1
|
Rivera-Burgos L, VanGessel C, Guedira M, Smith J, Marshall D, Jin Y, Rouse M, Brown-Guedira G. Fine mapping of stem rust resistance derived from soft red winter wheat cultivar AGS2000 to an NLR gene cluster on chromosome 6D. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2024; 137:206. [PMID: 39158718 PMCID: PMC11333525 DOI: 10.1007/s00122-024-04702-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Accepted: 07/27/2024] [Indexed: 08/20/2024]
Abstract
The Puccinia graminis f. sp. tritici (Pgt) Ug99-emerging virulent races present a major challenge to global wheat production. To meet present and future needs, new sources of resistance must be found. Identification of markers that allow tracking of resistance genes is needed for deployment strategies to combat highly virulent pathogen races. Field evaluation of a DH population located a QTL for stem rust (Sr) resistance, QSr.nc-6D from the breeding line MD01W28-08-11 to the distal region of chromosome arm 6DS where Sr resistance genes Sr42, SrCad, and SrTmp have been identified. A locus for seedling resistance to Pgt race TTKSK was identified in a DH population and an RIL population derived from the cross AGS2000 × LA95135. The resistant cultivar AGS2000 is in the pedigree of MD01W28-08-11 and our results suggest that it is the source of Sr resistance in this breeding line. We exploited published markers and exome capture data to enrich marker density in a 10 Mb region flanking QSr.nc-6D. Our fine mapping in heterozygous inbred families identified three markers co-segregating with resistance and delimited QSr.nc-6D to a 1.3 Mb region. We further exploited information from other genome assemblies and identified collinear regions of 6DS harboring clusters of NLR genes. Evaluation of KASP assays corresponding to our co-segregating SNP suggests that they can be used to track this Sr resistance in breeding programs. However, our results also underscore the challenges posed in identifying genes underlying resistance in such complex regions in the absence of genome sequence from the resistant genotypes.
Collapse
Affiliation(s)
- L Rivera-Burgos
- Plant Science Research Unit, USDA-ARS, North Carolina State University, Raleigh, NC, 27695, USA
| | - C VanGessel
- Department of Crop and Soil Sciences, Colorado State University, Fort Collins, CO, 80523, USA
| | - M Guedira
- Department of Crop and Soil Sciences, North Carolina State University, Raleigh, NC, 27695, USA
| | - J Smith
- Plant Science Research Unit, USDA-ARS, North Carolina State University, Raleigh, NC, 27695, USA
| | - D Marshall
- Plant Science Research Unit, USDA-ARS, North Carolina State University, Raleigh, NC, 27695, USA
- Department of Plant Pathology, North Carolina State University, Raleigh, NC, 27695, USA
| | - Y Jin
- Cereal Disease Laboratory, USDA-ARS, University of Minnesota, St. Paul, MN, 55108, USA
| | - M Rouse
- Cereal Disease Laboratory, USDA-ARS, University of Minnesota, St. Paul, MN, 55108, USA
- Sugarcane Production Research Unit, USDA-ARS, Canal Point, FL, 33438, USA
| | - G Brown-Guedira
- Plant Science Research Unit, USDA-ARS, North Carolina State University, Raleigh, NC, 27695, USA.
- Department of Crop and Soil Sciences, North Carolina State University, Raleigh, NC, 27695, USA.
| |
Collapse
|
2
|
Karelov A, Kozub N, Sozinova O, Pirko Y, Sozinov I, Yemets A, Blume Y. Wheat Genes Associated with Different Types of Resistance against Stem Rust ( Puccinia graminis Pers.). Pathogens 2022; 11:pathogens11101157. [PMID: 36297214 PMCID: PMC9608978 DOI: 10.3390/pathogens11101157] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 09/25/2022] [Accepted: 10/05/2022] [Indexed: 11/13/2022] Open
Abstract
Stem rust is one wheat's most dangerous fungal diseases. Yield losses caused by stem rust have been significant enough to cause famine in the past. Some races of stem rust are considered to be a threat to food security even nowadays. Resistance genes are considered to be the most rational environment-friendly and widely used way to control the spread of stem rust and prevent yield losses. More than 60 genes conferring resistance against stem rust have been discovered so far (so-called Sr genes). The majority of the Sr genes discovered have lost their effectiveness due to the emergence of new races of stem rust. There are some known resistance genes that have been used for over 50 years and are still effective against most known races of stem rust. The goal of this article is to outline the different types of resistance against stem rust as well as the effective and noneffective genes, conferring each type of resistance with a brief overview of their origin and usage.
Collapse
Affiliation(s)
- Anatolii Karelov
- Institute of Food Biotechnology and Genomics, National Academy of Sciences of Ukraine, 04123 Kyiv, Ukraine
- Institute of Plant Protection, National Academy of Agrarian Sciences of Ukraine, 03022 Kyiv, Ukraine
- Correspondence: (A.K.); (Y.B.)
| | - Natalia Kozub
- Institute of Food Biotechnology and Genomics, National Academy of Sciences of Ukraine, 04123 Kyiv, Ukraine
- Institute of Plant Protection, National Academy of Agrarian Sciences of Ukraine, 03022 Kyiv, Ukraine
| | - Oksana Sozinova
- Institute of Food Biotechnology and Genomics, National Academy of Sciences of Ukraine, 04123 Kyiv, Ukraine
- Institute of Plant Protection, National Academy of Agrarian Sciences of Ukraine, 03022 Kyiv, Ukraine
| | - Yaroslav Pirko
- Institute of Food Biotechnology and Genomics, National Academy of Sciences of Ukraine, 04123 Kyiv, Ukraine
| | - Igor Sozinov
- Institute of Plant Protection, National Academy of Agrarian Sciences of Ukraine, 03022 Kyiv, Ukraine
| | - Alla Yemets
- Institute of Food Biotechnology and Genomics, National Academy of Sciences of Ukraine, 04123 Kyiv, Ukraine
| | - Yaroslav Blume
- Institute of Food Biotechnology and Genomics, National Academy of Sciences of Ukraine, 04123 Kyiv, Ukraine
- Correspondence: (A.K.); (Y.B.)
| |
Collapse
|
3
|
Origin and genetic analysis of stem rust resistance in wheat line Tr129. Sci Rep 2022; 12:4585. [PMID: 35301415 PMCID: PMC8931155 DOI: 10.1038/s41598-022-08681-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Accepted: 03/09/2022] [Indexed: 11/16/2022] Open
Abstract
Wheat line Tr129 is resistant to stem rust, caused by Puccinia graminis f. sp. tritici (Pgt). The resistance in Tr129 was reportedly derived from Aegilops triuncialis, but the origin and genetics of resistance have not been confirmed. Here, genomic in situ hybridization (GISH) showed that no Ae. triuncialis chromatin was present in Tr129. Genetic and phenotypic analysis was conducted on F2 and DH populations from the cross RL6071/Tr129. Seedlings were tested with six Pgt races and were genotyped using an Illumina iSelect 90 K SNP array and kompetitive allele specific PCR (KASP) markers. Mapping and phenotyping showed that Tr129 carried four stem rust resistance (Sr) genes on chromosome arms 2BL (Sr9b), 4AL (Sr7b), 6AS (Sr8a), and 6DS (SrTr129). SrTr129 co-segregated with markers for SrCad, however Tr129 has a unique haplotype suggesting the resistance could be new. Analysis of a RL6071/Peace population revealed that like SrTr129, SrCad is ineffective against three North American races. This new understanding of SrCad will guide its use in breeding. Tr129 and the DNA markers reported here are useful resources for improving stem rust resistance in cultivars.
Collapse
|
4
|
Kataria R, Kaundal R. Deciphering the Crosstalk Mechanisms of Wheat-Stem Rust Pathosystem: Genome-Scale Prediction Unravels Novel Host Targets. FRONTIERS IN PLANT SCIENCE 2022; 13:895480. [PMID: 35800602 PMCID: PMC9253690 DOI: 10.3389/fpls.2022.895480] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2022] [Accepted: 05/31/2022] [Indexed: 05/04/2023]
Abstract
Triticum aestivum (wheat), a major staple food grain, is affected by various biotic stresses. Among these, fungal diseases cause about 15-20% of yield loss, worldwide. In this study, we performed a comparative analysis of protein-protein interactions between two Puccinia graminis races (Pgt 21-0 and Pgt Ug99) that cause stem (black) rust in wheat. The available molecular techniques to study the host-pathogen interaction mechanisms are expensive and labor-intensive. We implemented two computational approaches (interolog and domain-based) for the prediction of PPIs and performed various functional analysis to determine the significant differences between the two pathogen races. The analysis revealed that T. aestivum-Pgt 21-0 and T. aestivum-Pgt Ug99 interactomes consisted of ∼90M and ∼56M putative PPIs, respectively. In the predicted PPIs, we identified 115 Pgt 21-0 and 34 Pgt Ug99 potential effectors that were highly involved in pathogen virulence and development. Functional enrichment analysis of the host proteins revealed significant GO terms and KEGG pathways such as O-methyltransferase activity (GO:0008171), regulation of signal transduction (GO:0009966), lignin metabolic process (GO:0009808), plastid envelope (GO:0009526), plant-pathogen interaction pathway (ko04626), and MAPK pathway (ko04016) that are actively involved in plant defense and immune signaling against the biotic stresses. Subcellular localization analysis anticipated the host plastid as a primary target for pathogen attack. The highly connected host hubs in the protein interaction network belonged to protein kinase domain including Ser/Thr protein kinase, MAPK, and cyclin-dependent kinase. We also identified 5,577 transcription factors in the interactions, associated with plant defense during biotic stress conditions. Additionally, novel host targets that are resistant to stem rust disease were also identified. The present study elucidates the functional differences between Pgt 21-0 and Pgt Ug99, thus providing the researchers with strain-specific information for further experimental validation of the interactions, and the development of durable, disease-resistant crop lines.
Collapse
Affiliation(s)
- Raghav Kataria
- Department of Plants, Soils, and Climate, College of Agriculture and Applied Sciences, Utah State University, Logan, UT, United States
| | - Rakesh Kaundal
- Department of Plants, Soils, and Climate, College of Agriculture and Applied Sciences, Utah State University, Logan, UT, United States
- Bioinformatics Facility, Center for Integrated BioSystems, Utah State University, Logan, UT, United States
- Department of Computer Science, College of Science, Utah State University, Logan, UT, United States
- *Correspondence: Rakesh Kaundal,
| |
Collapse
|
5
|
Liu T, Fedak G, Zhang L, Zhou R, Chi D, Fetch T, Hiebert C, Chen W, Liu B, Liu D, Zhang H, Zhang B. Molecular Marker Based Design for Breeding Wheat Lines with Multiple Resistance and Superior Quality. PLANT DISEASE 2020; 104:2658-2664. [PMID: 32749944 DOI: 10.1094/pdis-02-20-0420-re] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
There has not been a major wheat stem rust epidemic worldwide since the 1970s, but the emergence of race TTKSK of Puccinia graminis f. sp. tritici in 1998 presented a great threat to the world wheat production. Single disease-resistance genes are usually effective for only several years before the pathogen changes genetically to overcome the resistance. Stripe rust caused by Puccinia striiformis f. sp. tritici (Pst) is one of the most common and persistent wheat diseases worldwide. The development of varieties with multiple resistance is the most economical and effective strategy for preventing stripe rust and stem rust, the two main rust diseases constraining wheat production. Plateau 448 has been widely used in the spring wheat growing region in northwest China, but it has become susceptible to stripe rust and is susceptible to TTKSK. To produce more durable resistance to race TTKSK as well as to stripe rust, four stem rust resistance genes (Sr33, Sr36, Sr-Cad, and Sr43) and three stripe rust resistance genes (Yr5, Yr18, and Yr26) were simultaneously introgressed into Plateau 448 to improve its stem rust (Ug99) and stripe rust resistance using a marker-assisted backcrossing strategy combined with phenotypic selection. We obtained 131 BC1F5 lines that pyramided two to four Ug99 resistance genes and one to two Pst resistance genes simultaneously. Thirteen of these lines were selected for their TTKSK resistance, and all of them exhibited near immunity or high resistance to TTKSK. Among the 131 pyramided lines, 95 showed high resistance to mixed Pst races. Nine lines exhibited not only high resistance to TTKSK and Pst but also better agronomic traits and high-molecular-weight glutenin subunit compositions than Plateau 448.
Collapse
Affiliation(s)
- Tao Liu
- Key Laboratory of Adaptation and Evolution of Plateau Biota (AEPB), Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, Qinghai 810008, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - George Fedak
- Ottawa Research and Development Centre, Agriculture and Agri-Food Canada, Ottawa, ON, K1A 0C6, Canada
| | - Lianquan Zhang
- Qinghai Province Key Laboratory of Crop Molecular Breeding, Xining, Qinghai 810008, China
| | - Rangrang Zhou
- Key Laboratory of Adaptation and Evolution of Plateau Biota (AEPB), Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, Qinghai 810008, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Dawn Chi
- Ottawa Research and Development Centre, Agriculture and Agri-Food Canada, Ottawa, ON, K1A 0C6, Canada
| | - Tom Fetch
- Ottawa Research and Development Centre, Agriculture and Agri-Food Canada, Ottawa, ON, K1A 0C6, Canada
| | - Colin Hiebert
- Ottawa Research and Development Centre, Agriculture and Agri-Food Canada, Ottawa, ON, K1A 0C6, Canada
| | - Wenjie Chen
- Key Laboratory of Adaptation and Evolution of Plateau Biota (AEPB), Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, Qinghai 810008, China
- Qinghai Province Key Laboratory of Crop Molecular Breeding, Xining, Qinghai 810008, China
| | - Baolong Liu
- Key Laboratory of Adaptation and Evolution of Plateau Biota (AEPB), Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, Qinghai 810008, China
- Qinghai Province Key Laboratory of Crop Molecular Breeding, Xining, Qinghai 810008, China
| | - Dengcai Liu
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Huaigang Zhang
- Key Laboratory of Adaptation and Evolution of Plateau Biota (AEPB), Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, Qinghai 810008, China
- Qinghai Province Key Laboratory of Crop Molecular Breeding, Xining, Qinghai 810008, China
| | - Bo Zhang
- Key Laboratory of Adaptation and Evolution of Plateau Biota (AEPB), Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, Qinghai 810008, China
- Qinghai Province Key Laboratory of Crop Molecular Breeding, Xining, Qinghai 810008, China
| |
Collapse
|
6
|
Randhawa MS, Singh RP, Dreisigacker S, Bhavani S, Huerta-Espino J, Rouse MN, Nirmala J, Sandoval-Sanchez M. Identification and Validation of a Common Stem Rust Resistance Locus in Two Bi-parental Populations. FRONTIERS IN PLANT SCIENCE 2018; 9:1788. [PMID: 30555507 PMCID: PMC6283910 DOI: 10.3389/fpls.2018.01788] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2018] [Accepted: 11/16/2018] [Indexed: 05/28/2023]
Abstract
Races belonging to Ug99 lineage of stem rust fungus Puccinia graminis f. sp. tritici (Pgt) continue to pose a threat to wheat (Triticum aestivum L.) production in various African countries. Growing resistant varieties is the most economical and environmentally friendly control measure. Recombinant inbred line (RIL) populations from the crosses of susceptible parent 'Cacuke' with the resistant parents 'Huhwa' and 'Yaye' were phenotyped for resistance at the seedling stage to Pgt race TTKSK (Ug99) and in adult plants in field trials at Njoro, Kenya for two seasons in 2016. Using the Affymetrix Axiom breeders SNP array, two stem rust resistance genes, temporarily designated as SrH and SrY, were identified and mapped on chromosome arm 2BL through selective genotyping and bulked segregant analysis (BSA), respectively. Kompetitive allele specific polymorphism (KASP) markers and simple sequence repeat (SSR) markers were used to saturate chromosome arm 2BL in both RIL populations. SrH mapped between markers cim109 and cim114 at a distance of 0.9 cM proximal, and cim117 at 2.9 cM distal. SrY was flanked by markers cim109 and cim116 at 0.8 cM proximal, and IWB45932 at 1.9 cM distal. Two Ug99-effective stem rust resistance genes derived from bread wheat, Sr9h and Sr28, have been reported on chromosome arm 2BL. Infection types and map position in Huhwa and Yaye indicated that Sr28 was absent in both the parents. However, susceptible reactions produced by resistant lines from both populations against Sr9h-virulent race TTKSF+ confirmed the presence of a common resistance locus Sr9h in both lines. Test of allelism is required to establish genetic relationships between genes identified in present study and Sr9h. Marker cim117 linked to SrH was genotyped on set of wheat lines with Huhwa in the pedigree and is advised to be used for marker assisted selection for this gene, however, a combination of phenotypic and genotypic assays is desirable for both genes especially for selection of Sr9h in breeding programs.
Collapse
Affiliation(s)
| | - Ravi P. Singh
- International Maize and Wheat Improvement Center (CIMMYT), Mexico City, Mexico
| | | | - Sridhar Bhavani
- International Maize and Wheat Improvement Center (CIMMYT), Mexico City, Mexico
| | | | - Matthew N. Rouse
- Cereal Disease Laboratory, United States Department of Agriculture-Agricultural Research Service, St. Paul, MN, United States
| | - Jayaveeramuthu Nirmala
- Cereal Disease Laboratory, United States Department of Agriculture-Agricultural Research Service, St. Paul, MN, United States
| | - Maricarmen Sandoval-Sanchez
- International Maize and Wheat Improvement Center (CIMMYT), Mexico City, Mexico
- Colegio de Postgraduados, Texcoco, Mexico
| |
Collapse
|
7
|
Zurn JD, Rouse MN, Chao S, Aoun M, Macharia G, Hiebert CW, Pretorius ZA, Bonman JM, Acevedo M. Dissection of the multigenic wheat stem rust resistance present in the Montenegrin spring wheat accession PI 362698. BMC Genomics 2018; 19:67. [PMID: 29357813 PMCID: PMC5776780 DOI: 10.1186/s12864-018-4438-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2017] [Accepted: 01/04/2018] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Research to identify and characterize stem rust resistance genes in common wheat, Triticum aestivum, has been stimulated by the emergence of Ug99-lineage races of the wheat stem rust pathogen, Puccinia graminis f. sp. tritici (Pgt), in Eastern Africa. The Montenegrin spring wheat landrace PI 362698 was identified as a source of Pgt resistance. This accession exhibits resistance to multiple Ug99-lineage and North American Pgt races at seedling and adult-plant stages. A recombinant inbred population was developed by crossing the susceptible line LMPG-6 with a single plant selection of PI 362698. A genetic map was constructed using the Illumina iSelect 90 K wheat assay and the markers csLv34, NB-LRR3, and wMAS000003 and quantitative trait locus (QTL) analysis was performed. RESULTS QTL analysis identified five significant QTLs (α = 0.05) on chromosomes 2B, 3B, 6A, 6D, and 7A associated with wheat stem rust resistance. The QTL on chromosome 3B was identified using both field data from Kenya (Pgt Ug99-lineage races) and seedling data from Pgt race MCCF. This QTL potentially corresponds to Sr12 or a new allele of Sr12. The multi-pathogen resistance gene Sr57 located on chromosome 7D is present in PI 362698 according to the diagnostic markers csLv34 and wMAS000003, however a significant QTL was not detected at this locus. The QTLs on chromosomes 2B, 6A, and 6D were identified during seedling trials and are thought to correspond to Sr16, Sr8a, and Sr5, respectively. The QTL identified on chromosome 7A was detected using MCCF seedling data and may be Sr15 or a potentially novel allele of recently detected Ug99 resistance QTLs. CONCLUSIONS The combination of resistance QTLs found in PI 362698 is like the resistance gene combination present in the broadly resistant cultivar Thatcher. As such, PI 362698 may not be a landrace as previously thought. PI 362698 has been crossed with North Dakota wheat germplasm for future breeding efforts. Additional work is needed to fully understand why the combination of genes present in PI 362698 and 'Thatcher' provide such durable resistance.
Collapse
Affiliation(s)
- Jason D Zurn
- Department of Plant Pathology, North Dakota State University, Fargo, ND, USA
- USDA-ARS, National Clonal Germplasm Repository, Corvallis, OR, USA
| | - Matthew N Rouse
- USDA-ARS, Cereal Disease Laboratory, and Department of Plant Pathology, University of Minnesota, St. Paul, MN, USA
| | - Shiaoman Chao
- USDA-ARS, Cereal Crops Research Unit, Fargo, ND, USA
| | - Meriem Aoun
- Department of Plant Pathology, North Dakota State University, Fargo, ND, USA
| | - Godwin Macharia
- Kenya Agricultural and Livestock Research Organization, Njoro, Kenya
| | | | - Zacharias A Pretorius
- Department of Plant Sciences, University of the Free State, Bloemfontein, South Africa
| | - J Michael Bonman
- USDA-ARS, Small Grains and Potato Germplasm Research Unit, Aberdeen, ID, USA
| | - Maricelis Acevedo
- Department of Plant Pathology, North Dakota State University, Fargo, ND, USA.
- International Programs, College of Agriculture and Life Sciences, Cornell University, Mann Library B-75, Ithaca, NY, 14853, USA.
| |
Collapse
|
8
|
Aktar-Uz-Zaman M, Tuhina-Khatun M, Hanafi MM, Sahebi M. Genetic analysis of rust resistance genes in global wheat cultivars: an overview. BIOTECHNOL BIOTEC EQ 2017. [DOI: 10.1080/13102818.2017.1304180] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022] Open
Affiliation(s)
- Md Aktar-Uz-Zaman
- Laboratory of Climate-Smart Food Crop Production, Institute of Tropical Agriculture and Food Security, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
- Bangladesh Agricultural Research Institute, Gazipur, Bangladesh
| | - Mst Tuhina-Khatun
- Laboratory of Climate-Smart Food Crop Production, Institute of Tropical Agriculture and Food Security, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
- Bangladesh Rice Research Institute, Gazipur, Bangladesh
| | - Mohamed Musa Hanafi
- Laboratory of Plantation Science and Technology, Institute of Plantation Studies, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
- Department of Land Management, Faculty of Agriculture, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| | - Mahbod Sahebi
- Laboratory of Climate-Smart Food Crop Production, Institute of Tropical Agriculture and Food Security, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| |
Collapse
|
9
|
Babiker EM, Gordon TC, Bonman JM, Chao S, Rouse MN, Jin Y, Newcomb M, Wanyera R, Bhavani S. Genetic Loci Conditioning Adult Plant Resistance to the Ug99 Race Group and Seedling Resistance to Races TRTTF and TTTTF of the Stem Rust Pathogen in Wheat Landrace CItr 15026. PLANT DISEASE 2017; 101:496-501. [PMID: 30677344 DOI: 10.1094/pdis-10-16-1447-re] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Wheat landrace CItr 15026 previously showed adult plant resistance (APR) to the Ug99 stem rust race group in Kenya and seedling resistance to Puccinia graminis f. sp. tritici races QFCSC, TTTTF, and TRTTF. CItr 15026 was crossed to susceptible accessions LMPG-6 and Red Bobs, and 180 double haploid (DH) lines and 140 recombinant inbred lines (RIL), respectively, were developed. The 90K wheat iSelect single-nucleotide polymorphism platform was used to genotype the parents and populations. Parents and 180 DH lines were evaluated in the field in Kenya for three seasons. A major quantitative trait locus (QTL) for APR was consistently detected on chromosome arm 6AS. This QTL was further detected in the RIL population screened in Kenya for one season. Parents, F1, and the two populations were tested as seedlings against races TRTTF and TTTTF. In addition, the DH population was tested against race QFCSC. Goodness-of-fit tests indicated that the TRTTF resistance in CItr 15026 was controlled by two complementary genes whereas the TTTTF and QFCSC resistance was conditioned by one dominant gene. The TRTTF resistance loci mapped to chromosome arms 6AS and 6DS, whereas the TTTTF and QFCSC resistance locus mapped to the same region on 6DS as the TRTTF resistance. The APR identified in CItr 15026 should be useful in developing cultivars with durable stem rust resistance.
Collapse
Affiliation(s)
- E M Babiker
- United States Department of Agriculture-Agricultural Research Service (USDA-ARS), Small Grains and Potato Germplasm Research Unit, Aberdeen, ID 83210
| | - T C Gordon
- United States Department of Agriculture-Agricultural Research Service (USDA-ARS), Small Grains and Potato Germplasm Research Unit, Aberdeen, ID 83210
| | - J M Bonman
- United States Department of Agriculture-Agricultural Research Service (USDA-ARS), Small Grains and Potato Germplasm Research Unit, Aberdeen, ID 83210
| | - S Chao
- USDA-ARS, Cereal Crops Research, Fargo, ND 58102
| | - M N Rouse
- USDA-ARS, Cereal Disease Laboratory, St. Paul, MN 55108
| | - Y Jin
- USDA-ARS, Cereal Disease Laboratory, St. Paul, MN 55108
| | - M Newcomb
- School of Plant Sciences, University of Arizona, Maricopa
| | - R Wanyera
- Kenya Agricultural and Livestock Research Organization, Njoro 20107, Kenya
| | - S Bhavani
- International Maize and Wheat Improvement Center, Nairobi, Kenya
| |
Collapse
|
10
|
Babiker EM, Gordon TC, Chao S, Rouse MN, Wanyera R, Acevedo M, Brown-Guedira G, Bonman JM. Molecular Mapping of Stem Rust Resistance Loci Effective Against the Ug99 Race Group of the Stem Rust Pathogen and Validation of a Single Nucleotide Polymorphism Marker Linked to Stem Rust Resistance Gene Sr28. PHYTOPATHOLOGY 2017; 107:208-215. [PMID: 27775500 DOI: 10.1094/phyto-08-16-0294-r] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Wheat landrace PI 177906 has seedling resistance to stem rust caused by Puccinia graminis f. sp. tritici races TTKSK, TTKST, and BCCBC and field resistance to the Ug99 race group. Parents, 140 recombinant inbred lines, and 138 double haploid (DH) lines were evaluated for seedling resistance to races TTKSK and BCCBC. Parents and the DH population were evaluated for field resistance to Ug99 in Kenya. The 90K wheat single nucleotide polymorphism (SNP) genotyping platform was used to genotype the parents and populations. Goodness-of-fit tests indicated that two dominant genes in PI 177906 conditioned seedling resistance to TTKSK. Two major loci for seedling resistance were consistently mapped to the chromosome arms 2BL and 6DS. The BCCBC resistance was mapped to the same location on 2BL as the TTKSK resistance. Using field data from the three seasons, two major QTL were consistently detected at the same regions on 2BL and 6DS. Based on the mapping result, race specificity, and the infection type observed in PI 177906, the TTKSK resistance on 2BL is likely due to Sr28. One SNP marker (KASP_IWB1208) was found to be predictive for the presence of the TTKSK resistance locus on 2BL and Sr28.
Collapse
Affiliation(s)
- E M Babiker
- First, second, and eighth authors: U.S. Department of Agriculture-Agricultural Research Service (USDA-ARS), Small Grains and Potato Germplasm Research Unit, 1691 S 2700 W, Aberdeen, ID 83210; third author: USDA-ARS, Cereal Crops Research Unit, 1605 Albrecht Blvd., Fargo, ND 58102; fourth author: USDA-ARS, Cereal Disease Laboratory, 1551 Lindig Ave., St. Paul, MN 55108; fifth author: Kenya Agricultural and Livestock Research Organization, Njoro 20107, Kenya; sixth author: Department of Plant Sciences, North Dakota State University, P.O. Box 6050, Fargo 58108; and seventh author: USDA-ARS, Plant Science Research Unit, Raleigh, NC 27606
| | - T C Gordon
- First, second, and eighth authors: U.S. Department of Agriculture-Agricultural Research Service (USDA-ARS), Small Grains and Potato Germplasm Research Unit, 1691 S 2700 W, Aberdeen, ID 83210; third author: USDA-ARS, Cereal Crops Research Unit, 1605 Albrecht Blvd., Fargo, ND 58102; fourth author: USDA-ARS, Cereal Disease Laboratory, 1551 Lindig Ave., St. Paul, MN 55108; fifth author: Kenya Agricultural and Livestock Research Organization, Njoro 20107, Kenya; sixth author: Department of Plant Sciences, North Dakota State University, P.O. Box 6050, Fargo 58108; and seventh author: USDA-ARS, Plant Science Research Unit, Raleigh, NC 27606
| | - S Chao
- First, second, and eighth authors: U.S. Department of Agriculture-Agricultural Research Service (USDA-ARS), Small Grains and Potato Germplasm Research Unit, 1691 S 2700 W, Aberdeen, ID 83210; third author: USDA-ARS, Cereal Crops Research Unit, 1605 Albrecht Blvd., Fargo, ND 58102; fourth author: USDA-ARS, Cereal Disease Laboratory, 1551 Lindig Ave., St. Paul, MN 55108; fifth author: Kenya Agricultural and Livestock Research Organization, Njoro 20107, Kenya; sixth author: Department of Plant Sciences, North Dakota State University, P.O. Box 6050, Fargo 58108; and seventh author: USDA-ARS, Plant Science Research Unit, Raleigh, NC 27606
| | - M N Rouse
- First, second, and eighth authors: U.S. Department of Agriculture-Agricultural Research Service (USDA-ARS), Small Grains and Potato Germplasm Research Unit, 1691 S 2700 W, Aberdeen, ID 83210; third author: USDA-ARS, Cereal Crops Research Unit, 1605 Albrecht Blvd., Fargo, ND 58102; fourth author: USDA-ARS, Cereal Disease Laboratory, 1551 Lindig Ave., St. Paul, MN 55108; fifth author: Kenya Agricultural and Livestock Research Organization, Njoro 20107, Kenya; sixth author: Department of Plant Sciences, North Dakota State University, P.O. Box 6050, Fargo 58108; and seventh author: USDA-ARS, Plant Science Research Unit, Raleigh, NC 27606
| | - R Wanyera
- First, second, and eighth authors: U.S. Department of Agriculture-Agricultural Research Service (USDA-ARS), Small Grains and Potato Germplasm Research Unit, 1691 S 2700 W, Aberdeen, ID 83210; third author: USDA-ARS, Cereal Crops Research Unit, 1605 Albrecht Blvd., Fargo, ND 58102; fourth author: USDA-ARS, Cereal Disease Laboratory, 1551 Lindig Ave., St. Paul, MN 55108; fifth author: Kenya Agricultural and Livestock Research Organization, Njoro 20107, Kenya; sixth author: Department of Plant Sciences, North Dakota State University, P.O. Box 6050, Fargo 58108; and seventh author: USDA-ARS, Plant Science Research Unit, Raleigh, NC 27606
| | - M Acevedo
- First, second, and eighth authors: U.S. Department of Agriculture-Agricultural Research Service (USDA-ARS), Small Grains and Potato Germplasm Research Unit, 1691 S 2700 W, Aberdeen, ID 83210; third author: USDA-ARS, Cereal Crops Research Unit, 1605 Albrecht Blvd., Fargo, ND 58102; fourth author: USDA-ARS, Cereal Disease Laboratory, 1551 Lindig Ave., St. Paul, MN 55108; fifth author: Kenya Agricultural and Livestock Research Organization, Njoro 20107, Kenya; sixth author: Department of Plant Sciences, North Dakota State University, P.O. Box 6050, Fargo 58108; and seventh author: USDA-ARS, Plant Science Research Unit, Raleigh, NC 27606
| | - G Brown-Guedira
- First, second, and eighth authors: U.S. Department of Agriculture-Agricultural Research Service (USDA-ARS), Small Grains and Potato Germplasm Research Unit, 1691 S 2700 W, Aberdeen, ID 83210; third author: USDA-ARS, Cereal Crops Research Unit, 1605 Albrecht Blvd., Fargo, ND 58102; fourth author: USDA-ARS, Cereal Disease Laboratory, 1551 Lindig Ave., St. Paul, MN 55108; fifth author: Kenya Agricultural and Livestock Research Organization, Njoro 20107, Kenya; sixth author: Department of Plant Sciences, North Dakota State University, P.O. Box 6050, Fargo 58108; and seventh author: USDA-ARS, Plant Science Research Unit, Raleigh, NC 27606
| | - J M Bonman
- First, second, and eighth authors: U.S. Department of Agriculture-Agricultural Research Service (USDA-ARS), Small Grains and Potato Germplasm Research Unit, 1691 S 2700 W, Aberdeen, ID 83210; third author: USDA-ARS, Cereal Crops Research Unit, 1605 Albrecht Blvd., Fargo, ND 58102; fourth author: USDA-ARS, Cereal Disease Laboratory, 1551 Lindig Ave., St. Paul, MN 55108; fifth author: Kenya Agricultural and Livestock Research Organization, Njoro 20107, Kenya; sixth author: Department of Plant Sciences, North Dakota State University, P.O. Box 6050, Fargo 58108; and seventh author: USDA-ARS, Plant Science Research Unit, Raleigh, NC 27606
| |
Collapse
|
11
|
Wiersma AT, Brown LK, Brisco EI, Liu TL, Childs KL, Poland JA, Sehgal SK, Olson EL. Fine mapping of the stem rust resistance gene SrTA10187. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2016; 129:2369-2378. [PMID: 27581540 DOI: 10.1007/s00122-016-2776-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2016] [Accepted: 08/24/2016] [Indexed: 06/06/2023]
Abstract
SrTA10187 was fine-mapped to a 1.1 cM interval, candidate genes were identified in the region of interest, and molecular markers were developed for marker-assisted selection and Sr gene pyramiding. Stem rust (Puccinia graminis f. sp. tritici, Pgt) races belonging to the Ug99 (TTKSK) race group pose a serious threat to global wheat (Triticum aestivum L.) production. To improve Pgt host resistance, the Ug99-effective resistance gene SrTA10187 previously identified in Aegilops tauschii Coss. was introgressed into wheat, and mapped to the short arm of wheat chromosome 6D. In this study, high-resolution mapping of SrTA10187 was done using a population of 1,060 plants. Pgt resistance was screened using race QFCSC. PCR-based SNP and STS markers were developed from genotyping-by-sequencing tags and SNP sequences available in online databases. SrTA10187 segregated as expected in a 3:1 ratio of resistant to susceptible individuals in three out of six BC3F2 families, and was fine-mapped to a 1.1 cM region on wheat chromosome 6DS. Marker context sequence was aligned to the reference Ae. tauschii genome to identify the physical region encompassing SrTA10187. Due to the size of the corresponding region, candidate disease resistance genes could not be identified with confidence. Comparisons with the Ae. tauschii genetic map developed by Luo et al. (PNAS 110(19):7940-7945, 2013) enabled identification of a discrete genetic locus and a BAC minimum tiling path of the region spanning SrTA10187. Annotation of pooled BAC library sequences led to the identification of candidate genes in the region of interest-including a single NB-ARC-LRR gene. The shorter genetic interval and flanking KASP™ and STS markers developed in this study will facilitate marker-assisted selection, gene pyramiding, and positional cloning of SrTA10187.
Collapse
Affiliation(s)
- Andrew T Wiersma
- Department of Plant, Soil and Microbial Sciences, Michigan State University, 1066 Bogue Street, Room A286, East Lansing, MI, 48824, USA
| | - Linda K Brown
- Department of Plant, Soil and Microbial Sciences, Michigan State University, 1066 Bogue Street, Room A286, East Lansing, MI, 48824, USA
| | - Elizabeth I Brisco
- Department of Plant, Soil and Microbial Sciences, Michigan State University, 1066 Bogue Street, Room A286, East Lansing, MI, 48824, USA
| | - Tiffany L Liu
- Department of Plant Biology, Michigan State University, 612 Wilson Rd, Room 166, East Lansing, MI, 48824, USA
| | - Kevin L Childs
- Department of Plant Biology and Center for Genomics-Enabled Plant Science, Michigan State University, 612 Wilson Rd, Room 166, East Lansing, MI, 48824, USA
| | - Jesse A Poland
- Department of Plant Pathology, Wheat Genetics Resource Center, Kansas State University, 4011 Throckmorton Plant Sciences Center, Manhattan, KS, 66506, USA
| | - Sunish K Sehgal
- Department of Plant Science, South Dakota State University, Plant Science-Box 2140C, Brookings, SD, 57007, USA
| | - Eric L Olson
- Department of Plant, Soil and Microbial Sciences, Michigan State University, 1066 Bogue Street, Room A286, East Lansing, MI, 48824, USA.
| |
Collapse
|
12
|
Li H, Singh S, Bhavani S, Singh RP, Sehgal D, Basnet BR, Vikram P, Burgueno-Ferreira J, Huerta-Espino J. Identification of Genomic Associations for Adult Plant Resistance in the Background of Popular South Asian Wheat Cultivar, PBW343. FRONTIERS IN PLANT SCIENCE 2016; 7:1674. [PMID: 27877188 PMCID: PMC5099247 DOI: 10.3389/fpls.2016.01674] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2016] [Accepted: 10/24/2016] [Indexed: 06/01/2023]
Abstract
Rusts, a fungal disease as old as its host plant wheat, has caused havoc for over 8000 years. As the rust pathogens can evolve into new virulent races which quickly defeat the resistance that primarily rely on race specificity, adult plant resistance (APR) has often been found to be race non-specific and hence is considered to be a more reliable and durable strategy to combat this malady. Over decades sets of donor lines have been identified at International Maize and Wheat Improvement Center (CIMMYT) representing a wide range of APR sources in wheat. In this study, using nine donors and a common parent "PBW343," a popular Green Revolution variety at CIMMYT, the nested association mapping (NAM) population of 1122 lines was constructed to understand the APR genetics underlying these founder lines. Thirty-four QTL were associated with APR to rusts, and 20 of 34 QTL had pleiotropic effects on SR, YR and LR resistance. Three chromosomal regions, associated with known APR genes (Sr58/Yr29/Lr46, Sr2/Yr30/Lr27, and Sr57/Yr18/Lr34), were also identified, and 13 previously reported QTL regions were validated. Of the 18 QTL first detected in this study, 7 were pleiotropic QTL, distributing on chromosomes 3A, 3B, 6B, 3D, and 6D. The present investigation revealed the genetic relationship of historical APR donor lines, the novel knowledge on APR, as well as the new analytical methodologies to facilitate the applications of NAM design in crop genetics. Results shown in this study will aid the parental selection for hybridization in wheat breeding, and envision the future rust management breeding for addressing potential threat to wheat production and food security.
Collapse
Affiliation(s)
- Huihui Li
- International Maize and Wheat Improvement Center (CIMMYT)Texcoco, Mexico
- Institute of Crop Science, Chinese Academy of Agricultural SciencesBeijing, China
| | - Sukhwinder Singh
- International Maize and Wheat Improvement Center (CIMMYT)Texcoco, Mexico
| | - Sridhar Bhavani
- International Maize and Wheat Improvement Center (CIMMYT)Texcoco, Mexico
| | - Ravi P. Singh
- International Maize and Wheat Improvement Center (CIMMYT)Texcoco, Mexico
| | - Deepmala Sehgal
- International Maize and Wheat Improvement Center (CIMMYT)Texcoco, Mexico
| | - Bhoja R. Basnet
- International Maize and Wheat Improvement Center (CIMMYT)Texcoco, Mexico
| | - Prashant Vikram
- International Maize and Wheat Improvement Center (CIMMYT)Texcoco, Mexico
| | | | - Julio Huerta-Espino
- Campo Experimental Valle de México, Instituto Nacional de Investigaciones Forestales, Agrícolas y Pecuarias, Universidad Autónoma ChapingoTexcoco, Mexico
| |
Collapse
|
13
|
Hiebert CW, Kassa MT, McCartney CA, You FM, Rouse MN, Fobert P, Fetch TG. Genetics and mapping of seedling resistance to Ug99 stem rust in winter wheat cultivar Triumph 64 and differentiation of SrTmp, SrCad, and Sr42. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2016; 129:2171-2177. [PMID: 27506534 DOI: 10.1007/s00122-016-2765-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2016] [Accepted: 08/02/2016] [Indexed: 05/20/2023]
Abstract
Resistance to Ug99 stem rust in Triumph 64 was conferred by SrTmp on chromosome arm 6DS and was mapped to the same position as SrCad and Sr42 , however, the three genes show functional differences. Stem rust, caused by Puccinia graminis f. sp. tritici (Pgt), is an important disease of wheat that can be controlled by effective stem rust resistance (Sr) genes. The emergence of virulent Pgt races in Africa, namely Ug99 and its variants, has stimulated the search for new Sr genes and genetic characterization of known sources of resistance. Triumph 64 is a winter wheat cultivar that carries gene SrTmp, which confers resistance to Ug99. The goals of this study were to genetically map SrTmp and examine its relationship with other Sr genes occupying a similar chromosome location. A doubled haploid (DH) population from the cross LMPG-6S/Triumph 64 was inoculated with Ug99 at the seedling stage. A single gene conditioning resistance to Ug99 segregated in the population. Genetic mapping with SSR markers placed SrTmp on chromosome arm 6DS in a region similar to SrCad and Sr42. SNP markers developed for SrCad were used to further map SrTmp and were also added to a genetic map of Sr42 using a DH population (LMPG-6S/Norin 40). Three SNP markers that co-segregated with SrTmp also co-segregated with SrCad and Sr42. The SNP markers showed no difference in the map locations of SrTmp, SrCad, and Sr42. Multi-race testing with DH lines from the Triumph 64 and Norin 40 populations and a recombinant inbred-line population from the cross LMPG-6S/AC Cadillac showed that SrTmp, SrCad, and Sr42 confer different spectra of resistance. Markers closely linked to SrTmp are suitable for marker-assisted breeding and germplasm development.
Collapse
Affiliation(s)
- Colin W Hiebert
- Agriculture and Agri-Food Canada, Morden Research and Development Centre, 101 Route 100 Morden, Manitoba, R6M 1Y5, Canada.
| | - Mulualem T Kassa
- Agriculture and Agri-Food Canada, Morden Research and Development Centre, 101 Route 100 Morden, Manitoba, R6M 1Y5, Canada
- National Research Council, 110 Gymnasium Place, Saskatoon, SK, S7N 0W9, Canada
| | - Curt A McCartney
- Agriculture and Agri-Food Canada, Morden Research and Development Centre, 101 Route 100 Morden, Manitoba, R6M 1Y5, Canada
| | - Frank M You
- Agriculture and Agri-Food Canada, Morden Research and Development Centre, 101 Route 100 Morden, Manitoba, R6M 1Y5, Canada
| | - Matthew N Rouse
- United States Department of Agriculture-Agricultural Research Service (USDA-ARS) Cereal Disease Laboratory, University of Minnesota Department of Plant Pathology, 1551 Lindig Street, St. Paul, MN, USA
| | - Pierre Fobert
- National Research Council, 110 Gymnasium Place, Saskatoon, SK, S7N 0W9, Canada
| | - Tom G Fetch
- Agriculture and Agri-Food Canada, Brandon Research and Development Centre, Brandon, MB R7A 5Y3, Canada
| |
Collapse
|
14
|
Kassa MT, You FM, Fetch TG, Fobert P, Sharpe A, Pozniak CJ, Menzies JG, Jordan MC, Humphreys G, Zhu T, Luo MC, McCartney CA, Hiebert CW. Genetic mapping of SrCad and SNP marker development for marker-assisted selection of Ug99 stem rust resistance in wheat. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2016; 129:1373-1382. [PMID: 27091129 DOI: 10.1007/s00122-016-2709-z] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2016] [Accepted: 03/17/2016] [Indexed: 05/09/2023]
Abstract
New SNP markers that can be used for marker-assisted selection and map-based cloning saturate the chromosome region carrying SrCad , a wheat gene that confers resistance to Ug99 stem rust. Wheat stem rust, caused by Puccinia graminis f. sp. tritici, is a devastating disease of wheat worldwide. Development of cultivars with effective resistance has been the primary means to control this disease, but the appearance of new virulent strains such as Ug99 has rendered most wheat varieties vulnerable. The stem rust resistance gene SrCad located on chromosome arm 6DS has provided excellent resistance to various strains of Ug99 in field nurseries conducted in Njoro, Kenya since 2005. Three genetic populations were used to identify SNP markers closely linked to the SrCad locus. Of 220 SNP markers evaluated, 27 were found to be located within a 2 cM region surrounding SrCad. The diagnostic potential of these SNPs was evaluated in a diverse set of 50 wheat lines that were primarily of Canadian origin with known presence or absence of SrCad. Three SNP markers tightly linked proximally to SrCad and one SNP that co-segregated with SrCad were completely predictive of the presence or absence of SrCad. These markers also differentiated SrCad from Sr42 and SrTmp which are also located in the same region of chromosome arm 6DS. These markers should be useful in marker-assisted breeding to develop new wheat varieties containing SrCad-based resistance to Ug99 stem rust.
Collapse
Affiliation(s)
- Mulualem T Kassa
- National Research Council, 110 Gymnasium Place, Saskatoon, SK, S7N 0W9, Canada
- Agriculture and Agri-Food Canada, Morden Research and Development Centre, 101 Route 100, Morden, MB, R6M 1Y5, Canada
| | - Frank M You
- Agriculture and Agri-Food Canada, Morden Research and Development Centre, 101 Route 100, Morden, MB, R6M 1Y5, Canada
| | - Tom G Fetch
- Agriculture and Agri-Food Canada, Brandon Research and Development Centre, Brandon, MB, R7A 5Y3, Canada
| | - Pierre Fobert
- National Research Council, 110 Gymnasium Place, Saskatoon, SK, S7N 0W9, Canada
| | - Andrew Sharpe
- National Research Council, 110 Gymnasium Place, Saskatoon, SK, S7N 0W9, Canada
| | - Curtis J Pozniak
- Crop Development Centre, University of Saskatchewan, 51 Campus Drive, Saskatoon, SK, S7N 5A8, Canada
| | - James G Menzies
- Agriculture and Agri-Food Canada, Morden Research and Development Centre, 101 Route 100, Morden, MB, R6M 1Y5, Canada
| | - Mark C Jordan
- Agriculture and Agri-Food Canada, Morden Research and Development Centre, 101 Route 100, Morden, MB, R6M 1Y5, Canada
| | - Gavin Humphreys
- Agriculture and Agri-Food Canada, Ottawa Research and Development Centre, 960 Carling Ave., Ottawa, ON, K1A 0C6, Canada
| | - Tingting Zhu
- Department of Plant Sciences, University of California, 276 Hunt Hall and 3111 PES 1 Shields Ave., Davis, CA, 95616, USA
| | - Ming-Cheng Luo
- Department of Plant Sciences, University of California, 276 Hunt Hall and 3111 PES 1 Shields Ave., Davis, CA, 95616, USA
| | - Curt A McCartney
- Agriculture and Agri-Food Canada, Morden Research and Development Centre, 101 Route 100, Morden, MB, R6M 1Y5, Canada
| | - Colin W Hiebert
- Agriculture and Agri-Food Canada, Morden Research and Development Centre, 101 Route 100, Morden, MB, R6M 1Y5, Canada.
| |
Collapse
|
15
|
Babiker EM, Gordon TC, Bonman JM, Chao S, Rouse MN, Brown-Guedira G, Williamson S, Pretorius ZA. Rapid Identification of Resistance Loci Effective Against Puccinia graminis f. sp. tritici Race TTKSK in 33 Spring Wheat Landraces. PLANT DISEASE 2016; 100:331-336. [PMID: 30694146 DOI: 10.1094/pdis-04-15-0466-re] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Wheat breeders worldwide are seeking new sources of resistance to Puccinia graminis f. sp. tritici race TTKSK. To prioritize field-resistant landraces for follow-up genetic studies to test for the presence of new resistance genes, seedling response to P. graminis f. sp. tritici race TTKSK, molecular markers linked to specific Sr genes, segregation ratios among progeny from crosses, and bulked segregant analyses (BSA) were used. In total, 33 spring wheat landraces with seedling resistance to P. graminis f. sp. tritici race TTKSK were crossed to a susceptible genotype, LMPG-6. The segregation ratios of stem rust reactions in F2 seedlings fit a single dominant gene model in 31 populations and progeny from two crosses gave ambiguous results. Using the 90K wheat single-nucleotide polymorphism genotyping platform, BSA showed that the seedling resistance in 29 accessions is probably controlled by loci on chromosome 2BL. For the three remaining accessions, BSA revealed that the seedling resistance is most likely controlled by previously unreported genes. For confirmation, two populations were advanced to the F2:3 and screened against P. graminis f. sp. tritici race TTKSK. Segregation of the F2:3 families fit a 1:2:1 ratio for a single dominant gene. Using the F2:3 families, BSA located the TTKSK locus on chromosome 6DS to the same location as Sr42.
Collapse
Affiliation(s)
- E M Babiker
- United States Department of Agriculture-Agricultural Research Service (USDA-ARS), Small Grains and Potato Germplasm Research Unit, Aberdeen, ID 83210
| | - T C Gordon
- United States Department of Agriculture-Agricultural Research Service (USDA-ARS), Small Grains and Potato Germplasm Research Unit, Aberdeen, ID 83210
| | - J M Bonman
- United States Department of Agriculture-Agricultural Research Service (USDA-ARS), Small Grains and Potato Germplasm Research Unit, Aberdeen, ID 83210
| | - S Chao
- USDA-ARS, Cereal Crops Research, Fargo, ND 58102
| | - M N Rouse
- USDA-ARS, Cereal Disease Laboratory, St. Paul, MN 55108
| | | | - S Williamson
- Department of Crop Science, North Carolina State University, Raleigh 27695
| | - Z A Pretorius
- Department of Plant Sciences, University of the Free State, Bloemfontein 9300, South Africa
| |
Collapse
|
16
|
Bajgain P, Rouse MN, Bulli P, Bhavani S, Gordon T, Wanyera R, Njau PN, Legesse W, Anderson JA, Pumphrey MO. Association mapping of North American spring wheat breeding germplasm reveals loci conferring resistance to Ug99 and other African stem rust races. BMC PLANT BIOLOGY 2015; 15:249. [PMID: 26467989 PMCID: PMC4606553 DOI: 10.1186/s12870-015-0628-9] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2014] [Accepted: 09/28/2015] [Indexed: 05/03/2023]
Abstract
BACKGROUND The recently identified Puccinia graminis f. sp. tritici (Pgt) race TTKSK (Ug99) poses a severe threat to global wheat production because of its broad virulence on several widely deployed resistance genes. Additional virulences have been detected in the Ug99 group of races, and the spread of this race group has been documented across wheat growing regions in Africa, the Middle East (Yemen), and West Asia (Iran). Other broadly virulent Pgt races, such as TRTTF and TKTTF, present further difficulties in maintaining abundant genetic resistance for their effective use in wheat breeding against this destructive fungal disease of wheat. In an effort to identify loci conferring resistance to these races, a genome-wide association study was carried out on a panel of 250 spring wheat breeding lines from the International Maize and Wheat Improvement Center (CIMMYT), six wheat breeding programs in the United States and three wheat breeding programs in Canada. RESULTS The lines included in this study were grouped into two major clusters, based on the results of principal component analysis using 23,976 SNP markers. Upon screening for adult plant resistance (APR) to Ug99 during 2013 and 2014 in artificial stem rust screening nurseries at Njoro, Kenya and at Debre Zeit, Ethiopia, several wheat lines were found to exhibit APR. The lines were also screened for resistance at the seedling stage against races TTKSK, TRTTF, and TKTTF at USDA-ARS Cereal Disease Laboratory in St. Paul, Minnesota; and only 9 of the 250 lines displayed seedling resistance to all the races. Using a mixed linear model, 27 SNP markers associated with APR against Ug99 were detected, including markers linked with the known APR gene Sr2. Using the same model, 23, 86, and 111 SNP markers associated with seedling resistance against races TTKSK, TRTTF, and TKTTF were identified, respectively. These included markers linked to the genes Sr8a and Sr11 providing seedling resistance to races TRTTF and TKTTF, respectively. We also identified putatively novel Sr resistance genes on chromosomes 3B, 4D, 5A, 5B, 6A, 7A, and 7B. CONCLUSION Our results demonstrate that the North American wheat breeding lines have several resistance loci that provide APR and seedling resistance to highly virulent Pgt races. Using the resistant lines and the SNP markers identified in this study, marker-assisted resistance breeding can assist in development of varieties with elevated levels of resistance to virulent stem rust races including TTKSK.
Collapse
Affiliation(s)
- P Bajgain
- Department of Agronomy, Purdue University, 915 West State Street, West Lafayette, IN, 47907, USA.
- Department of Agronomy and Plant Genetics, University of Minnesota, St. Paul, MN, 55108, USA.
| | - M N Rouse
- United States Department of Agriculture-Agricultural Research Service (USDA-ARS), Cereal Disease Laboratory, St. Paul, MN, 55108, USA.
- Department of Plant Pathology, University of Minnesota, St. Paul, MN, 55108, USA.
| | - P Bulli
- Department of Crop and Soil Sciences, Washington State University, Pullman, WA, 99164, USA.
| | - S Bhavani
- International Maize and Wheat Improvement Center (CIMMYT), ICRAF House, United Nations Avenue, Gigiri, Nairobi, Kenya.
| | - T Gordon
- United States Department of Agriculture-Agricultural Research Service (USDA-ARS), Aberdeen, ID, 83210, USA.
| | - R Wanyera
- Kenya Agricultural and Livestock Research Organization (KALRO), Njoro, Kenya.
| | - P N Njau
- Kenya Agricultural and Livestock Research Organization (KALRO), Njoro, Kenya.
| | - W Legesse
- Ethiopian Institute of Agricultural Research (EIAR), Pawe, Ethiopia.
| | - J A Anderson
- Department of Agronomy and Plant Genetics, University of Minnesota, St. Paul, MN, 55108, USA.
| | - M O Pumphrey
- Department of Crop and Soil Sciences, Washington State University, Pullman, WA, 99164, USA.
| |
Collapse
|
17
|
Kielsmeier-Cook J, Danilova TV, Friebe B, Rouse MN. Resistance to the Ug99 Race Group of Puccinia graminis f. sp. tritici in Wheat-Intra/intergeneric Hybrid Derivatives. PLANT DISEASE 2015; 99:1317-1325. [PMID: 30690994 DOI: 10.1094/pdis-09-14-0922-re] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
New races of Puccinia graminis f. sp. tritici, the causal agent of stem rust, threaten global wheat production. In particular, races belonging to the Ug99 race group significantly contribute to yield loss in several African nations. Genetic resistance remains the most effective means of controlling this disease. A collection of 546 wheat-intra- and intergeneric hybrids developed by W. J. Sando (United States Department of Agriculture, Beltsville, MD) was screened with eight races of P. graminis f. sp. tritici, including races TTKSK, TTKST, TTTSK, TRTTF, TTTTF, TPMKC, RKQQC, and QTHJC. There were 152 accessions resistant to one or more races and 29 accessions resistant to TTKSK, TTKST, and TTTSK. Of these 29 accessions, 9 were resistant to all races, 14 had infection type patterns that were indistinguishable from cultivars possessing Sr9h and Sr42, 2 were indistinguishable from accessions with SrTmp, and 4 did not display resistant patterns of accessions with any known Sr gene. Three accessions (604981, 605286, and 611932) characterized cytogenetically were disomic substitution lines, each with a single Thinopyrum ponticum chromosome pair. One accession (606057) was a disomic substitution or addition line with two pairs of T. ponticum chromosomes. In total, seven accessions are postulated to contain novel stem rust resistance genes. This research indicates the value of extant collections of wheat-intergeneric hybrids as sources of disease resistance genes.
Collapse
Affiliation(s)
| | - Tatiana V Danilova
- Wheat Genetics Resource Center, Department of Plant Pathology, Kansas State University, Manhattan 66506
| | - Bernd Friebe
- Wheat Genetics Resource Center, Department of Plant Pathology, Kansas State University, Manhattan 66506
| | - Matthew N Rouse
- Cereal Disease Laboratory, United States Department of Agriculture, St. Paul, MN and Department of Plant Pathology, University of Minnesota, St. Paul
| |
Collapse
|
18
|
Singh RP, Hodson DP, Jin Y, Lagudah ES, Ayliffe MA, Bhavani S, Rouse MN, Pretorius ZA, Szabo LJ, Huerta-Espino J, Basnet BR, Lan C, Hovmøller MS. Emergence and Spread of New Races of Wheat Stem Rust Fungus: Continued Threat to Food Security and Prospects of Genetic Control. PHYTOPATHOLOGY 2015; 105:872-84. [PMID: 26120730 DOI: 10.1094/phyto-01-15-0030-fi] [Citation(s) in RCA: 200] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Race Ug99 (TTKSK) of Puccinia graminis f. sp. tritici, detected in Uganda in 1998, has been recognized as a serious threat to food security because it possesses combined virulence to a large number of resistance genes found in current widely grown wheat (Triticum aestivum) varieties and germplasm, leading to its potential for rapid spread and evolution. Since its initial detection, variants of the Ug99 lineage of stem rust have been discovered in Eastern and Southern African countries, Yemen, Iran, and Egypt. To date, eight races belonging to the Ug99 lineage are known. Increased pathogen monitoring activities have led to the identification of other races in Africa and Asia with additional virulence to commercially important resistance genes. This has led to localized but severe stem rust epidemics becoming common once again in East Africa due to the breakdown of race-specific resistance gene SrTmp, which was deployed recently in the 'Digalu' and 'Robin' varieties in Ethiopia and Kenya, respectively. Enhanced research in the last decade under the umbrella of the Borlaug Global Rust Initiative has identified various race-specific resistance genes that can be utilized, preferably in combinations, to develop resistant varieties. Research and development of improved wheat germplasm with complex adult plant resistance (APR) based on multiple slow-rusting genes has also progressed. Once only the Sr2 gene was known to confer slow rusting APR; now, four more genes-Sr55, Sr56, Sr57, and Sr58-have been characterized and additional quantitative trait loci identified. Cloning of some rust resistance genes opens new perspectives on rust control in the future through the development of multiple resistance gene cassettes. However, at present, disease-surveillance-based chemical control, large-scale deployment of new varieties with multiple race-specific genes or adequate levels of APR, and reducing the cultivation of susceptible varieties in rust hot-spot areas remains the best stem rust management strategy.
Collapse
Affiliation(s)
- Ravi P Singh
- First, eleventh, and twelfth authors: International Maize and Wheat Improvement Center (CIMMYT), Apdo. Postal, 6-641, 06600, Mexico, D.F.; second author: CIMMYT, Addis Ababa, Ethiopia; third, seventh, and ninth authors: United States Department of Agriculture-Agricultural Research Service, Cereal Disease Laboratory, University of Minnesota, St. Paul 55108; fourth and fifth authors: Commonwealth Scientific and Industrial Research Organisation (CSIRO) Plant Industry, Agriculture Flagship, GPO Box 1600, Canberra, ACT, 2601, Australia; sixth author: CIMMYT, ICRAF House, United Nations Avenue, Gigiri, Village Market-00621, Nairobi, Kenya; eighth author: University of the Free State, Bloemfontein 9300, South Africa; tenth author: Campo Experimental Valle de México INIFAP, Apdo. Postal 10, 56230, Chapingo, Edo de México, México; and thirteenth author: Department of Agroecology, Aarhus University, Forsøgsvej 1, DK-4200, Slagelse, Denmark
| | - David P Hodson
- First, eleventh, and twelfth authors: International Maize and Wheat Improvement Center (CIMMYT), Apdo. Postal, 6-641, 06600, Mexico, D.F.; second author: CIMMYT, Addis Ababa, Ethiopia; third, seventh, and ninth authors: United States Department of Agriculture-Agricultural Research Service, Cereal Disease Laboratory, University of Minnesota, St. Paul 55108; fourth and fifth authors: Commonwealth Scientific and Industrial Research Organisation (CSIRO) Plant Industry, Agriculture Flagship, GPO Box 1600, Canberra, ACT, 2601, Australia; sixth author: CIMMYT, ICRAF House, United Nations Avenue, Gigiri, Village Market-00621, Nairobi, Kenya; eighth author: University of the Free State, Bloemfontein 9300, South Africa; tenth author: Campo Experimental Valle de México INIFAP, Apdo. Postal 10, 56230, Chapingo, Edo de México, México; and thirteenth author: Department of Agroecology, Aarhus University, Forsøgsvej 1, DK-4200, Slagelse, Denmark
| | - Yue Jin
- First, eleventh, and twelfth authors: International Maize and Wheat Improvement Center (CIMMYT), Apdo. Postal, 6-641, 06600, Mexico, D.F.; second author: CIMMYT, Addis Ababa, Ethiopia; third, seventh, and ninth authors: United States Department of Agriculture-Agricultural Research Service, Cereal Disease Laboratory, University of Minnesota, St. Paul 55108; fourth and fifth authors: Commonwealth Scientific and Industrial Research Organisation (CSIRO) Plant Industry, Agriculture Flagship, GPO Box 1600, Canberra, ACT, 2601, Australia; sixth author: CIMMYT, ICRAF House, United Nations Avenue, Gigiri, Village Market-00621, Nairobi, Kenya; eighth author: University of the Free State, Bloemfontein 9300, South Africa; tenth author: Campo Experimental Valle de México INIFAP, Apdo. Postal 10, 56230, Chapingo, Edo de México, México; and thirteenth author: Department of Agroecology, Aarhus University, Forsøgsvej 1, DK-4200, Slagelse, Denmark
| | - Evans S Lagudah
- First, eleventh, and twelfth authors: International Maize and Wheat Improvement Center (CIMMYT), Apdo. Postal, 6-641, 06600, Mexico, D.F.; second author: CIMMYT, Addis Ababa, Ethiopia; third, seventh, and ninth authors: United States Department of Agriculture-Agricultural Research Service, Cereal Disease Laboratory, University of Minnesota, St. Paul 55108; fourth and fifth authors: Commonwealth Scientific and Industrial Research Organisation (CSIRO) Plant Industry, Agriculture Flagship, GPO Box 1600, Canberra, ACT, 2601, Australia; sixth author: CIMMYT, ICRAF House, United Nations Avenue, Gigiri, Village Market-00621, Nairobi, Kenya; eighth author: University of the Free State, Bloemfontein 9300, South Africa; tenth author: Campo Experimental Valle de México INIFAP, Apdo. Postal 10, 56230, Chapingo, Edo de México, México; and thirteenth author: Department of Agroecology, Aarhus University, Forsøgsvej 1, DK-4200, Slagelse, Denmark
| | - Michael A Ayliffe
- First, eleventh, and twelfth authors: International Maize and Wheat Improvement Center (CIMMYT), Apdo. Postal, 6-641, 06600, Mexico, D.F.; second author: CIMMYT, Addis Ababa, Ethiopia; third, seventh, and ninth authors: United States Department of Agriculture-Agricultural Research Service, Cereal Disease Laboratory, University of Minnesota, St. Paul 55108; fourth and fifth authors: Commonwealth Scientific and Industrial Research Organisation (CSIRO) Plant Industry, Agriculture Flagship, GPO Box 1600, Canberra, ACT, 2601, Australia; sixth author: CIMMYT, ICRAF House, United Nations Avenue, Gigiri, Village Market-00621, Nairobi, Kenya; eighth author: University of the Free State, Bloemfontein 9300, South Africa; tenth author: Campo Experimental Valle de México INIFAP, Apdo. Postal 10, 56230, Chapingo, Edo de México, México; and thirteenth author: Department of Agroecology, Aarhus University, Forsøgsvej 1, DK-4200, Slagelse, Denmark
| | - Sridhar Bhavani
- First, eleventh, and twelfth authors: International Maize and Wheat Improvement Center (CIMMYT), Apdo. Postal, 6-641, 06600, Mexico, D.F.; second author: CIMMYT, Addis Ababa, Ethiopia; third, seventh, and ninth authors: United States Department of Agriculture-Agricultural Research Service, Cereal Disease Laboratory, University of Minnesota, St. Paul 55108; fourth and fifth authors: Commonwealth Scientific and Industrial Research Organisation (CSIRO) Plant Industry, Agriculture Flagship, GPO Box 1600, Canberra, ACT, 2601, Australia; sixth author: CIMMYT, ICRAF House, United Nations Avenue, Gigiri, Village Market-00621, Nairobi, Kenya; eighth author: University of the Free State, Bloemfontein 9300, South Africa; tenth author: Campo Experimental Valle de México INIFAP, Apdo. Postal 10, 56230, Chapingo, Edo de México, México; and thirteenth author: Department of Agroecology, Aarhus University, Forsøgsvej 1, DK-4200, Slagelse, Denmark
| | - Matthew N Rouse
- First, eleventh, and twelfth authors: International Maize and Wheat Improvement Center (CIMMYT), Apdo. Postal, 6-641, 06600, Mexico, D.F.; second author: CIMMYT, Addis Ababa, Ethiopia; third, seventh, and ninth authors: United States Department of Agriculture-Agricultural Research Service, Cereal Disease Laboratory, University of Minnesota, St. Paul 55108; fourth and fifth authors: Commonwealth Scientific and Industrial Research Organisation (CSIRO) Plant Industry, Agriculture Flagship, GPO Box 1600, Canberra, ACT, 2601, Australia; sixth author: CIMMYT, ICRAF House, United Nations Avenue, Gigiri, Village Market-00621, Nairobi, Kenya; eighth author: University of the Free State, Bloemfontein 9300, South Africa; tenth author: Campo Experimental Valle de México INIFAP, Apdo. Postal 10, 56230, Chapingo, Edo de México, México; and thirteenth author: Department of Agroecology, Aarhus University, Forsøgsvej 1, DK-4200, Slagelse, Denmark
| | - Zacharias A Pretorius
- First, eleventh, and twelfth authors: International Maize and Wheat Improvement Center (CIMMYT), Apdo. Postal, 6-641, 06600, Mexico, D.F.; second author: CIMMYT, Addis Ababa, Ethiopia; third, seventh, and ninth authors: United States Department of Agriculture-Agricultural Research Service, Cereal Disease Laboratory, University of Minnesota, St. Paul 55108; fourth and fifth authors: Commonwealth Scientific and Industrial Research Organisation (CSIRO) Plant Industry, Agriculture Flagship, GPO Box 1600, Canberra, ACT, 2601, Australia; sixth author: CIMMYT, ICRAF House, United Nations Avenue, Gigiri, Village Market-00621, Nairobi, Kenya; eighth author: University of the Free State, Bloemfontein 9300, South Africa; tenth author: Campo Experimental Valle de México INIFAP, Apdo. Postal 10, 56230, Chapingo, Edo de México, México; and thirteenth author: Department of Agroecology, Aarhus University, Forsøgsvej 1, DK-4200, Slagelse, Denmark
| | - Les J Szabo
- First, eleventh, and twelfth authors: International Maize and Wheat Improvement Center (CIMMYT), Apdo. Postal, 6-641, 06600, Mexico, D.F.; second author: CIMMYT, Addis Ababa, Ethiopia; third, seventh, and ninth authors: United States Department of Agriculture-Agricultural Research Service, Cereal Disease Laboratory, University of Minnesota, St. Paul 55108; fourth and fifth authors: Commonwealth Scientific and Industrial Research Organisation (CSIRO) Plant Industry, Agriculture Flagship, GPO Box 1600, Canberra, ACT, 2601, Australia; sixth author: CIMMYT, ICRAF House, United Nations Avenue, Gigiri, Village Market-00621, Nairobi, Kenya; eighth author: University of the Free State, Bloemfontein 9300, South Africa; tenth author: Campo Experimental Valle de México INIFAP, Apdo. Postal 10, 56230, Chapingo, Edo de México, México; and thirteenth author: Department of Agroecology, Aarhus University, Forsøgsvej 1, DK-4200, Slagelse, Denmark
| | - Julio Huerta-Espino
- First, eleventh, and twelfth authors: International Maize and Wheat Improvement Center (CIMMYT), Apdo. Postal, 6-641, 06600, Mexico, D.F.; second author: CIMMYT, Addis Ababa, Ethiopia; third, seventh, and ninth authors: United States Department of Agriculture-Agricultural Research Service, Cereal Disease Laboratory, University of Minnesota, St. Paul 55108; fourth and fifth authors: Commonwealth Scientific and Industrial Research Organisation (CSIRO) Plant Industry, Agriculture Flagship, GPO Box 1600, Canberra, ACT, 2601, Australia; sixth author: CIMMYT, ICRAF House, United Nations Avenue, Gigiri, Village Market-00621, Nairobi, Kenya; eighth author: University of the Free State, Bloemfontein 9300, South Africa; tenth author: Campo Experimental Valle de México INIFAP, Apdo. Postal 10, 56230, Chapingo, Edo de México, México; and thirteenth author: Department of Agroecology, Aarhus University, Forsøgsvej 1, DK-4200, Slagelse, Denmark
| | - Bhoja R Basnet
- First, eleventh, and twelfth authors: International Maize and Wheat Improvement Center (CIMMYT), Apdo. Postal, 6-641, 06600, Mexico, D.F.; second author: CIMMYT, Addis Ababa, Ethiopia; third, seventh, and ninth authors: United States Department of Agriculture-Agricultural Research Service, Cereal Disease Laboratory, University of Minnesota, St. Paul 55108; fourth and fifth authors: Commonwealth Scientific and Industrial Research Organisation (CSIRO) Plant Industry, Agriculture Flagship, GPO Box 1600, Canberra, ACT, 2601, Australia; sixth author: CIMMYT, ICRAF House, United Nations Avenue, Gigiri, Village Market-00621, Nairobi, Kenya; eighth author: University of the Free State, Bloemfontein 9300, South Africa; tenth author: Campo Experimental Valle de México INIFAP, Apdo. Postal 10, 56230, Chapingo, Edo de México, México; and thirteenth author: Department of Agroecology, Aarhus University, Forsøgsvej 1, DK-4200, Slagelse, Denmark
| | - Caixia Lan
- First, eleventh, and twelfth authors: International Maize and Wheat Improvement Center (CIMMYT), Apdo. Postal, 6-641, 06600, Mexico, D.F.; second author: CIMMYT, Addis Ababa, Ethiopia; third, seventh, and ninth authors: United States Department of Agriculture-Agricultural Research Service, Cereal Disease Laboratory, University of Minnesota, St. Paul 55108; fourth and fifth authors: Commonwealth Scientific and Industrial Research Organisation (CSIRO) Plant Industry, Agriculture Flagship, GPO Box 1600, Canberra, ACT, 2601, Australia; sixth author: CIMMYT, ICRAF House, United Nations Avenue, Gigiri, Village Market-00621, Nairobi, Kenya; eighth author: University of the Free State, Bloemfontein 9300, South Africa; tenth author: Campo Experimental Valle de México INIFAP, Apdo. Postal 10, 56230, Chapingo, Edo de México, México; and thirteenth author: Department of Agroecology, Aarhus University, Forsøgsvej 1, DK-4200, Slagelse, Denmark
| | - Mogens S Hovmøller
- First, eleventh, and twelfth authors: International Maize and Wheat Improvement Center (CIMMYT), Apdo. Postal, 6-641, 06600, Mexico, D.F.; second author: CIMMYT, Addis Ababa, Ethiopia; third, seventh, and ninth authors: United States Department of Agriculture-Agricultural Research Service, Cereal Disease Laboratory, University of Minnesota, St. Paul 55108; fourth and fifth authors: Commonwealth Scientific and Industrial Research Organisation (CSIRO) Plant Industry, Agriculture Flagship, GPO Box 1600, Canberra, ACT, 2601, Australia; sixth author: CIMMYT, ICRAF House, United Nations Avenue, Gigiri, Village Market-00621, Nairobi, Kenya; eighth author: University of the Free State, Bloemfontein 9300, South Africa; tenth author: Campo Experimental Valle de México INIFAP, Apdo. Postal 10, 56230, Chapingo, Edo de México, México; and thirteenth author: Department of Agroecology, Aarhus University, Forsøgsvej 1, DK-4200, Slagelse, Denmark
| |
Collapse
|
19
|
Yu G, Zhang Q, Friesen TL, Rouse MN, Jin Y, Zhong S, Rasmussen JB, Lagudah ES, Xu SS. Identification and mapping of Sr46 from Aegilops tauschii accession CIae 25 conferring resistance to race TTKSK (Ug99) of wheat stem rust pathogen. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2015; 128:431-43. [PMID: 25523501 DOI: 10.1007/s00122-014-2442-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2014] [Accepted: 12/06/2014] [Indexed: 05/28/2023]
Abstract
Mapping studies confirm that resistance to Ug99 race of stem rust pathogen in Aegilops tauschii accession Clae 25 is conditioned by Sr46 and markers linked to the gene were developed for marker-assisted selection. The race TTKSK (Ug99) of Puccinia graminis f. sp. tritici, the causal pathogen for wheat stem rust, is considered as a major threat to global wheat production. To address this threat, researchers across the world have been devoted to identifying TTKSK-resistant genes. Here, we report the identification and mapping of a stem rust resistance gene in Aegilops tauschii accession CIae 25 that confers resistance to TTKSK and the development of molecular markers for the gene. An F2 population of 710 plants from an Ae. tauschii cross CIae 25 × AL8/78 were first evaluated against race TPMKC. A set of 14 resistant and 116 susceptible F2:3 families from the F2 plants were then evaluated for their reactions to TTKSK. Based on the tests, 179 homozygous susceptible F2 plants were selected as the mapping population to identify the simple sequence repeat (SSR) and sequence tagged site (STS) markers linked to the gene by bulk segregant analysis. A dominant stem rust resistance gene was identified and mapped with 16 SSR and five new STS markers to the deletion bin 2DS5-0.47-1.00 of chromosome arm 2DS in which Sr46 was located. Molecular marker and stem rust tests on CIae 25 and two Ae. tauschii accessions carrying Sr46 confirmed that the gene in CIae 25 is Sr46. This study also demonstrated that Sr46 is temperature-sensitive being less effective at low temperatures. The marker validation indicated that two closely linked markers Xgwm210 and Xwmc111 can be used for marker-assisted selection of Sr46 in wheat breeding programs.
Collapse
Affiliation(s)
- Guotai Yu
- Department of Plant Pathology, North Dakota State University, Fargo, ND, 58108, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Rouse MN, Nirmala J, Jin Y, Chao S, Fetch TG, Pretorius ZA, Hiebert CW. Characterization of Sr9h, a wheat stem rust resistance allele effective to Ug99. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2014; 127:1681-8. [PMID: 24913360 DOI: 10.1007/s00122-014-2330-y] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2014] [Accepted: 05/12/2014] [Indexed: 05/20/2023]
Abstract
Wheat stem rust resistance gene SrWeb is an allele at the Sr9 locus that confers resistance to Ug99. Race TTKSK (Ug99) of Puccinia graminis f. sp. tritici, the causal fungus of stem rust, threatens global wheat production because of its broad virulence to current wheat cultivars. A recently identified Ug99 resistance gene from cultivar Webster, temporarily designated as SrWeb, mapped near the stem rust resistance gene locus Sr9. We determined that SrWeb is also present in Ug99 resistant cultivar Gabo 56 by comparative mapping and an allelism test. Analysis of resistance in a population segregating for both Sr9e and SrWeb demonstrated that SrWeb is an allele at the Sr9 locus, which subsequently was designated as Sr9h. Webster and Gabo 56 were susceptible to the Ug99-related race TTKSF+ from South Africa. Race TTKSF+ possesses unique virulence to uncharacterized Ug99 resistance in cultivar Matlabas. This result validated that resistance to Ug99 in Webster and Gabo 56 is conferred by the same gene: Sr9h. The emergence of pathogen virulence to several resistance genes that are effective to the original Ug99 race TTKSK, including Sr9h, suggests that resistance genes should be used in combinations in order to increase resistance durability.
Collapse
Affiliation(s)
- Matthew N Rouse
- Cereal Disease Laboratory, United States Department of Agriculture-Agricultural Research Service (USDA-ARS), 1551 Lindig Street, St. Paul, MN, USA,
| | | | | | | | | | | | | |
Collapse
|
21
|
Rouse MN, Talbert LE, Singh D, Sherman JD. Complementary epistasis involving Sr12 explains adult plant resistance to stem rust in Thatcher wheat (Triticum aestivum L.). TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2014; 127:1549-59. [PMID: 24838645 DOI: 10.1007/s00122-014-2319-6] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2014] [Accepted: 04/24/2014] [Indexed: 05/20/2023]
Abstract
Quantitative trait loci conferring adult plant resistance to Ug99 stem rust in Thatcher wheat display complementary gene action suggesting multiple quantitative trait loci are needed for effective resistance. Adult plant resistance (APR) in wheat (Triticum aestivum L.) to stem rust, caused by Puccinia graminis f. sp. tritici (Pgt), is desirable because this resistance can be Pgt race non-specific. Resistance derived from cultivar Thatcher can confer high levels of APR to the virulent Pgt race TTKSK (Ug99) when combined with stem rust resistance gene Sr57 (Lr34). To identify the loci conferring APR in Thatcher, we evaluated 160 RILs derived from Thatcher crossed to susceptible cultivar McNeal for field stem rust reaction in Kenya for two seasons and in St. Paul for one season. All RILs and parents were susceptible as seedlings to race TTKSK. However, adult plant stem rust severities in Kenya varied from 5 to 80 %. Composite interval mapping identified four quantitative trait loci (QTL). Three QTL were inherited from Thatcher and one, Sr57, was inherited from McNeal. The markers closest to the QTL peaks were used in an ANOVA to determine the additive and epistatic effects. A QTL on 3BS was detected in all three environments and explained 27-35 % of the variation. The peak of this QTL was at the same location as the Sr12 seedling resistance gene effective to race SCCSC. Epistatic interactions were significant between Sr12 and QTL on chromosome arms 1AL and 2BS. Though Sr12 cosegregated with the largest effect QTL, lines with Sr12 were not always resistant. The data suggest that Sr12 or a linked gene, though not effective to race TTKSK alone, confers APR when combined with other resistance loci.
Collapse
Affiliation(s)
- Matthew N Rouse
- Cereal Disease Laboratory, United States Department of Agriculture-Agricultural Research Service (USDA-ARS), 1551 Lindig Street, St. Paul, MN, 55108, USA,
| | | | | | | |
Collapse
|
22
|
Yu LX, Barbier H, Rouse MN, Singh S, Singh RP, Bhavani S, Huerta-Espino J, Sorrells ME. A consensus map for Ug99 stem rust resistance loci in wheat. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2014; 127:1561-81. [PMID: 24903979 PMCID: PMC4072096 DOI: 10.1007/s00122-014-2326-7] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2014] [Accepted: 05/05/2014] [Indexed: 05/07/2023]
Abstract
This consensus map of stem rust genes, QTLs, and molecular markers will facilitate the identification of new resistance genes and provide a resource of in formation for development of new markers for breeding wheat varieties resistant to Ug99. The global effort to identify new sources of resistance to wheat stem rust, caused by Puccinia graminis f. sp. tritici race group Ug99 has resulted in numerous studies reporting both qualitative genes and quantitative trait loci. The purpose of our study was to assemble all available information on loci associated with stem rust resistance from 21 recent studies on Triticum aestivum L. (bread wheat) and Triticum turgidum subsp. durum desf. (durum wheat). The software LPmerge was used to construct a stem rust resistance loci consensus wheat map with 1,433 markers incorporating Single Nucleotide Polymorphism, Diversity Arrays Technology, Genotyping-by-Sequencing as well as Simple Sequence Repeat marker information. Most of the markers associated with stem rust resistance have been identified in more than one population. Several loci identified in these populations map to the same regions with known Sr genes including Sr2, SrND643, Sr25 and Sr57 (Lr34/Yr18/Pm38), while other significant markers were located in chromosome regions where no Sr genes have been previously reported. This consensus map provides a comprehensive source of information on 141 stem rust resistance loci conferring resistance to stem rust Ug99 as well as linked markers for use in marker-assisted selection.
Collapse
Affiliation(s)
- Long-Xi Yu
- Department of Plant Breeding and Genetics, Cornell University, Ithaca, NY 14853 USA
- Present Address: United States Department of Agriculture, Agricultural Research Service, Vegetable and Forage Crops Research Unit, 24106 N. Bunn Road, Prosser, WA 99350–9687 USA
| | - Hugues Barbier
- Department of Plant Breeding and Genetics, Cornell University, Ithaca, NY 14853 USA
| | - Matthew N. Rouse
- United States Department of Agriculture, Agricultural Research Service, Cereal Disease Laboratory and Department of Plant Pathology, University of Minnesota, St. Paul, Minneapolis, MN 55108 USA
| | - Sukhwinder Singh
- International Maize and Wheat Improvement Center (CIMMYT), Apdo. Postal 6-641, 06600 Texcoco, Mexico
| | - Ravi P. Singh
- International Maize and Wheat Improvement Center (CIMMYT), Apdo. Postal 6-641, 06600 Texcoco, Mexico
| | - Sridhar Bhavani
- International Maize and Wheat Improvement Center (CIMMYT), Apdo. Postal 6-641, 06600 Texcoco, Mexico
| | - Julio Huerta-Espino
- Campo Experimental Valle de México INIFAP, Apdo. Postal 10, 56230 Chapingo, Edo de México Mexico
| | - Mark E. Sorrells
- Department of Plant Breeding and Genetics, Cornell University, Ithaca, NY 14853 USA
| |
Collapse
|
23
|
Lopez-Vera EE, Nelson S, Singh RP, Basnet BR, Haley SD, Bhavani S, Huerta-Espino J, Xoconostle-Cazares BG, Ruiz-Medrano R, Rouse MN, Singh S. Resistance to stem rust Ug99 in six bread wheat cultivars maps to chromosome 6DS. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2014; 127:231-9. [PMID: 24121568 DOI: 10.1007/s00122-013-2212-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2013] [Accepted: 10/04/2013] [Indexed: 05/20/2023]
Abstract
Identified SSR markers ( Xcfd49 and Xbarc183 ) linked with stem rust resistance for efficient use in marker-assisted selection and stacking of resistance genes in wheat breeding programs. More than 80 % of the worldwide wheat (Triticum aestivum L.) area is currently sown with varieties susceptible to the Ug99 race group of stem rust fungus. However, wheat lines Niini, Tinkio, Coni, Pfunye, Blouk, and Ripper have demonstrated Ug99 resistance at the seedling and adult plant stages. We mapped stem rust resistance in populations derived from crosses of a susceptible parent with each of the resistant lines. The segregation of resistance in each population indicated the presence of a single gene. The resistance gene in Niini mapped to short arm of chromosome 6D and was flanked by SSR markers Xcfd49 at distances of 3.9 cM proximal and Xbarc183 8.4 cM distal, respectively. The chromosome location of this resistance was validated in three other populations: PBW343/Coni, PBW343/Tinkio, and Cacuke/Pfunye. Resistance initially postulated to be conferred by the SrTmp gene in Blouk and Ripper was also linked to Xcfd49 and Xbarc183 on 6DS, but it was mapped proximal to Xbarc183 at a similar position to previously mapped genes Sr42 and SrCad. Based on the variation in diagnostic marker alleles, it is possible that Niini and Pfunye may carry different resistance genes/alleles. Further studies are needed to determine the allelic relationships between various genes located on chromosome arm 6DS. Our results provide valuable molecular marker and genetic information for developing Ug99 resistant wheat varieties in diverse germplasm and using these markers to tag the resistance genes in wheat breeding.
Collapse
|
24
|
Olson EL, Rouse MN, Pumphrey MO, Bowden RL, Gill BS, Poland JA. Introgression of stem rust resistance genes SrTA10187 and SrTA10171 from Aegilops tauschii to wheat. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2013; 126:2477-84. [PMID: 23864229 DOI: 10.1007/s00122-013-2148-z] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2012] [Accepted: 06/18/2013] [Indexed: 05/09/2023]
Abstract
Aegilops tauschii, the diploid progenitor of the wheat D genome, is a readily accessible germplasm pool for wheat breeding as genes can be transferred to elite wheat cultivars through direct hybridization followed by backcrossing. Gene transfer and genetic mapping can be integrated by developing mapping populations during backcrossing. Using direct crossing, two genes for resistance to the African stem rust fungus race TTKSK (Ug99), were transferred from the Ae. tauschii accessions TA10187 and TA10171 to an elite hard winter wheat line, KS05HW14. BC2 mapping populations were created concurrently with developing advanced backcross lines carrying rust resistance. Bulked segregant analysis on the BC2 populations identified marker loci on 6DS and 7DS linked to stem rust resistance genes transferred from TA10187 and TA10171, respectively. Linkage maps were developed for both genes and closely linked markers reported in this study will be useful for selection and pyramiding with other Ug99-effective stem rust resistance genes. The Ae. tauschii-derived resistance genes were temporarily designated SrTA10187 and SrTA10171 and will serve as valuable resources for stem rust resistance breeding.
Collapse
Affiliation(s)
- Eric L Olson
- Department of Plant Pathology, Kansas State University, Manhattan, KS, 66506, USA
| | | | | | | | | | | |
Collapse
|
25
|
Ghazvini H, Hiebert CW, Thomas JB, Fetch T. Development of a multiple bulked segregant analysis (MBSA) method used to locate a new stem rust resistance gene (Sr54) in the winter wheat cultivar Norin 40. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2013; 126:443-449. [PMID: 23052026 DOI: 10.1007/s00122-012-1992-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2012] [Accepted: 09/21/2012] [Indexed: 06/01/2023]
Abstract
An important aspect of studying putative new genes in wheat is determining their position on the wheat genetic map. The primary difficulty in mapping genes is determining which chromosome carries the gene of interest. Several approaches have been developed to address this problem, each with advantages and disadvantages. Here we describe a new approach called multiple bulked segregant analysis (MBSA). A set of 423 simple sequence repeat (SSR) markers were selected based on profile simplicity, frequency of polymorphism, and distribution across the wheat genome. SSR primers were preloaded in 384-well PCR plates with each primer occupying 16 wells. In practice, 14 wells are reserved for "mini-bulks" that are equivalent to four gametes (e.g. two F(2) individuals) comprised of individuals from a segregated population that have a known homozygous genotype for the gene of interest. The remaining two wells are reserved for the parents of the population. Each well containing a mini-bulk can have one of three allele compositions for each SSR: only the allele from one parent, only the allele from the other parent, or both alleles. Simulation experiments were performed to determine the pattern of mini-bulk allele composition that would indicate putative linkage between the SSR in question and the gene of interest. As a test case, MBSA was employed to locate an unidentified stem rust resistance (Sr) gene in the winter wheat cultivar Norin 40. A doubled haploid (DH) population (n = 267) was produced from hybrids of the cross LMPG-6S/Norin 40. The DH population segregated for a single gene (χ (1:1) (2) = 0.093, p = 0.76) for resistance to Puccinia graminis f.sp. tritici race LCBN. Four resistant DH lines were included in each of the 14 mini-bulks for screening. The Sr gene was successfully located to the long arm of chromosome 2D using MBSA. Further mapping confirmed the chromosome location and revealed that the Sr gene was located in a linkage block that may represent an alien translocation. The new Sr gene was designated as Sr54.
Collapse
Affiliation(s)
- Habibollah Ghazvini
- Cereal Research Department, Seed and Plant Improvement Institute, AREEO, Ministry of Jahad Agriculture, Karaj, Iran
| | | | | | | |
Collapse
|