42 / Phg-2 and Co-5/"P.ult") in common bean. ACTA ACUST UNITED AC 2019; 18:AJB-18-29-819. [PMID: 33281892 PMCID: PMC7672375 DOI: 10.5897/ajb2019.16776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Accepted: 06/26/2019] [Indexed: 10/31/2022]
Abstract
Anthracnose (Colletotrichum lindemuthianum), Angular leaf spot (Pseudocercospora griseola) and Pythium root rot are important pathogens affecting common bean production in the tropics. A promising strategy to manage these diseases consists of combining several resistance (R) genes into one cultivar. The aim of the study was to determine genetic linkage between gene pairs, Co-42 /Phg-2, on bean-chromosome Pv08 and Co-5/"P.ult" on-chromosome Pv07, to increase the efficiency of dual selection of resistance genes for major bean diseases, with molecular markers. The level of recombination was determined by tracking molecular markers for both BC3F6 and F2 generations. Recombination fraction r, among gene pairs, the likelihood of linkage, L(r), and logarithm of odds (LOD) scores were computed using the statistical relationship of likelihood which assumes a binomial distribution. The SCAR marker pair SAB3/PYAA19 for the gene pair Co-5/"P.ult" exhibited moderate linkage (r = 32 cM with a high LOD score of 9.2) for BC3F6 population, but relatively stronger linkage for the F2 population (r = 21 cM with a high LOD score of 18.7). However, the linkage among SCAR marker pair SH18/SN02, for the gene pair Co-42 /Phg-2 was incomplete for BC3F6 population (r = 47 cM with a low LOD score of 0.16) as well as F2 population (r = 44 cM with a low LOD score of 0.7). Generally, the weak or incomplete genetic linkage between marker pairs studied showed that all the four genes mentioned earlier have to be tagged with a corresponding linked marker during selection. The approaches used in this study will contribute to two loci linkage mapping techniques in segregating plant populations.
Collapse
Affiliation(s)
- Dennis Okii
- Department of Agricultural Production, Makerere University, P. O. Box 7062, Kampala, Uganda
| | - Arfang Badji
- Department of Agricultural Production, Makerere University, P. O. Box 7062, Kampala, Uganda
| | - Thomas Odong
- Department of Agricultural Production, Makerere University, P. O. Box 7062, Kampala, Uganda
| | - Herbert Talwana
- Department of Agricultural Production, Makerere University, P. O. Box 7062, Kampala, Uganda
| | - Phinehas Tukamuhabwa
- Department of Agricultural Production, Makerere University, P. O. Box 7062, Kampala, Uganda
| | - Allan Male
- International Centre for Tropical Agriculture (CIAT)/Pan African Bean Research Alliance (PABRA), P. O. Box 6247, Kampala, Uganda
| | - Clare Mukankusi
- International Centre for Tropical Agriculture (CIAT)/Pan African Bean Research Alliance (PABRA), P. O. Box 6247, Kampala, Uganda
| | - Paul Gepts
- Section of Crop and Ecosystem Sciences, Department of Plant Sciences/MS1, University of California, 1 Shields Avenue, Davis, CA 95616-8780, USA
| |
Collapse
|
20
|
Pan J, Tan J, Wang Y, Zheng X, Owens K, Li D, Li Y, Weng Y. STAYGREEN (CsSGR) is a candidate for the anthracnose (Colletotrichum orbiculare) resistance locus cla in Gy14 cucumber. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2018; 131:1577-1587. [PMID: 29680862 DOI: 10.1007/s00122-018-3099-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2018] [Accepted: 04/18/2018] [Indexed: 05/02/2023]
Abstract
Map-based cloning identified a candidate gene for resistance to the anthracnose fungal pathogen Colletotrichum orbiculare in cucumber, which reveals a novel function for the highly conserved STAYGREEN family genes for host disease resistance in plants. Colletotrichum orbiculare is a hemibiotrophic fungal pathogen that causes anthracnose disease in cucumber and other cucurbit crops. No host resistance genes against the anthracnose pathogens have been cloned in crop plants. Here, we reported fine mapping and cloning of a resistance gene to the race 1 anthracnose pathogen in cucumber inbred lines Gy14 and WI 2757. Phenotypic and QTL analysis in multiple populations revealed that a single recessive gene, cla, was underlying anthracnose resistance in both lines, but WI2757 carried an additional minor-effect QTL. Fine mapping using 150 Gy14 × 9930 recombinant inbred lines and 1043 F2 individuals delimited the cla locus into a 32 kb region in cucumber Chromosome 5 with three predicted genes. Multiple lines of evidence suggested that the cucumber STAYGREEN (CsSGR) gene is a candidate for the anthracnose resistance locus. A single nucleotide mutation in the third exon of CsSGR resulted in the substitution of Glutamine in 9930 to Arginine in Gy14 in CsSGR protein which seems responsible for the differential anthracnose inoculation responses between Gy14 and 9930. Quantitative real-time PCR analysis indicated that CsSGR was significantly upregulated upon anthracnose pathogen inoculation in the susceptible 9930, while its expression was much lower in the resistant Gy14. Investigation of allelic diversities in natural cucumber populations revealed that the resistance allele in almost all improved cultivars or breeding lines of the U.S. origin was derived from PI 197087. This work reveals an unknown function for the highly conserved STAYGREEN (SGR) family genes for host disease resistance in plants.
Collapse
Affiliation(s)
- Junsong Pan
- Horticulture Department, University of Wisconsin, Madison, WI, 53706, USA
- Department of Plant Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Junyi Tan
- Horticulture Department, University of Wisconsin, Madison, WI, 53706, USA
| | - Yuhui Wang
- Horticulture Department, University of Wisconsin, Madison, WI, 53706, USA
| | - Xiangyang Zheng
- Magnum Seeds Inc., Dixon, CA, 95620, USA
- HM Clause Seed Company, Dixon, CA, 95260, USA
| | - Ken Owens
- Magnum Seeds Inc., Dixon, CA, 95620, USA
- HM Clause Seed Company, Dixon, CA, 95260, USA
| | - Dawei Li
- Horticulture Department, University of Wisconsin, Madison, WI, 53706, USA
- Horticulture College, Northwest A&F University, Yangling, 712100, China
| | - Yuhong Li
- Horticulture Department, University of Wisconsin, Madison, WI, 53706, USA
- Horticulture College, Northwest A&F University, Yangling, 712100, China
| | - Yiqun Weng
- Horticulture Department, University of Wisconsin, Madison, WI, 53706, USA.
- Vegetable Crops Research Unit, USDA-ARS, 1575 Linden Drive, Madison, WI, 53706, USA.
| |
Collapse
|
21
|
Campa A, Trabanco N, Ferreira JJ. Identification of Clusters that Condition Resistance to Anthracnose in the Common Bean Differential Cultivars AB136 and MDRK. PHYTOPATHOLOGY 2017; 107:1515-1521. [PMID: 28742459 DOI: 10.1094/phyto-01-17-0012-r] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
The correct identification of the anthracnose resistance systems present in the common bean cultivars AB136 and MDRK is important because both are included in the set of 12 differential cultivars proposed for use in classifying the races of the anthracnose causal agent, Colletrotrichum lindemuthianum. In this work, the responses against seven C. lindemuthianum races were analyzed in a recombinant inbred line population derived from the cross AB136 × MDRK. A genetic linkage map of 100 molecular markers distributed across the 11 bean chromosomes was developed in this population to locate the gene or genes conferring resistance against each race, based on linkage analyses and χ2 tests of independence. The identified anthracnose resistance genes were organized in clusters. Two clusters were found in AB136: one located on linkage group Pv07, which corresponds to the anthracnose resistance cluster Co-5, and the other located at the end of linkage group Pv11, which corresponds to the Co-2 cluster. The presence of resistance genes at the Co-5 cluster in AB136 was validated through an allelism test conducted in the F2 population TU × AB136. The presence of resistance genes at the Co-2 cluster in AB136 was validated through genetic dissection using the F2:3 population ABM3 × MDRK, in which it was directly mapped to a genomic position between 46.01 and 47.77 Mb of chromosome Pv11. In MDRK, two independent clusters were identified: one located on linkage group Pv01, corresponding to the Co-1 cluster, and the second located on LG Pv04, corresponding to the Co-3 cluster. This report enhances the understanding of the race-specific Phaseolus vulgaris-C. lindemuthianum interactions and will be useful in breeding programs.
Collapse
Affiliation(s)
- Ana Campa
- First and third authors: Plant Genetics, Area of Horticultural and Forest Crops, SERIDA, Asturias, Spain; and second author: Division of Plant Production (DiSAA), Università degli Studi di Milano, Via Celoria 2, Milan (Italy)
| | - Noemí Trabanco
- First and third authors: Plant Genetics, Area of Horticultural and Forest Crops, SERIDA, Asturias, Spain; and second author: Division of Plant Production (DiSAA), Università degli Studi di Milano, Via Celoria 2, Milan (Italy)
| | - Juan José Ferreira
- First and third authors: Plant Genetics, Area of Horticultural and Forest Crops, SERIDA, Asturias, Spain; and second author: Division of Plant Production (DiSAA), Università degli Studi di Milano, Via Celoria 2, Milan (Italy)
| |
Collapse
|
22
|
Valentini G, Gonçalves-Vidigal MC, Hurtado-Gonzales OP, de Lima Castro SA, Cregan PB, Song Q, Pastor-Corrales MA. High-resolution mapping reveals linkage between genes in common bean cultivar Ouro Negro conferring resistance to the rust, anthracnose, and angular leaf spot diseases. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2017; 130:1705-1722. [PMID: 28560590 DOI: 10.1007/s00122-017-2920-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2016] [Accepted: 05/04/2017] [Indexed: 05/13/2023]
Abstract
Co-segregation analysis and high-throughput genotyping using SNP, SSR, and KASP markers demonstrated genetic linkage between Ur-14 and Co-3 4 /Phg-3 loci conferring resistance to the rust, anthracnose and angular leaf spot diseases of common bean. Rust, anthracnose, and angular leaf spot are major diseases of common bean in the Americas and Africa. The cultivar Ouro Negro has the Ur-14 gene that confers broad spectrum resistance to rust and the gene cluster Co-3 4 /Phg-3 containing two tightly linked genes conferring resistance to anthracnose and angular leaf spot, respectively. We used co-segregation analysis and high-throughput genotyping of 179 F2:3 families from the Rudá (susceptible) × Ouro Negro (resistant) cross-phenotyped separately with races of the rust and anthracnose pathogens. The results confirmed that Ur-14 and Co-3 4 /Phg-3 cluster in Ouro Negro conferred resistance to rust and anthracnose, respectively, and that Ur-14 and the Co-3 4 /Phg-3 cluster were closely linked. Genotyping the F2:3 families, first with 5398 SNPs on the Illumina BeadChip BARCBEAN6K_3 and with 15 SSR, and eight KASP markers, specifically designed for the candidate region containing Ur-14 and Co-3 4 /Phg-3, permitted the creation of a high-resolution genetic linkage map which revealed that Ur-14 was positioned at 2.2 cM from Co-3 4 /Phg-3 on the short arm of chromosome Pv04 of the common bean genome. Five flanking SSR markers were tightly linked at 0.1 and 0.2 cM from Ur-14, and two flanking KASP markers were tightly linked at 0.1 and 0.3 cM from Co-3 4 /Phg-3. Many other SSR, SNP, and KASP markers were also linked to these genes. These markers will be useful for the development of common bean cultivars combining the important Ur-14 and Co-3 4 /Phg-3 genes conferring resistance to three of the most destructive diseases of common bean.
Collapse
Affiliation(s)
- Giseli Valentini
- Departamento de Agronomia, Universidade Estadual de Maringá, Av. Colombo, 5790, Maringá-PR, 87020-900, Brazil
| | | | | | | | - Perry B Cregan
- Soybean Genomics Improvement Laboratory, USDA-ARS, BARC-West, Beltsville, MD, 20705, USA
| | - Qijian Song
- Soybean Genomics Improvement Laboratory, USDA-ARS, BARC-West, Beltsville, MD, 20705, USA
| | | |
Collapse
|
23
|
de Lima Castro SA, Gonçalves-Vidigal MC, Gilio TAS, Lacanallo GF, Valentini G, da Silva Ramos Martins V, Song Q, Galván MZ, Hurtado-Gonzales OP, Pastor-Corrales MA. Genetics and mapping of a new anthracnose resistance locus in Andean common bean Paloma. BMC Genomics 2017; 18:306. [PMID: 28420340 PMCID: PMC5395906 DOI: 10.1186/s12864-017-3685-7] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2016] [Accepted: 04/06/2017] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The Andean cultivar Paloma is resistant to Mesoamerican and Andean races of Colletotrichum lindemuthianum, the fungal pathogen that causes the destructive anthracnose disease in common bean. Remarkably, Paloma is resistant to Mesoamerican races 2047 and 3481, which are among the most virulent races of the anthracnose pathogen. Most genes conferring anthracnose resistance in common bean are overcome by these races. The genetic mapping and the relationship between the resistant Co-Pa gene of Paloma and previously characterized anthracnose resistance genes can be a great contribution for breeding programs. RESULTS The inheritance of resistance studies for Paloma was performed in F2 population from the cross Paloma (resistant) × Cornell 49-242 (susceptible) inoculated with race 2047, and in F2 and F2:3 generations from the cross Paloma (resistant) × PI 207262 (susceptible) inoculated with race 3481. The results of these studies demonstrated that a single dominant gene confers the resistance in Paloma. Allelism tests performed with multiple races of C. lindemuthianum showed that the resistance gene in Paloma, provisionally named Co-Pa, is independent from the anthracnose resistance genes Co-1, Co-2, Co-3, Co-4, Co-5, Co-6, Co-12, Co-13, Co-14, Co-15 and Co-16. Bulk segregant analysis using the SNP chip BARCBean6K_3 positioned the approximate location of Co-Pa in the lower arm of chromosome Pv01. Further mapping analysis located the Co-Pa gene at a 390 kb region of Pv01 flanked by SNP markers SS82 and SS83 at a distance of 1.3 and 2.1 cM, respectively. CONCLUSIONS The results presented here showed that Paloma cultivar has a new dominant gene conferring resistance to anthracnose, which is independent from those genes previously described. The linkage between the Co-Pa gene and the SS82 and SS83 SNP markers will be extremely important for marker-assisted introgression of the gene into elite cultivars in order to enhance resistance.
Collapse
Affiliation(s)
| | | | | | | | - Giseli Valentini
- Departamento de Agronomia, Universidade Estadual de Maringá, Maringá, Paraná, Brazil
| | | | - Qijian Song
- Soybean Genomics and Improvement Laboratory, United States Department of Agriculture, Agricultural Research Service, Beltsville, MD, USA
| | - Marta Zulema Galván
- CONICET, Laboratorio de Biotecnología, Estación Experimental Agropecuaria Salta, Instituto Nacional de Tecnología Agropecuaria, Cerrillos, Salta, Argentina
| | - Oscar P Hurtado-Gonzales
- Soybean Genomics and Improvement Laboratory, United States Department of Agriculture, Agricultural Research Service, Beltsville, MD, USA
| | - Marcial Antonio Pastor-Corrales
- Soybean Genomics and Improvement Laboratory, United States Department of Agriculture, Agricultural Research Service, Beltsville, MD, USA.
| |
Collapse
|
24
|
Costa LC, Nalin RS, Ramalho MAP, de Souza EA. Are duplicated genes responsible for anthracnose resistance in common bean? PLoS One 2017; 12:e0173789. [PMID: 28296933 PMCID: PMC5351970 DOI: 10.1371/journal.pone.0173789] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2016] [Accepted: 02/27/2017] [Indexed: 11/19/2022] Open
Abstract
The race 65 of Colletotrichum lindemuthianum, etiologic agent of anthracnose in common bean, is distributed worldwide, having great importance in breeding programs for anthracnose resistance. Several resistance alleles have been identified promoting resistance to this race. However, the variability that has been detected within race has made it difficult to obtain cultivars with durable resistance, because cultivars may have different reactions to each strain of race 65. Thus, this work aimed at studying the resistance inheritance of common bean lines to different strains of C. lindemuthianum, race 65. We used six C. lindemuthianum strains previously characterized as belonging to the race 65 through the international set of differential cultivars of anthracnose and nine commercial cultivars, adapted to the Brazilian growing conditions and with potential ability to discriminate the variability within this race. To obtain information on the resistance inheritance related to nine commercial cultivars to six strains of race 65, these cultivars were crossed two by two in all possible combinations, resulting in 36 hybrids. Segregation in the F2 generations revealed that the resistance to each strain is conditioned by two independent genes with the same function, suggesting that they are duplicated genes, where the dominant allele promotes resistance. These results indicate that the specificity between host resistance genes and pathogen avirulence genes is not limited to races, it also occurs within strains of the same race. Further research may be carried out in order to establish if the alleles identified in these cultivars are different from those described in the literature.
Collapse
Affiliation(s)
| | - Rafael Storto Nalin
- Department of Genetics, Escola Superior de Agricultura Luiz de Queiroz/Universidade de São Paulo, Piracicaba, São Paulo, Brazil
| | | | | |
Collapse
|
25
|
Bassi D, Briñez B, Rosa JS, Oblessuc PR, Almeida CPD, Nucci SM, Silva LCDD, Chiorato AF, Vianello RP, Camargo LEA, Blair MW, Benchimol-Reis LL. Linkage and mapping of quantitative trait loci associated with angular leaf spot and powdery mildew resistance in common beans. Genet Mol Biol 2017; 40:109-122. [PMID: 28222201 PMCID: PMC5409766 DOI: 10.1590/1678-4685-gmb-2015-0314] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2015] [Accepted: 06/20/2016] [Indexed: 11/23/2022] Open
Abstract
Angular leaf spot (ALS) and powdery mildew (PWM) are two important fungi diseases
causing significant yield losses in common beans. In this study, a new genetic
linkage map was constructed using single sequence repeats (SSRs) and single
nucleotide polymorphisms (SNPs), in a segregating population derived from the AND 277
x SEA 5 cross, with 105 recombinant inbred lines. Phenotypic evaluations were
performed in the greenhouse to identify quantitative trait loci
(QTLs) associated with resistance by means of the composite interval mapping
analysis. Four QTLs were identified for ALS resistance. The QTL ALS11AS,
linked on the SNP BAR 5054, mapped on chromosome Pv11, showed the greatest effect
(R2 = 26.5%) on ALS phenotypic variance. For PWM resistance, two QTLs
were detected, PWM2AS and PWM11AS, on Pv2 and Pv11, explaining
7% and 66% of the phenotypic variation, respectively. Both QTLs on Pv11 were mapped
on the same genomic region, suggesting that it is a pleiotropic region. The present
study resulted in the identification of new markers closely linked to ALS and PWM
QTLs, which can be used for marker-assisted selection, fine mapping and positional
cloning.
Collapse
Affiliation(s)
- Denis Bassi
- Centro de Recursos Genéticos Vegetais, Instituto Agronômico de Campinas (IAC), Campinas, SP, Brazil
| | - Boris Briñez
- Centro de Recursos Genéticos Vegetais, Instituto Agronômico de Campinas (IAC), Campinas, SP, Brazil
| | - Juliana Santa Rosa
- Centro de Recursos Genéticos Vegetais, Instituto Agronômico de Campinas (IAC), Campinas, SP, Brazil
| | - Paula Rodrigues Oblessuc
- Centro de Recursos Genéticos Vegetais, Instituto Agronômico de Campinas (IAC), Campinas, SP, Brazil
| | - Caléo Panhoca de Almeida
- Centro de Recursos Genéticos Vegetais, Instituto Agronômico de Campinas (IAC), Campinas, SP, Brazil
| | - Stella Maris Nucci
- Centro de Recursos Genéticos Vegetais, Instituto Agronômico de Campinas (IAC), Campinas, SP, Brazil
| | | | | | | | - Luis Eduardo Aranha Camargo
- Departamento de Fitopatologia, Escola Superior de Agricultura Luiz de Queiroz (ESALQ), Universidade de São Paulo (USP), Piracicaba, SP, Brazil
| | - Matthew Wohlgemuth Blair
- Department of Agriculture and Environmental Sciences, Tennessee State University, Nashville, TN, USA
| | | |
Collapse
|
26
|
Chen M, Wu J, Wang L, Mantri N, Zhang X, Zhu Z, Wang S. Mapping and Genetic Structure Analysis of the Anthracnose Resistance Locus Co-1HY in the Common Bean (Phaseolus vulgaris L.). PLoS One 2017; 12:e0169954. [PMID: 28076395 PMCID: PMC5226810 DOI: 10.1371/journal.pone.0169954] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2016] [Accepted: 12/27/2016] [Indexed: 11/20/2022] Open
Abstract
Anthracnose is a destructive disease of the common bean (Phaseolus vulgaris L.). The Andean cultivar Hongyundou has been demonstrated to possess strong resistance to anthracnose race 81. To study the genetics of this resistance, the Hongyundou cultivar was crossed with a susceptible genotype Jingdou. Segregation of resistance for race 81 was assessed in the F2 population and F2:3 lines under controlled conditions. Results indicate that Hongyundou carries a single dominant gene for anthracnose resistance. An allele test by crossing Hongyundou with another resistant cultivar revealed that the resistance gene is in the Co-1 locus (therefore named Co-1HY). The physical distance between this locus and the two flanking markers was 46 kb, and this region included four candidate genes, namely, Phvul.001G243500, Phvul.001G243600, Phvul.001G243700 and Phvul.001G243800. These candidate genes encoded serine/threonine-protein kinases. Expression analysis of the four candidate genes in the resistant and susceptible cultivars under control condition and inoculated treatment revealed that all the four candidate genes are expressed at significantly higher levels in the resistant genotype than in susceptible genotype. Phvul.001G243600 and Phvul.001G243700 are expressed nearly 15-fold and 90-fold higher in the resistant genotype than in the susceptible parent before inoculation, respectively. Four candidate genes will provide useful information for further research into the resistance mechanism of anthracnose in common bean. The closely linked flanking markers identified here may be useful for transferring the resistance allele Co-1HY from Hongyundou to elite anthracnose susceptible common bean lines.
Collapse
Affiliation(s)
- Mingli Chen
- Key Laboratory of Crop Germplasm Resources and Utilization, Ministry of Agriculture; The National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Science, the Chinese Academy of Agricultural Sciences, Beijing, China
- Tobacco Research Institute, Chinese Academy of Agricultural Science, Qingdao, Shandong, China
| | - Jing Wu
- Key Laboratory of Crop Germplasm Resources and Utilization, Ministry of Agriculture; The National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Science, the Chinese Academy of Agricultural Sciences, Beijing, China
| | - Lanfen Wang
- Key Laboratory of Crop Germplasm Resources and Utilization, Ministry of Agriculture; The National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Science, the Chinese Academy of Agricultural Sciences, Beijing, China
| | - Nitin Mantri
- RMIT University, School of Science, Melbourne, Victoria, Australia
| | - Xiaoyan Zhang
- Qingdao Academy of Agricultural Sciences, Shandong, China
| | - Zhendong Zhu
- Key Laboratory of Crop Germplasm Resources and Utilization, Ministry of Agriculture; The National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Science, the Chinese Academy of Agricultural Sciences, Beijing, China
| | - Shumin Wang
- Key Laboratory of Crop Germplasm Resources and Utilization, Ministry of Agriculture; The National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Science, the Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
27
|
Zuiderveen GH, Padder BA, Kamfwa K, Song Q, Kelly JD. Genome-Wide Association Study of Anthracnose Resistance in Andean Beans (Phaseolus vulgaris). PLoS One 2016; 11:e0156391. [PMID: 27270627 PMCID: PMC4894742 DOI: 10.1371/journal.pone.0156391] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2016] [Accepted: 05/15/2016] [Indexed: 12/29/2022] Open
Abstract
Anthracnose is a seed-borne disease of common bean (Phaseolus vulgaris L.) caused by the fungus Colletotrichum lindemuthianum, and the pathogen is cosmopolitan in distribution. The objectives of this study were to identify new sources of anthracnose resistance in a diverse panel of 230 Andean beans comprised of multiple seed types and market classes from the Americas, Africa, and Europe, and explore the genetic basis of this resistance using genome-wide association mapping analysis (GWAS). Twenty-eight of the 230 lines tested were resistant to six out of the eight races screened, but only one cultivar Uyole98 was resistant to all eight races (7, 39, 55, 65, 73, 109, 2047, and 3481) included in the study. Outputs from the GWAS indicated major quantitative trait loci (QTL) for resistance on chromosomes, Pv01, Pv02, and Pv04 and two minor QTL on Pv10 and Pv11. Candidate genes associated with the significant SNPs were detected on all five chromosomes. An independent QTL study was conducted to confirm the physical location of the Co-1 locus identified on Pv01 in an F4:6 recombinant inbred line (RIL) population. Resistance was determined to be conditioned by the single dominant gene Co-1 that mapped between 50.16 and 50.30 Mb on Pv01, and an InDel marker (NDSU_IND_1_50.2219) tightly linked to the gene was developed. The information reported will provide breeders with new and diverse sources of resistance and genomic regions to target in the development of anthracnose resistance in Andean beans.
Collapse
Affiliation(s)
- Grady H. Zuiderveen
- Dept. of Plant, Soil and Microbial Sciences, Michigan State Univ., 1066 Bogue St., East Lansing, MI, 48824, United States of America
| | - Bilal A. Padder
- Dept. of Plant, Soil and Microbial Sciences, Michigan State Univ., 1066 Bogue St., East Lansing, MI, 48824, United States of America
| | - Kelvin Kamfwa
- Dept. of Plant, Soil and Microbial Sciences, Michigan State Univ., 1066 Bogue St., East Lansing, MI, 48824, United States of America
| | - Qijian Song
- USDA-ARS, 10300 Baltimore Ave., Soybean Genomics and Improvement Laboratory, BARC, Beltsville, MD, 20705–2350, United States of America
| | - James D. Kelly
- Dept. of Plant, Soil and Microbial Sciences, Michigan State Univ., 1066 Bogue St., East Lansing, MI, 48824, United States of America
| |
Collapse
|
28
|
Meziadi C, Richard MMS, Derquennes A, Thareau V, Blanchet S, Gratias A, Pflieger S, Geffroy V. Development of molecular markers linked to disease resistance genes in common bean based on whole genome sequence. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2016; 242:351-357. [PMID: 26566851 DOI: 10.1016/j.plantsci.2015.09.006] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2015] [Revised: 09/01/2015] [Accepted: 09/02/2015] [Indexed: 05/03/2023]
Abstract
Common bean (Phaseolus vulgaris) is the most important grain legume for direct human consumption in the world, particularly in developing countries where it constitutes the main source of protein. Unfortunately, common bean yield stability is constrained by a number of pests and diseases. As use of resistant genotypes is the most economic and ecologically safe means for controlling plant diseases, efforts have been made to genetically characterize resistance genes (R genes) in common bean. Despite its agronomic importance, genomic resources available in common bean were limited until the recent sequencing of common bean genome (Andean genotype G19833). Besides allowing the annotation of Nucleotide Binding-Leucine Rich Repeat (NB-LRR) encoding gene family, which is the prevalent class of disease R genes in plants, access to the whole genome sequence of common bean can be of great help for intense selection to increase the overall efficiency of crop improvement programs using marker-assisted selection (MAS). This review presents the state of the art of common bean NB-LRR gene clusters, their peculiar location in subtelomeres and correlation with genetically characterized monogenic R genes, as well as how the availability of the whole genome sequence can boost the development of molecular markers for MAS.
Collapse
Affiliation(s)
- Chouaïb Meziadi
- Institute of Plant Sciences Paris-Saclay (IPS2), CNRS, INRA, Université Paris-Sud, Université d'Evry, Université Paris-Diderot, Sorbonne Paris-Cité, Université Paris-Saclay, Bâtiment 630, 91405 Orsay, France
| | - Manon M S Richard
- Institute of Plant Sciences Paris-Saclay (IPS2), CNRS, INRA, Université Paris-Sud, Université d'Evry, Université Paris-Diderot, Sorbonne Paris-Cité, Université Paris-Saclay, Bâtiment 630, 91405 Orsay, France
| | - Amandine Derquennes
- Institute of Plant Sciences Paris-Saclay (IPS2), CNRS, INRA, Université Paris-Sud, Université d'Evry, Université Paris-Diderot, Sorbonne Paris-Cité, Université Paris-Saclay, Bâtiment 630, 91405 Orsay, France
| | - Vincent Thareau
- Institute of Plant Sciences Paris-Saclay (IPS2), CNRS, INRA, Université Paris-Sud, Université d'Evry, Université Paris-Diderot, Sorbonne Paris-Cité, Université Paris-Saclay, Bâtiment 630, 91405 Orsay, France
| | - Sophie Blanchet
- Institute of Plant Sciences Paris-Saclay (IPS2), CNRS, INRA, Université Paris-Sud, Université d'Evry, Université Paris-Diderot, Sorbonne Paris-Cité, Université Paris-Saclay, Bâtiment 630, 91405 Orsay, France
| | - Ariane Gratias
- Institute of Plant Sciences Paris-Saclay (IPS2), CNRS, INRA, Université Paris-Sud, Université d'Evry, Université Paris-Diderot, Sorbonne Paris-Cité, Université Paris-Saclay, Bâtiment 630, 91405 Orsay, France
| | - Stéphanie Pflieger
- Institute of Plant Sciences Paris-Saclay (IPS2), CNRS, INRA, Université Paris-Sud, Université d'Evry, Université Paris-Diderot, Sorbonne Paris-Cité, Université Paris-Saclay, Bâtiment 630, 91405 Orsay, France
| | - Valérie Geffroy
- Institute of Plant Sciences Paris-Saclay (IPS2), CNRS, INRA, Université Paris-Sud, Université d'Evry, Université Paris-Diderot, Sorbonne Paris-Cité, Université Paris-Saclay, Bâtiment 630, 91405 Orsay, France.
| |
Collapse
|
29
|
Keller B, Manzanares C, Jara C, Lobaton JD, Studer B, Raatz B. Fine-mapping of a major QTL controlling angular leaf spot resistance in common bean (Phaseolus vulgaris L.). TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2015; 128:813-26. [PMID: 25740562 PMCID: PMC4544502 DOI: 10.1007/s00122-015-2472-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2014] [Accepted: 01/31/2015] [Indexed: 05/07/2023]
Abstract
KEY MESSAGE A major QTL for angular leaf spot resistance in the common bean accession G5686 was fine-mapped to a region containing 36 candidate genes. Markers have been developed for marker-assisted selection. Common bean (Phaseolus vulgaris L.) is an important grain legume and an essential protein source for human nutrition in developing countries. Angular leaf spot (ALS) caused by the pathogen Pseudocercospora griseola (Sacc.) Crous and U. Braun is responsible for severe yield losses of up to 80%. Breeding for resistant cultivars is the most ecological and economical means to control ALS and is particularly important for yield stability in low-input agriculture. Here, we report on a fine-mapping approach of a major quantitative trait locus (QTL) ALS4.1(GS, UC) for ALS resistance in a mapping population derived from the resistant genotype G5686 and the susceptible cultivar Sprite. 180 F3 individuals of the mapping population were evaluated for ALS resistance and genotyped with 22 markers distributed over 11 genome regions colocating with previously reported QTL for ALS resistance. Multiple QTL analysis identified three QTL regions, including one major QTL on chromosome Pv04 at 43.7 Mbp explaining over 75% of the observed variation for ALS resistance. Additional evaluation of 153 F4, 89 BC1F2 and 139 F4/F5/BC1F3 descendants with markers in the region of the major QTL delimited the region to 418 kbp harboring 36 candidate genes. Among these, 11 serine/threonine protein kinases arranged in a repetitive array constitute promising candidate genes for controlling ALS resistance. Single nucleotide polymorphism markers cosegregating with the major QTL for ALS resistance have been developed and constitute the basis for marker-assisted introgression of ALS resistance into advanced breeding germplasm of common bean.
Collapse
Affiliation(s)
- Beat Keller
- Forage Crop Genetics, Institute of Agricultural Sciences, ETH Zurich, Universitaetstrasse 2, 8092 Zurich, Switzerland
| | - Chloe Manzanares
- Forage Crop Genetics, Institute of Agricultural Sciences, ETH Zurich, Universitaetstrasse 2, 8092 Zurich, Switzerland
| | - Carlos Jara
- Agrobiodiversity Research Area, Bean Program, CIAT Cali-Palmira, A. A. 6713, Cali, Colombia
| | - Juan David Lobaton
- Agrobiodiversity Research Area, Bean Program, CIAT Cali-Palmira, A. A. 6713, Cali, Colombia
| | - Bruno Studer
- Forage Crop Genetics, Institute of Agricultural Sciences, ETH Zurich, Universitaetstrasse 2, 8092 Zurich, Switzerland
| | - Bodo Raatz
- Agrobiodiversity Research Area, Bean Program, CIAT Cali-Palmira, A. A. 6713, Cali, Colombia
| |
Collapse
|
30
|
González AM, Yuste-Lisbona FJ, Rodiño AP, De Ron AM, Capel C, García-Alcázar M, Lozano R, Santalla M. Uncovering the genetic architecture of Colletotrichum lindemuthianum resistance through QTL mapping and epistatic interaction analysis in common bean. FRONTIERS IN PLANT SCIENCE 2015; 6:141. [PMID: 25852706 PMCID: PMC4362272 DOI: 10.3389/fpls.2015.00141] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2014] [Accepted: 02/22/2015] [Indexed: 05/03/2023]
Abstract
Colletotrichum lindemuthianum is a hemibiotrophic fungal pathogen that causes anthracnose disease in common bean. Despite the genetics of anthracnose resistance has been studied for a long time, few quantitative trait loci (QTLs) studies have been conducted on this species. The present work examines the genetic basis of quantitative resistance to races 23 and 1545 of C. lindemuthianum in different organs (stem, leaf and petiole). A population of 185 recombinant inbred lines (RIL) derived from the cross PMB0225 × PHA1037 was evaluated for anthracnose resistance under natural and artificial photoperiod growth conditions. Using multi-environment QTL mapping approach, 10 and 16 main effect QTLs were identified for resistance to anthracnose races 23 and 1545, respectively. The homologous genomic regions corresponding to 17 of the 26 main effect QTLs detected were positive for the presence of resistance-associated gene cluster encoding nucleotide-binding and leucine-rich repeat (NL) proteins. Among them, it is worth noting that the main effect QTLs detected on linkage group 05 for resistance to race 1545 in stem, petiole and leaf were located within a 1.2 Mb region. The NL gene Phvul.005G117900 is located in this region, which can be considered an important candidate gene for the non-organ-specific QTL identified here. Furthermore, a total of 39 epistatic QTL (E-QTLs) (21 for resistance to race 23 and 18 for resistance to race 1545) involved in 20 epistatic interactions (eleven and nine interactions for resistance to races 23 and 1545, respectively) were identified. None of the main and epistatic QTLs detected displayed significant environment interaction effects. The present research provides essential information not only for the better understanding of the plant-pathogen interaction but also for the application of genomic assisted breeding for anthracnose resistance improvement in common bean through application of marker-assisted selection (MAS).
Collapse
Affiliation(s)
- Ana M. González
- Grupo de Biología de Agrosistemas, Misión Biológica de Galicia-CSICPontevedra, Spain
| | - Fernando J. Yuste-Lisbona
- Departamento de Biología y Geología (Genética), Centro de Investigación en Biotecnología Agroalimentaria (BITAL), Universidad de AlmeríaAlmería, Spain
| | - A. Paula Rodiño
- Grupo de Biología de Agrosistemas, Misión Biológica de Galicia-CSICPontevedra, Spain
| | - Antonio M. De Ron
- Grupo de Biología de Agrosistemas, Misión Biológica de Galicia-CSICPontevedra, Spain
| | - Carmen Capel
- Departamento de Biología y Geología (Genética), Centro de Investigación en Biotecnología Agroalimentaria (BITAL), Universidad de AlmeríaAlmería, Spain
| | - Manuel García-Alcázar
- Departamento de Biología y Geología (Genética), Centro de Investigación en Biotecnología Agroalimentaria (BITAL), Universidad de AlmeríaAlmería, Spain
| | - Rafael Lozano
- Departamento de Biología y Geología (Genética), Centro de Investigación en Biotecnología Agroalimentaria (BITAL), Universidad de AlmeríaAlmería, Spain
| | - Marta Santalla
- Grupo de Biología de Agrosistemas, Misión Biológica de Galicia-CSICPontevedra, Spain
| |
Collapse
|
31
|
Oblessuc PR, Matiolli CC, Chiorato AF, Camargo LEA, Benchimol-Reis LL, Melotto M. Common bean reaction to angular leaf spot comprises transcriptional modulation of genes in the ALS10.1 QTL. FRONTIERS IN PLANT SCIENCE 2015. [PMID: 25815001 DOI: 10.3389/fpls.2015.00152/abstract] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
Genetic resistance of common bean (Phaseolus vulgaris L.) against angular leaf spot (ALS), caused by the fungus Pseudocercospora griseola, is conferred by quantitative trait loci (QTL). In this study, we determined the gene content of the major QTL ALS10.1 located at the end of chromosome Pv10, and identified those that are responsive to ALS infection in resistant (CAL 143) and susceptible (IAC-UNA) genotypes. Based on the current version of the common bean reference genome, the ALS10.1 core region contains 323 genes. Gene Ontology (GO) analysis of these coding sequences revealed the presence of genes involved in signal perception and transduction, programmed cell death (PCD), and defense responses. Two putative R gene clusters were found at ALS10.1 containing evolutionary related coding sequences. Among them, the Phvul.010G025700 was consistently up-regulated in the infected IAC-UNA suggesting its contribution to plant susceptibility to the fungus. We identified six other genes that were regulated during common bean response to P. griseola; three of them might be negative regulators of immunity as they showed opposite expression patterns during resistant and susceptible reactions at the initial phase of fungal infection. Taken together, these findings suggest that common bean reaction to P. griseola involves transcriptional modulation of defense genes in the ALS10.1 locus, contributing to resistance or susceptibility depending on the plant-pathogen interaction.
Collapse
Affiliation(s)
- Paula R Oblessuc
- Department of Plant Sciences, University of California, Davis Davis, CA, USA ; Departamento de Genética e Evolução e Bioagentes, Instituto de Biologia, Universidade Estadual de Campinas Campinas, Brazil ; Centro de Pesquisa e Desenvolvimento em Recursos Genéticos Vegetais, Instituto Agronômico de Campinas-IAC Campinas, Brazil
| | - Cleverson C Matiolli
- Departamento de Genética e Evolução e Bioagentes, Instituto de Biologia, Universidade Estadual de Campinas Campinas, Brazil
| | - Alisson F Chiorato
- Centro de Grãos e Fibras, Instituto Agronômico de Campinas-IAC Campinas, Brazil
| | - Luis E A Camargo
- Departamento de Fitopatologia, Escola Superior de Agricultura Luiz de Queiroz, Universidade de São Paulo Piracicaba, Brazil
| | - Luciana L Benchimol-Reis
- Centro de Pesquisa e Desenvolvimento em Recursos Genéticos Vegetais, Instituto Agronômico de Campinas-IAC Campinas, Brazil
| | - Maeli Melotto
- Department of Plant Sciences, University of California, Davis Davis, CA, USA
| |
Collapse
|
32
|
Oblessuc PR, Matiolli CC, Chiorato AF, Camargo LEA, Benchimol-Reis LL, Melotto M. Common bean reaction to angular leaf spot comprises transcriptional modulation of genes in the ALS10.1 QTL. FRONTIERS IN PLANT SCIENCE 2015; 6:152. [PMID: 25815001 PMCID: PMC4357252 DOI: 10.3389/fpls.2015.00152] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2015] [Accepted: 02/25/2015] [Indexed: 05/11/2023]
Abstract
Genetic resistance of common bean (Phaseolus vulgaris L.) against angular leaf spot (ALS), caused by the fungus Pseudocercospora griseola, is conferred by quantitative trait loci (QTL). In this study, we determined the gene content of the major QTL ALS10.1 located at the end of chromosome Pv10, and identified those that are responsive to ALS infection in resistant (CAL 143) and susceptible (IAC-UNA) genotypes. Based on the current version of the common bean reference genome, the ALS10.1 core region contains 323 genes. Gene Ontology (GO) analysis of these coding sequences revealed the presence of genes involved in signal perception and transduction, programmed cell death (PCD), and defense responses. Two putative R gene clusters were found at ALS10.1 containing evolutionary related coding sequences. Among them, the Phvul.010G025700 was consistently up-regulated in the infected IAC-UNA suggesting its contribution to plant susceptibility to the fungus. We identified six other genes that were regulated during common bean response to P. griseola; three of them might be negative regulators of immunity as they showed opposite expression patterns during resistant and susceptible reactions at the initial phase of fungal infection. Taken together, these findings suggest that common bean reaction to P. griseola involves transcriptional modulation of defense genes in the ALS10.1 locus, contributing to resistance or susceptibility depending on the plant-pathogen interaction.
Collapse
Affiliation(s)
- Paula R. Oblessuc
- Department of Plant Sciences, University of California, DavisDavis, CA, USA
- Departamento de Genética e Evolução e Bioagentes, Instituto de Biologia, Universidade Estadual de CampinasCampinas, Brazil
- Centro de Pesquisa e Desenvolvimento em Recursos Genéticos Vegetais, Instituto Agronômico de Campinas—IACCampinas, Brazil
| | - Cleverson C. Matiolli
- Departamento de Genética e Evolução e Bioagentes, Instituto de Biologia, Universidade Estadual de CampinasCampinas, Brazil
| | - Alisson F. Chiorato
- Centro de Grãos e Fibras, Instituto Agronômico de Campinas—IACCampinas, Brazil
| | - Luis E. A. Camargo
- Departamento de Fitopatologia, Escola Superior de Agricultura Luiz de Queiroz, Universidade de São PauloPiracicaba, Brazil
| | - Luciana L. Benchimol-Reis
- Centro de Pesquisa e Desenvolvimento em Recursos Genéticos Vegetais, Instituto Agronômico de Campinas—IACCampinas, Brazil
| | - Maeli Melotto
- Department of Plant Sciences, University of California, DavisDavis, CA, USA
- *Correspondence: Maeli Melotto, Department of Plant Sciences, University of California, Davis, One Shields Avenue, Davis, CA 95616, USA
| |
Collapse
|
33
|
Richard MMS, Pflieger S, Sévignac M, Thareau V, Blanchet S, Li Y, Jackson SA, Geffroy V. Fine mapping of Co-x, an anthracnose resistance gene to a highly virulent strain of Colletotrichum lindemuthianum in common bean. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2014; 127:1653-66. [PMID: 24859268 DOI: 10.1007/s00122-014-2328-5] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2013] [Accepted: 05/05/2014] [Indexed: 05/03/2023]
Abstract
The Co - x anthracnose R gene of common bean was fine-mapped into a 58 kb region at one end of chromosome 1, where no canonical NB-LRR-encoding genes are present in G19833 genome sequence. Anthracnose, caused by the phytopathogenic fungus Colletotrichum lindemuthianum, is one of the most damaging diseases of common bean, Phaseolus vulgaris. Various resistance (R) genes, named Co-, conferring race-specific resistance to different strains of C. lindemuthianum have been identified. The Andean cultivar JaloEEP558 was reported to carry Co-x on chromosome 1, conferring resistance to the highly virulent strain 100. To fine map Co-x, 181 recombinant inbred lines derived from the cross between JaloEEP558 and BAT93 were genotyped with polymerase chain reaction (PCR)-based markers developed using the genome sequence of the Andean genotype G19833. Analysis of RILs carrying key recombination events positioned Co-x at one end of chromosome 1 to a 58 kb region of the G19833 genome sequence. Annotation of this target region revealed eight genes: three phosphoinositide-specific phospholipases C (PI-PLC), one zinc finger protein and four kinases, suggesting that Co-x is not a classical nucleotide-binding leucine-rich encoding gene. In addition, we identified and characterized the seven members of common bean PI-PLC gene family distributed into two clusters located at the ends of chromosomes 1 and 8. Co-x is not a member of Co-1 allelic series since these two genes are separated by at least 190 kb. Comparative analysis between soybean and common bean revealed that the Co-x syntenic region, located at one end of Glycine max chromosome 18, carries Rhg1, a major QTL contributing to soybean cyst nematode resistance. The PCR-based markers generated in this study should be useful in marker-assisted selection for pyramiding Co-x with other R genes.
Collapse
Affiliation(s)
- Manon M S Richard
- CNRS, Institut de Biologie des Plantes, UMR 8618, Université Paris Sud, Saclay Plant Sciences (SPS), Rue Noetzlin, 91405, Orsay, France
| | | | | | | | | | | | | | | |
Collapse
|
34
|
Campa A, Rodríguez-Suárez C, Giraldez R, Ferreira JJ. Genetic analysis of the response to eleven Colletotrichum lindemuthianum races in a RIL population of common bean (Phaseolus vulgaris L.). BMC PLANT BIOLOGY 2014; 14:115. [PMID: 24779442 PMCID: PMC4021056 DOI: 10.1186/1471-2229-14-115] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2014] [Accepted: 04/17/2014] [Indexed: 05/03/2023]
Abstract
BACKGROUND Bean anthracnose is caused by the fungus Colletotrichum lindemuthianum (Sacc. & Magnus) Lams.- Scrib. Resistance to C. lindemuthianum in common bean (Phaseolus vulgaris L.) generally follows a qualitative mode of inheritance. The pathogen shows extensive pathogenic variation and up to 20 anthracnose resistance loci (named Co-), conferring resistance to specific races, have been described. Anthracnose resistance has generally been investigated by analyzing a limited number of isolates or races in segregating populations. In this work, we analyzed the response against eleven C. lindemuthianum races in a recombinant inbred line (RIL) common bean population derived from the cross Xana × Cornell 49242 in which a saturated linkage map was previously developed. RESULTS A systematic genetic analysis was carried out to dissect the complex resistance segregations observed, which included contingency analyses, subpopulations and genetic mapping. Twenty two resistance genes were identified, some with a complementary mode of action. The Cornell 49242 genotype carries a complex cluster of resistance genes at the end of linkage group (LG) Pv11 corresponding to the previously described anthracnose resistance cluster Co-2. In this position, specific resistance genes to races 3, 6, 7, 19, 38, 39, 65, 357, 449 and 453 were identified, with one of them showing a complementary mode of action. In addition, Cornell 49242 had an independent gene on LG Pv09 showing a complementary mode of action for resistance to race 453. Resistance genes in genotype Xana were located on three regions involving LGs Pv01, Pv02 and Pv04. All resistance genes identified in Xana showed a complementary mode of action, except for two controlling resistance to races 65 and 73 located on LG Pv01, in the position of the previously described anthracnose resistance cluster Co-1. CONCLUSIONS Results shown herein reveal a complex and specific interaction between bean and fungus genotypes leading to anthracnose resistance. Organization of specific resistance genes in clusters including resistance genes with different modes of action (dominant and complementary genes) was also confirmed. Finally, new locations for anthracnose resistance genes were identified in LG Pv09.
Collapse
Affiliation(s)
- Ana Campa
- Área de Cultivos Hortofrutícolas y Forestales, SERIDA, Apdo. 13, 33300 Villaviciosa, Asturias, Spain
| | | | - Ramón Giraldez
- Department of Functional Biology, University of Oviedo, 33006 Oviedo, Spain
| | - Juan José Ferreira
- Área de Cultivos Hortofrutícolas y Forestales, SERIDA, Apdo. 13, 33300 Villaviciosa, Asturias, Spain
| |
Collapse
|
35
|
Oblessuc PR, Cardoso Perseguini JMK, Baroni RM, Chiorato AF, Carbonell SAM, Mondego JMC, Vidal RO, Camargo LEA, Benchimol-Reis LL. Increasing the density of markers around a major QTL controlling resistance to angular leaf spot in common bean. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2013; 126:2451-65. [PMID: 23832048 DOI: 10.1007/s00122-013-2146-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2013] [Accepted: 06/14/2013] [Indexed: 05/21/2023]
Abstract
Angular leaf spot (ALS) causes major yield losses in the common bean (Phaseolus vulgaris L.), an important protein source in the human diet. This study describes the saturation around a major quantitative trait locus (QTL) region, ALS10.1, controlling resistance to ALS located on linkage group Pv10 and explores the genomic context of this region using available data from the P. vulgaris genome sequence. DArT-derived markers (STS-DArT) selected by bulk segregant analysis and SCAR and SSR markers were used to increase the resolution of the QTL, reducing the confidence interval of ALS10.1 from 13.4 to 3.0 cM. The position of the SSR ATA220 coincided with the maximum LOD score of the QTL. Moreover, a new QTL (ALS10.2(UC)) was identified at the end of the same linkage group. Sequence analysis using the P. vulgaris genome located ten SSRs and seven STS-DArT on chromosome 10 (Pv10). Coincident linkage and genome positions of five markers enabled the definition of a core region for ALS10.1 spanning 5.3 Mb. These markers are linked to putative genes related to disease resistance such as glycosyl transferase, ankyrin repeat-containing, phospholipase, and squamosa-promoter binding protein. Synteny analysis between ALS10.1 markers and the genome of soybean suggested a dynamic evolution of this locus in the common bean. The present study resulted in the identification of new candidate genes and markers closely linked to a major ALS disease resistance QTL, which can be used in marker-assisted selection, fine mapping and positional QTL cloning.
Collapse
Affiliation(s)
- Paula Rodrigues Oblessuc
- Departamento de Genética e Evolução e Bioagentes, Instituto de Biologia, Universidade Estadual de Campinas (UNICAMP), Campinas, São Paulo, 13083-970, Brazil,
| | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Gonçalves-Vidigal MC, Cruz AS, Lacanallo GF, Vidigal Filho PS, Sousa LL, Pacheco CMNA, McClean P, Gepts P, Pastor-Corrales MA. Co-segregation analysis and mapping of the anthracnose Co-10 and angular leaf spot Phg-ON disease-resistance genes in the common bean cultivar Ouro Negro. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2013; 126:2245-55. [PMID: 23760652 DOI: 10.1007/s00122-013-2131-8] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2012] [Accepted: 05/21/2013] [Indexed: 05/03/2023]
Abstract
Anthracnose (ANT) and angular leaf spot (ALS) are devastating diseases of common bean (Phaseolus vulgaris L.). Ouro Negro is a highly productive common bean cultivar, which contains the Co-10 and Phg-ON genes for resistance to ANT and ALS, respectively. In this study, we performed a genetic co-segregation analysis of resistance to ANT and ALS using an F2 population from the Rudá × Ouro Negro cross and the F2:3 families from the AND 277 × Ouro Negro cross. Ouro Negro is resistant to races 7 and 73 of the ANT and race 63-39 of the ALS pathogens. Conversely, cultivars AND 277 and Rudá are susceptible to races 7 and 73 of ANT, respectively. Both cultivars are susceptible to race 63-39 of ALS. Co-segregation analysis revealed that Co-10 and Phg-ON were inherited together, conferring resistance to races 7 and 73 of ANT and race 63-39 of ALS. The Co-10 and Phg-ON genes were co-segregated and were tightly linked at a distance of 0.0 cM on chromosome Pv04. The molecular marker g2303 was linked to Co-10 and Phg-ON at a distance of 0.0 cM. Because of their physical linkage in a cis configuration, the Co-10 and Phg-ON resistance alleles are inherited together and can be monitored with great efficiency using g2303. The close linkage between the Co-10 and Phg-ON genes and prior evidence are consistent with the existence of a resistance gene cluster at one end of chromosome Pv04, which also contains the Co-3 locus and ANT resistance quantitative trait loci. These results will be very useful for breeding programs aimed at developing bean cultivars with ANT and ALS resistance using marker-assisted selection.
Collapse
Affiliation(s)
- M C Gonçalves-Vidigal
- Departamento de Agronomia, Universidade Estadual de Maringá, Av. Colombo 5790, Maringá, Paraná, Brazil
| | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Oblessuc PR, Baroni RM, Garcia AAF, Chioratto AF, Carbonell SAM, Camargo LEA, Benchimol LL. Mapping of angular leaf spot resistance QTL in common bean (Phaseolus vulgaris L.) under different environments. BMC Genet 2012; 13:50. [PMID: 22738188 PMCID: PMC3464175 DOI: 10.1186/1471-2156-13-50] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2011] [Accepted: 06/08/2012] [Indexed: 11/30/2022] Open
Abstract
BACKGROUND Common bean (Phaseolus vulgaris L.) is the most important grain legume for human diet worldwide and the angular leaf spot (ALS) is one of the most devastating diseases of this crop, leading to yield losses as high as 80%. In an attempt to breed resistant cultivars, it is important to first understand the inheritance mode of resistance and to develop tools that could be used in assisted breeding. Therefore, the aim of this study was to identify quantitative trait loci (QTL) controlling resistance to ALS under natural infection conditions in the field and under inoculated conditions in the greenhouse. RESULTS QTL analyses were made using phenotypic data from 346 recombinant inbreed lines from the IAC-UNAxCAL 143 cross, gathered in three experiments, two of which were conducted in the field in different seasons and one in the greenhouse. Joint composite interval mapping analysis of QTLxenvironment interaction was performed. In all, seven QTLs were mapped on five linkage groups. Most of them, with the exception of two, were significant in all experiments. Among these, ALS10.1DG,UC presented major effects (R2 between 16%-22%). This QTL was found linked to the GATS11b marker of linkage group B10, which was consistently amplified across a set of common bean lines and was associated with the resistance. Four new QTLs were identified. Between them the ALS5.2 showed an important effect (9.4%) under inoculated conditions in the greenhouse. ALS4.2 was another major QTL, under natural infection in the field, explaining 10.8% of the variability for resistance reaction. The other QTLs showed minor effects on resistance. CONCLUSIONS The results indicated a quantitative inheritance pattern of ALS resistance in the common bean line CAL 143. QTL x environment interactions were observed. Moreover, the major QTL identified on linkage group B10 could be important for bean breeding, as it was stable in all the environments. Thereby, the GATS11b marker is a potential tool for marker assisted selection for ALS resistance.
Collapse
Affiliation(s)
- Paula Rodrigues Oblessuc
- Departamento de Genética e Evolução e Bioagentes, Instituto de Biologia, Universidade Estadual de Campinas (UNICAMP), Campinas, SP, Brazil
- Instituto Agronômico (IAC), Av. Barão de Itapura 1481, CP 28, Campinas, São Paulo 13012-970, Brazil
| | - Renata Moro Baroni
- Instituto Agronômico (IAC), Av. Barão de Itapura 1481, CP 28, Campinas, São Paulo 13012-970, Brazil
| | | | | | | | - Luis Eduardo Aranha Camargo
- Universidade de São Paulo – Escola superior de Agricultura “Luiz de Queiroz” (ESALq/USP), Piracicaba, SP, Brazil
| | - Luciana Lasry Benchimol
- Instituto Agronômico (IAC), Av. Barão de Itapura 1481, CP 28, Campinas, São Paulo 13012-970, Brazil
| |
Collapse
|