1
|
Qi LL, Talukder ZI, Ma GJ, Seiler GJ. Introgression and targeting of the Pl 37 and Pl 38 genes for downy mildew resistance from wild Helianthus annuus and H. praecox into cultivated sunflower (Helianthus annuus L.). TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2023; 136:82. [PMID: 36952051 DOI: 10.1007/s00122-023-04316-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Accepted: 01/31/2023] [Indexed: 06/18/2023]
Abstract
Two new downy mildew resistance genes, Pl37 and Pl38, were introgressed from wild sunflower species into cultivated sunflower and mapped to sunflower chromosomes 4 and 2, respectively Downy mildew (DM), caused by the oomycete pathogen Plasmopara halstedii (Farl.) Berl. & de Toni, is known as the most prevalent disease occurring in global sunflower production areas, especially in North America and Europe. In this study, we report the introgression and molecular mapping of two new DM resistance genes from wild sunflower species, Helianthus annuus and H. praecox, into cultivated sunflower. Two mapping populations were developed from the crosses of HA 89/H. annuus PI 435417 (Pop1) and CMS HA 89/H. praecox PRA-417 (Pop2). The phenotypic evaluation of DM resistance/susceptibility was conducted in the BC1F2-derived BC1F3 populations using P. halstedii race 734. The BC1F2 segregating Pop1 was genotyped using an Optimal GBS AgriSeq™ Panel consisting of 768 mapped SNP markers, while the BC1F2 segregating Pop2 was genotyped using a genotyping-by-sequencing approach. Linkage analysis and subsequent saturation mapping placed the DM resistance gene, designated Pl37, derived from H. annuus PI 435417 in a 1.6 cM genetic interval on sunflower chromosome 4. Pl37 co-segregated with SNP markers SPB0003 and C4_5738736. Similarly, linkage analysis and subsequent saturation mapping placed the DM resistance gene, designated Pl38, derived from H. praecox PRA-417 in a 0.8 cM genetic interval on sunflower chromosome 2. Pl38 co-segregated with seven SNP markers. Multi-pathotype tests revealed that lines with Pl37 or Pl38 are immune to the most prevalent and virulent P. halstedii races tested. Two germplasm lines, HA-DM15 with Pl37 and HA-DM16 with Pl38, were developed for use in sunflower DM-resistance breeding.
Collapse
Affiliation(s)
- L L Qi
- USDA-Agricultural Research Service, Edward T. Schafer Agricultural Research Center, 1616 Albrecht Blvd. N, Fargo, ND, 58102-2765, USA.
| | - Z I Talukder
- USDA-Agricultural Research Service, Edward T. Schafer Agricultural Research Center, 1616 Albrecht Blvd. N, Fargo, ND, 58102-2765, USA
| | - G J Ma
- Department of Plant Sciences, North Dakota State University, Fargo, ND, 58108, USA
- Ball Horticultural Company, 622 Town Road, West Chicago, IL, 60185, USA
| | - G J Seiler
- USDA-Agricultural Research Service, Edward T. Schafer Agricultural Research Center, 1616 Albrecht Blvd. N, Fargo, ND, 58102-2765, USA
| |
Collapse
|
2
|
Molinero-Ruiz L. Sustainable and efficient control of sunflower downy mildew by means of genetic resistance: a review. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2022; 135:3757-3771. [PMID: 35084515 DOI: 10.1007/s00122-022-04038-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Accepted: 01/12/2022] [Indexed: 06/14/2023]
Abstract
The breeding of sunflower (Helianthus annuus L.) for resistance to downy mildew (caused by the oomycete Plasmopara halstedii Farl. Berl. & de Toni) is reviewed in this work under the scope of its sustainability and efficiency. When sunflower turned into an oilseed crop, resistance to the disease was included in its initial breeding strategies. Subsequent development of genomic tools allowed a significant expansion of the knowledge on the diversity of its genetic resistance and its application to the genetic control of the disease. Simultaneously to genetic improvements, and as a consequence of the close interaction between the pathogen and its host plant, an enormous variety of pathotypes has been described in all the sunflower-growing areas worldwide. Thus, the genetic control of sunflower downy mildew is an active research field subjected to continuous evolution and challenge. In practice, genetic resistance constitutes the base tier of Integrated Pest Management against sunflower downy mildew. The second tier is composed of elements related to crop management: rotation, removal of volunteer plants, sowing date, tillage. Biological control alternatives and resistance inducers could also provide additional restraint. Finally, the top tier includes chemical treatments that should only be used when necessary and if the more basal Integrated Pest Management elements fail to keep pathogen populations under the economic threshold.
Collapse
Affiliation(s)
- L Molinero-Ruiz
- Institute for Sustainable Agriculture (IAS), Spanish National Research Council (CSIC), Alameda del Obispo s/n, 14004, Córdoba, Spain.
| |
Collapse
|
3
|
Elameen A, de Labrouhe DT, Bret-Mestries E, Delmotte F. Spatial Genetic Structure and Pathogenic Race Composition at the Field Scale in the Sunflower Downy Mildew Pathogen, Plasmopara halstedii. J Fungi (Basel) 2022; 8:1084. [PMID: 36294648 PMCID: PMC9605284 DOI: 10.3390/jof8101084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 09/27/2022] [Accepted: 10/11/2022] [Indexed: 11/22/2022] Open
Abstract
Yield losses in sunflower crops caused by Plasmopara halstedii can be up to 100%, depending on the cultivar susceptibility, environmental conditions, and virulence of the pathogen population. The aim of this study was to investigate the genetic and phenotypic structure of a sunflower downy mildew agent at the field scale. The genetic diversity of 250 P. halstedii isolates collected from one field in southern France was assessed using single-nucleotide polymorphisms (SNPs) and single sequence repeats (SSR). A total of 109 multilocus genotypes (MLG) were identified among the 250 isolates collected in the field. Four genotypes were repeated more than 20 times and spatially spread over the field. Estimates of genetic relationships among P. halstedii isolates using principal component analysis and a Bayesian clustering approach demonstrated that the isolates are grouped into two main genetic clusters. A high level of genetic differentiation among clusters was detected (FST = 0.35), indicating overall limited exchange between them, but our results also suggest that recombination between individuals of these groups is not rare. Genetic clusters were highly related to pathotypes, as previously described for this pathogen species. Eight different races were identified (100, 300, 304, 307, 703, 704, 707, and 714), with race 304 being predominant and present at most of the sites. The co-existence of multiple races at the field level is a new finding that could have important implications for the management of sunflower downy mildew. These data provide the first population-wide picture of the genetic structure of P. halstedii at a fine spatial scale.
Collapse
Affiliation(s)
- Abdelhameed Elameen
- NIBIO, Norwegian Institute of Bioeconomy Research, Division of Biotechnology and Plant Health, N-1431 Ås, Norway
| | | | | | - Francois Delmotte
- INRAE, Bordeaux Sciences Agro, ISVV, SAVE, 33140 Villenave d’Ornon, France
| |
Collapse
|
4
|
Ma G, Song Q, Li X, Qi L. Genetic Insight into Disease Resistance Gene Clusters by Using Sequencing-Based Fine Mapping in Sunflower ( Helianthus annuus L.). Int J Mol Sci 2022; 23:9516. [PMID: 36076914 PMCID: PMC9455867 DOI: 10.3390/ijms23179516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 08/04/2022] [Accepted: 08/19/2022] [Indexed: 11/16/2022] Open
Abstract
Rust and downy mildew (DM) are two important sunflower diseases that lead to significant yield losses globally. The use of resistant hybrids to control rust and DM in sunflower has a long history. The rust resistance genes, R13a and R16, were previously mapped to a 3.4 Mb region at the lower end of sunflower chromosome 13, while the DM resistance gene, Pl33, was previously mapped to a 4.2 Mb region located at the upper end of chromosome 4. High-resolution fine mapping was conducted using whole genome sequencing of HA-R6 (R13a) and TX16R (R16 and Pl33) and large segregated populations. R13a and R16 were fine mapped to a 0.48 cM region in chromosome 13 corresponding to a 790 kb physical interval on the XRQr1.0 genome assembly. Four disease defense-related genes with nucleotide-binding leucine-rich repeat (NLR) motifs were found in this region from XRQr1.0 gene annotation as candidate genes for R13a and R16. Pl33 was fine mapped to a 0.04 cM region in chromosome 4 corresponding to a 63 kb physical interval. One NLR gene, HanXRQChr04g0095641, was predicted as the candidate gene for Pl33. The diagnostic SNP markers developed for each gene in the current study will facilitate marker-assisted selections of resistance genes in sunflower breeding programs.
Collapse
Affiliation(s)
- Guojia Ma
- Department of Plant Sciences, North Dakota State University, Fargo, ND 58102-6050, USA
| | - Qijian Song
- Soybean Genomics and Improvement Laboratory, USDA-Agricultural Research Service, Beltsville, MD 20705-2350, USA
| | - Xuehui Li
- Department of Plant Sciences, North Dakota State University, Fargo, ND 58102-6050, USA
| | - Lili Qi
- USDA-Agricultural Research Service, Edward T. Schafer Agricultural Research Center, Fargo, ND 58102-2765, USA
| |
Collapse
|
5
|
Qi LL, Cai XW. Characterization and mapping of a downy mildew resistance gene, Pl36, in sunflower ( Helianthus annuus L.). MOLECULAR BREEDING : NEW STRATEGIES IN PLANT IMPROVEMENT 2022; 42:8. [PMID: 37309323 PMCID: PMC10248693 DOI: 10.1007/s11032-022-01280-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Accepted: 01/23/2022] [Indexed: 06/14/2023]
Abstract
Downy mildew (DM) is one of the most serious diseases in sunflower-growing regions worldwide, often significantly reducing sunflower yields. The causal agent of sunflower DM, the oomycete pathogen Plasmopara halstedii, is highly virulent and aggressive. Studying regional disease spread and virulence evolution in the DM pathogen population is important for the development of new sunflower inbred lines with resistance to the existing DM pathogen. The sunflower line 803-1, as one of nine international differential hosts, has been used in the identification of P. halstedii virulent pathotypes in sunflower since 2000. The DM resistance gene in 803-1 was temporally designated Pl5 + based on allelic analysis but has not been molecularly characterized. In the present study, bulked segregant analysis and genetic mapping confirmed the presence of the Pl gene within a large gene cluster on sunflower chromosome 13 in 803-1, as previously reported. Subsequent saturation mapping in the gene target region with single nucleotide polymorphism (SNP) markers placed this gene at an interval of 3.4 Mb in the XRQ reference genome assembly, a location different from that of Pl5. Therefore, the Pl gene in 803-1 was re-designated Pl36 because it is not allelic with Pl5. Four SNP markers co-segregated with Pl36, and SNP SFW05743 was 1.1 cM proximal to Pl36. The relationship of eight Pl genes in the cluster is discussed based on their origin, map position, and specificity of resistance/susceptibility to DM infection. Supplementary Information The online version contains supplementary material available at 10.1007/s11032-022-01280-1.
Collapse
Affiliation(s)
- L. L. Qi
- USDA-Agricultural Research Service, Edward T. Schafer Agricultural Research Center, 1616 Albrecht Blvd. N, Fargo, ND 58102-2765 USA
| | - X. W. Cai
- USDA-Agricultural Research Service, Wheat, Sorghum and Forage Research Unit, 251 Filley Hall/Food Ind. Complex, Lincoln, NE 68583 USA
| |
Collapse
|
6
|
Ma G, Song Q, Li X, Qi L. High-Density Mapping and Candidate Gene Analysis of Pl18 and Pl20 in Sunflower by Whole-Genome Resequencing. Int J Mol Sci 2020; 21:E9571. [PMID: 33339111 PMCID: PMC7765508 DOI: 10.3390/ijms21249571] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Revised: 12/09/2020] [Accepted: 12/11/2020] [Indexed: 12/17/2022] Open
Abstract
Downy mildew (DM) is one of the severe biotic threats to sunflower production worldwide. The inciting pathogen, Plasmopara halstedii, could overwinter in the field for years, creating a persistent threat to sunflower. The dominant genes Pl18 and Pl20 conferring resistance to known DM races have been previously mapped to 1.5 and 1.8 cM intervals on sunflower chromosomes 2 and 8, respectively. Utilizing a whole-genome resequencing strategy combined with reference sequence-based chromosome walking and high-density mapping in the present study, Pl18 was placed in a 0.7 cM interval on chromosome 2. A candidate gene HanXRQChr02g0048181 for Pl18 was identified from the XRQ reference genome and predicted to encode a protein with typical NLR domains for disease resistance. The Pl20 gene was placed in a 0.2 cM interval on chromosome 8. The putative gene with the NLR domain for Pl20, HanXRQChr08g0210051, was identified within the Pl20 interval. SNP markers closely linked to Pl18 and Pl20 were evaluated with 96 diverse sunflower lines, and a total of 13 diagnostic markers for Pl18 and four for Pl20 were identified. These markers will facilitate to transfer these new genes to elite sunflower lines and to pyramid these genes with broad-spectrum DM resistance in sunflower breeding.
Collapse
Affiliation(s)
- Guojia Ma
- Department of Plant Sciences, North Dakota State University, Fargo, ND 58108, USA; (G.M.); (X.L.)
| | - Qijian Song
- USDA-Agricultural Research Service, Soybean Genomics and Improvement Laboratory, Beltsville, MD 20705-2350, USA;
| | - Xuehui Li
- Department of Plant Sciences, North Dakota State University, Fargo, ND 58108, USA; (G.M.); (X.L.)
| | - Lili Qi
- USDA-Agricultural Research Service, Edward T. Schafer Agricultural Research Center, Fargo, ND 58102-2765, USA
| |
Collapse
|
7
|
Gilley MA, Gulya TJ, Seiler GJ, Underwood W, Hulke BS, Misar CG, Markell SG. Determination of Virulence Phenotypes of Plasmopara halstedii in the United States. PLANT DISEASE 2020; 104:2823-2831. [PMID: 32955406 DOI: 10.1094/pdis-10-19-2063-re] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Downy mildew, caused by Plasmopara halstedii (Farl.) Berl. and de Toni, is an economically important disease in cultivated sunflowers, Helianthus annuus L. Resistance genes incorporated into commercial hybrids are used as an effective disease management tool, but the duration of effectiveness is limited as virulence evolves in the pathogen population. A comprehensive assessment of pathogen virulence was conducted in 2014 and 2015 in the U.S. Great Plains states of North Dakota and South Dakota, where approximately 75% of the U.S. sunflower is produced annually. The virulence phenotypes (and races) of 185 isolates were determined using the U.S. standard set of nine differentials. Additionally, the virulence phenotypes of 61 to 185 isolates were determined on 13 additional lines that have been used to evaluate pathogen virulence in North America and/or internationally. Although widespread virulence was identified on several genes, new virulence was identified on the Pl8 resistance gene, and no virulence was observed on the PlArg, Pl15, Pl17 and Pl18 genes. Results of this study suggest that three additional lines should be used as differentials and agree with previous studies that six lines proposed as differentials should be used in two internationally accepted differential sets. For effective disease management using genetic resistance, it is critical that virulence data be relevant and timely. This is best accomplished when pathogen virulence is determined frequently and by using genetic lines containing resistance genes actively incorporated into commercial cultivars.
Collapse
Affiliation(s)
- Michelle A Gilley
- Department of Plant Pathology, North Dakota State University, Fargo, ND 58102
| | | | | | | | | | | | - Samuel G Markell
- Department of Plant Pathology, North Dakota State University, Fargo, ND 58102
| |
Collapse
|
8
|
Molecular dissection of resistance gene cluster and candidate gene identification of Pl 17 and Pl 19 in sunflower by whole-genome resequencing. Sci Rep 2019; 9:14974. [PMID: 31628344 PMCID: PMC6802088 DOI: 10.1038/s41598-019-50394-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Accepted: 09/10/2019] [Indexed: 11/08/2022] Open
Abstract
Sunflower (Helianthus annuus L.) production is challenged by different biotic and abiotic stresses, among which downy mildew (DM) is a severe biotic stress that is detrimental to sunflower yield and quality in many sunflower-growing regions worldwide. Resistance against its infestation in sunflower is commonly regulated by single dominant genes. Pl17 and Pl19 are two broad-spectrum DM resistance genes that have been previously mapped to a gene cluster spanning a 3.2 Mb region at the upper end of sunflower chromosome 4. Using a whole-genome resequencing approach combined with a reference sequence-based chromosome walking strategy and high-density mapping populations, we narrowed down Pl17 to a 15-kb region flanked by SNP markers C4_5711524 and SPB0001. A prospective candidate gene HanXRQChr04g0095641 for Pl17 was identified, encoding a typical TNL resistance gene protein. Pl19 was delimited to a 35-kb region and was approximately 1 Mb away from Pl17, flanked by SNP markers C4_6676629 and C4_6711381. The only gene present within the delineated Pl19 locus in the reference genome, HanXRQChr04g0095951, was predicted to encode an RNA methyltransferase family protein. Six and eight SNP markers diagnostic for Pl17 and Pl19, respectively, were identified upon evaluation of 96 diverse sunflower lines, providing a very useful tool for marker-assisted selection in sunflower breeding programs.
Collapse
|
9
|
Qi LL, Ma GJ, Li XH, Seiler GJ. Diversification of the downy mildew resistance gene pool by introgression of a new gene, Pl 35, from wild Helianthus argophyllus into oilseed and confection sunflowers (Helianthus annuus L.). TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2019; 132:2553-2565. [PMID: 31214741 DOI: 10.1007/s00122-019-03370-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Accepted: 06/03/2019] [Indexed: 05/22/2023]
Abstract
We have mapped a new downy mildew resistance gene, Pl35, derived from wild Helianthus argophyllus to sunflower linkage group 1. New germplasms incorporating the Pl35 gene were developed for both oilseed and confection sunflower Sunflower downy mildew (DM), caused by the oomycete pathogen Plasmopara halstedii, is an economically important and widespread sunflower disease worldwide. Non-race-specific resistance is not available in sunflower, and breeding for DM resistance relies on race-specific resistance to control this disease. The discovery of the novel DM resistance genes is a long-term task due to the highly virulent and aggressive nature of the P. halstedii pathogen, which reduces the effectiveness of resistance genes. The objectives of this study were to: (1) transfer DM resistance from a wild sunflower species Helianthus argophyllus (PI 494576) into cultivated sunflowers; (2) map the resistance gene; and (3) develop diagnostic single-nucleotide polymorphism (SNP) markers for efficient targeting of the gene in breeding programs. The H. argophyllus accession PI 494576 previously identified with resistance to the most virulent P. halstedii race 777 was crossed with oilseed and confection sunflower in 2012. Molecular mapping using the BC2F2 and BC2F3 populations derived from the cross CONFSCLB1/PI 494576 located a new resistance gene Pl35 on linkage group 1 of the sunflower genome. The new gene Pl35 was successfully transferred from PI 494576 into cultivated sunflowers. SNP markers flanking Pl35 were surveyed in a validation panel of 548 diversified sunflower lines collected globally. Eleven SNP markers were found to be diagnostic for Pl35 SNP alleles, with four co-segregating with Pl35. The developed oilseed and confection germplasms with diagnostic SNP markers for Pl35 will be very useful resources for breeding of DM resistance in sunflower.
Collapse
Affiliation(s)
- L L Qi
- USDA-Agricultural Research Service, Edward T. Schafer Agricultural Research Center, 1616 Albrecht Blvd. N, Fargo, ND, 58102-2765, USA.
| | - G J Ma
- Department of Plant Sciences, North Dakota State University, Fargo, ND, 58108, USA
| | - X H Li
- Department of Plant Sciences, North Dakota State University, Fargo, ND, 58108, USA
| | - G J Seiler
- USDA-Agricultural Research Service, Edward T. Schafer Agricultural Research Center, 1616 Albrecht Blvd. N, Fargo, ND, 58102-2765, USA
| |
Collapse
|
10
|
Talukder ZI, Ma G, Hulke BS, Jan CC, Qi L. Linkage Mapping and Genome-Wide Association Studies of the Rf Gene Cluster in Sunflower ( Helianthus annuus L.) and Their Distribution in World Sunflower Collections. Front Genet 2019; 10:216. [PMID: 30923538 PMCID: PMC6426773 DOI: 10.3389/fgene.2019.00216] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Accepted: 02/27/2019] [Indexed: 01/20/2023] Open
Abstract
Commercial hybrid seed production in sunflower currently relies on a single cytoplasmic male sterility (CMS) source, PET1 and the major fertility restoration gene, Rf1, leaving the crop highly vulnerable to issues with genetic bottlenecks. Therefore, having multiple CMS/Rf systems is important for sustainable sunflower production. Here, we report the identification of a new fertility restoration gene, Rf7, which is tightly linked to a new downy mildew (DM) resistance gene, Pl34 , in the USDA sunflower inbred line, RHA 428. The Rf7 gene was genetically mapped to an interval of 0.6 cM on the lower end of linkage group (LG) 13, while Pl34 was mapped 2.1 cM proximal to the Rf7. Both the genes are located in a cluster of Rf and Pl genes. To gain further insights into the distribution of Rf genes in the sunflower breeding lines, we used a genome-wide association study (GWAS) approach to identify markers associated with the fertility restoration trait in a panel of 333 sunflower lines genotyped with 8,723 single nucleotide polymorphism (SNP) markers. Twenty-four SNP markers on the lower end of LG13 spanning a genomic region of 2.47 cM were significantly associated with the trait. The significant markers were surveyed in a world collection panel of 548 sunflower lines and validated to be associated with the Rf1 gene. The SNP haplotypes for the Rf1 gene are different from Rf5 and the Rf7gene located in the Rf gene cluster on LG13. The SNP and SSR markers tightly flanking the Rf7 gene and the Pl34 gene would benefit the sunflower breeders in facilitating marker assisted selection (MAS) of Rf and Pl genes.
Collapse
Affiliation(s)
- Zahirul I Talukder
- Department of Plant Sciences, North Dakota State University, Fargo, ND, United States
| | - Guojia Ma
- Department of Plant Sciences, North Dakota State University, Fargo, ND, United States
| | - Brent S Hulke
- Edward T. Schafer Agricultural Research Center, Agricultural Research Service, United States Department of Agriculture, Fargo, ND, United States
| | - Chao-Chien Jan
- Edward T. Schafer Agricultural Research Center, Agricultural Research Service, United States Department of Agriculture, Fargo, ND, United States
| | - Lili Qi
- Edward T. Schafer Agricultural Research Center, Agricultural Research Service, United States Department of Agriculture, Fargo, ND, United States
| |
Collapse
|
11
|
Talukder ZI, Ma G, Hulke BS, Jan CC, Qi L. Linkage Mapping and Genome-Wide Association Studies of the Rf Gene Cluster in Sunflower ( Helianthus annuus L.) and Their Distribution in World Sunflower Collections. Front Genet 2019. [PMID: 30923538 DOI: 10.3389/fgene] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/24/2023] Open
Abstract
Commercial hybrid seed production in sunflower currently relies on a single cytoplasmic male sterility (CMS) source, PET1 and the major fertility restoration gene, Rf1, leaving the crop highly vulnerable to issues with genetic bottlenecks. Therefore, having multiple CMS/Rf systems is important for sustainable sunflower production. Here, we report the identification of a new fertility restoration gene, Rf7, which is tightly linked to a new downy mildew (DM) resistance gene, Pl34 , in the USDA sunflower inbred line, RHA 428. The Rf7 gene was genetically mapped to an interval of 0.6 cM on the lower end of linkage group (LG) 13, while Pl34 was mapped 2.1 cM proximal to the Rf7. Both the genes are located in a cluster of Rf and Pl genes. To gain further insights into the distribution of Rf genes in the sunflower breeding lines, we used a genome-wide association study (GWAS) approach to identify markers associated with the fertility restoration trait in a panel of 333 sunflower lines genotyped with 8,723 single nucleotide polymorphism (SNP) markers. Twenty-four SNP markers on the lower end of LG13 spanning a genomic region of 2.47 cM were significantly associated with the trait. The significant markers were surveyed in a world collection panel of 548 sunflower lines and validated to be associated with the Rf1 gene. The SNP haplotypes for the Rf1 gene are different from Rf5 and the Rf7gene located in the Rf gene cluster on LG13. The SNP and SSR markers tightly flanking the Rf7 gene and the Pl34 gene would benefit the sunflower breeders in facilitating marker assisted selection (MAS) of Rf and Pl genes.
Collapse
Affiliation(s)
- Zahirul I Talukder
- Department of Plant Sciences, North Dakota State University, Fargo, ND, United States
| | - Guojia Ma
- Department of Plant Sciences, North Dakota State University, Fargo, ND, United States
| | - Brent S Hulke
- Edward T. Schafer Agricultural Research Center, Agricultural Research Service, United States Department of Agriculture, Fargo, ND, United States
| | - Chao-Chien Jan
- Edward T. Schafer Agricultural Research Center, Agricultural Research Service, United States Department of Agriculture, Fargo, ND, United States
| | - Lili Qi
- Edward T. Schafer Agricultural Research Center, Agricultural Research Service, United States Department of Agriculture, Fargo, ND, United States
| |
Collapse
|
12
|
Şahin EÇ, Kalenderoğlu A, Aydın Y, Evci G, Uncuoğlu AA. SSR Markers Suitable for Marker Assisted Selection in Sunflower for Downy Mildew Resistance. Open Life Sci 2018; 13:319-326. [PMID: 33817099 PMCID: PMC7874726 DOI: 10.1515/biol-2018-0039] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2018] [Accepted: 06/10/2018] [Indexed: 11/15/2022] Open
Abstract
The effectiveness of Pl genes is known to be resistant to downy mildew (DM) disease affected by fungus Plasmopara halstedii in sunflower. In this study phenotypic analysis was performed using inoculation tests and genotypic analysis were carried out with three DM resistance genes Plarg, Pl13 and Pl8. A total of 69 simple sequence repeat markers and 241 F2 individuals derived from a cross of RHA-419 (R) x P6LC (S), RHA-419 (R) x CL (S), RHA-419 (R) x OL (S), RHA419 (R) x 9758R (S), HA-R5 (R) x P6LC (S) and HA89 (R) x P6LC (S) parental lines were used to identify resistant hybrids in sunflower. Results of SSR analysis using markers linked with downy mildew resistance genes (Plarg, Pl8 and Pl13) and downy mildew inoculation tests were evaluated together and ORS716 (for Plarg and Pl13), HA4011 (for Pl8) markers showed positive correlation with their phenotypic results. These results suggest that these markers are associated with DM resistance and they can be used successfully in marker-assisted selection for sunflower breeding programs specific for downy mildew resistance.
Collapse
Affiliation(s)
- Ezgi Çabuk Şahin
- Department of Biology, Faculty of Science and Letters, Marmara University, Istanbul, 34722, Turkey
| | - Aral Kalenderoğlu
- Department of Bioengineering, Faculty of Engineering, Marmara University, Istanbul, 34722, Turkey
| | - Yıldız Aydın
- Department of Biology, Faculty of Science and Letters, Marmara University, Istanbul, 34722, Turkey
| | - Göksel Evci
- Republic of Turkey Ministry of Food, Agriculture and Livestock Directorate of Trakya Agricultural, Research Institute, Edirne, 22100, Turkey
| | - Ahu Altınkut Uncuoğlu
- Department of Bioengineering, Faculty of Engineering, Marmara University, Istanbul, 34722, Turkey
| |
Collapse
|
13
|
Dimitrijevic A, Horn R. Sunflower Hybrid Breeding: From Markers to Genomic Selection. FRONTIERS IN PLANT SCIENCE 2018; 8:2238. [PMID: 29387071 PMCID: PMC5776114 DOI: 10.3389/fpls.2017.02238] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2017] [Accepted: 12/20/2017] [Indexed: 05/03/2023]
Abstract
In sunflower, molecular markers for simple traits as, e.g., fertility restoration, high oleic acid content, herbicide tolerance or resistances to Plasmopara halstedii, Puccinia helianthi, or Orobanche cumana have been successfully used in marker-assisted breeding programs for years. However, agronomically important complex quantitative traits like yield, heterosis, drought tolerance, oil content or selection for disease resistance, e.g., against Sclerotinia sclerotiorum have been challenging and will require genome-wide approaches. Plant genetic resources for sunflower are being collected and conserved worldwide that represent valuable resources to study complex traits. Sunflower association panels provide the basis for genome-wide association studies, overcoming disadvantages of biparental populations. Advances in technologies and the availability of the sunflower genome sequence made novel approaches on the whole genome level possible. Genotype-by-sequencing, and whole genome sequencing based on next generation sequencing technologies facilitated the production of large amounts of SNP markers for high density maps as well as SNP arrays and allowed genome-wide association studies and genomic selection in sunflower. Genome wide or candidate gene based association studies have been performed for traits like branching, flowering time, resistance to Sclerotinia head and stalk rot. First steps in genomic selection with regard to hybrid performance and hybrid oil content have shown that genomic selection can successfully address complex quantitative traits in sunflower and will help to speed up sunflower breeding programs in the future. To make sunflower more competitive toward other oil crops higher levels of resistance against pathogens and better yield performance are required. In addition, optimizing plant architecture toward a more complex growth type for higher plant densities has the potential to considerably increase yields per hectare. Integrative approaches combining omic technologies (genomics, transcriptomics, proteomics, metabolomics and phenomics) using bioinformatic tools will facilitate the identification of target genes and markers for complex traits and will give a better insight into the mechanisms behind the traits.
Collapse
Affiliation(s)
| | - Renate Horn
- Institut für Biowissenschaften, Abteilung Pflanzengenetik, Universität Rostock, Rostock, Germany
| |
Collapse
|
14
|
Pecrix Y, Penouilh-Suzette C, Muños S, Vear F, Godiard L. Ten Broad Spectrum Resistances to Downy Mildew Physically Mapped on the Sunflower Genome. FRONTIERS IN PLANT SCIENCE 2018; 9:1780. [PMID: 30564260 PMCID: PMC6288771 DOI: 10.3389/fpls.2018.01780] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Accepted: 11/15/2018] [Indexed: 05/12/2023]
Abstract
Resistance to downy mildew (Plasmopara halstedii) in sunflower (Helianthus annuus L.) is conferred by major resistance genes, denoted Pl. Twenty-two Pl genes have been identified and genetically mapped so far. However, over the past 50 years, wide-scale presence of only a few of them in sunflower crops led to the appearance of new, more virulent pathotypes (races) so it is important for sunflower varieties to carry as wide a range of resistance genes as possible. We analyzed phenotypically 12 novel resistant sources discovered in breeding pools derived from two wild Helianthus species and in eight wild H. annuus ecotypes. All were effective against at least 16 downy mildew pathotypes. We mapped their resistance genes on the sunflower reference genome of 3,600 Mb, in intervals that varied from 75 Kb to 32 Mb using an AXIOM® genotyping array of 49,449 SNP. Ten probably new genes were identified according to resistance spectrum, map position, hypersensitive response to the transient expression of a P. halstedii RXLR effector, or the ecotype/species from which they originated. The resistance source HAS6 was found to carry the first downy mildew resistance gene mapped on chromosome 11, whereas the other resistances were positioned on chromosomes 1, 2, 4, and 13 carrying already published Pl genes that we also mapped physically on the same reference genome. The new genes were designated Pl23-Pl32 according to the current nomenclature. However, since sunflower downy mildew resistance genes have not yet been sequenced, rules for designation are discussed. This is the first large scale physical mapping of both 10 new and 10 already reported downy mildew resistance genes in sunflower.
Collapse
Affiliation(s)
- Yann Pecrix
- Laboratoire des Interactions Plantes Microorganismes, INRA, CNRS, Université de Toulouse, Castanet-Tolosan, France
| | - Charlotte Penouilh-Suzette
- Laboratoire des Interactions Plantes Microorganismes, INRA, CNRS, Université de Toulouse, Castanet-Tolosan, France
| | - Stéphane Muños
- Laboratoire des Interactions Plantes Microorganismes, INRA, CNRS, Université de Toulouse, Castanet-Tolosan, France
| | - Felicity Vear
- INRA, Génétique, Diversité, Ecophysiologie des Céréales, UMR 1095, Clermont-Ferrand, France
- *Correspondence: Felicity Vear, Laurence Godiard,
| | - Laurence Godiard
- Laboratoire des Interactions Plantes Microorganismes, INRA, CNRS, Université de Toulouse, Castanet-Tolosan, France
- *Correspondence: Felicity Vear, Laurence Godiard,
| |
Collapse
|
15
|
Bordat A, Marchand G, Langlade NB, Pouilly N, Muños S, Dechamp-Guillaume G, Vincourt P, Bret-Mestries E. Different genetic architectures underlie crop responses to the same pathogen: the {Helianthus annuus * Phoma macdonaldii} interaction case for black stem disease and premature ripening. BMC PLANT BIOLOGY 2017; 17:167. [PMID: 29052528 PMCID: PMC5649070 DOI: 10.1186/s12870-017-1116-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2017] [Accepted: 10/09/2017] [Indexed: 05/31/2023]
Abstract
BACKGROUND Phoma macdonaldii has been reported as the causal agent of black stem disease (BS) and premature ripening (PR) on sunflower. PR is considered as the most widespread and detrimental disease on sunflower in France. While genetic variability and QTL mapping for partial resistance of sunflower to stem, collar and roots attacks have been reported on plantlets in controlled conditions, this work aims to describe the genetic variability in a subset of a sunflower lines, and for the first time to map QTL involved in PR resistance evaluated in field conditions using controlled inoculation. RESULTS An efficient and reliable method for inoculation used in field experiments induced stem base necrosis on up to 98% of all plants. A significant genetic variability for PR resistance in the field was detected among the 20 inbred lines of the core collection tested across the two years. For QTL mapping, the PR resistance evaluation was performed on two recombinant inbred lines (RIL) populations derived from the crosses XRQxPSC8 and FUxPAZ2 in two different years. QTL analyses were based on a newly developed consensus genetic map comprising 1007 non-redundant molecular markers. In each of the two RIL populations, different QTL involved in PR partial sunflower resistance were detected. The most significant QTL were detected 49 days post infection (DPI) on LG10 (LOD 7.7) and on LG7 (LOD 12.1) in the XRQxPSC8 and FUxPAZ2 RIL population, respectively. In addition, different QTL were detected on both populations for PR resistance measured between 14 and 35 DPI. In parallel, the incidence of natural attack of P. macdonaldii resulting in BS disease was recorded, showing that in these populations, the genetic of resistance to both diseases is not governed by the same factors. CONCLUSION This work provides the first insights on the genetic architecture of sunflower PR resistance in the field. Moreover, the separate studies of symptoms on different organs and in time series allowed the identification of a succession of genetic components involved in the sunflower resistance to PR and BS diseases caused by Phoma macdonaldii along the development of the {plant * pathogen} interaction.
Collapse
Affiliation(s)
- Amandine Bordat
- LIPM, Université de Toulouse, INRA, CNRS, Castanet-Tolosan, France
- Present address: INRA, Université de Bordeaux, UMR 1332 de Biologie du Fruit et Pathologie, CS 20032, 33882 Villenave d’Ornon, France
| | - Gwenaëlle Marchand
- LIPM, Université de Toulouse, INRA, CNRS, Castanet-Tolosan, France
- Present address: EURALIS Semences, Domaine de Sandreau, 6 Chemin de Panedautes, 31700 Mondonville, France
| | | | - Nicolas Pouilly
- LIPM, Université de Toulouse, INRA, CNRS, Castanet-Tolosan, France
| | - Stéphane Muños
- LIPM, Université de Toulouse, INRA, CNRS, Castanet-Tolosan, France
| | - Grégory Dechamp-Guillaume
- ENSAT, UMR 1248 AGIR, BP52627, F-31326 Castanet-Tolosan, France
- AGIR, Université de Toulouse, INRA, INPT, INP-EI PURPAN, Castanet-Tolosan, France
| | - Patrick Vincourt
- LIPM, Université de Toulouse, INRA, CNRS, Castanet-Tolosan, France
| | | |
Collapse
|
16
|
Mangin B, Pouilly N, Boniface MC, Langlade NB, Vincourt P, Vear F, Muños S. Molecular diversity of sunflower populations maintained as genetic resources is affected by multiplication processes and breeding for major traits. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2017; 130:1099-1112. [PMID: 28255669 DOI: 10.1007/s00122-017-2872-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2016] [Accepted: 02/04/2017] [Indexed: 05/20/2023]
Abstract
SNP genotyping of 114 cultivated sunflower populations showed that the multiplication process and the main traits selected during breeding of sunflower cultivars drove molecular diversity of the populations. The molecular diversity in a set of 114 cultivated sunflower populations was studied by single-nucleotide polymorphism genotyping. These populations were chosen as representative of the 400 entries in the INRA collection received or developed between 1962 and 2011 and made up of land races, open-pollinated varieties, and breeding pools. Mean allele number varied from 1.07 to 1.90. Intra-population variability was slightly reduced according to the number of multiplications since entry but some entries were probably largely homozygous when received. A principal component analysis was used to study inter-population variability. The first 3 axes accounted for 17% of total intra-population variability. The first axis was significantly correlated with seed oil content, more closely than just the distinction between oil and confectionary types. The second axis was related to the presence or absence of restorer genes and the third axis to flowering date and possibly to adaptation to different climates. Our results provide arguments highlighting the effect of the maintenance process on the within population genetic variability as well as on the impact of breeding for major agronomic traits on the between population variability of the collection. Propositions are made to improve sunflower population maintenance procedures to keep maximum genetic variability for future breeding.
Collapse
Affiliation(s)
- Brigitte Mangin
- LIPM, Université de Toulouse, INRA, CNRS, Castanet-Tolosan, France
| | - Nicolas Pouilly
- LIPM, Université de Toulouse, INRA, CNRS, Castanet-Tolosan, France
| | | | | | - Patrick Vincourt
- LIPM, Université de Toulouse, INRA, CNRS, Castanet-Tolosan, France
| | - Felicity Vear
- GDEC, INRA, Université Clermont II Blaise Pascal, Clermont-Ferrand, France
| | - Stéphane Muños
- LIPM, Université de Toulouse, INRA, CNRS, Castanet-Tolosan, France.
| |
Collapse
|
17
|
Qi LL, Talukder ZI, Hulke BS, Foley ME. Development and dissection of diagnostic SNP markers for the downy mildew resistance genes Pl Arg and Pl 8 and maker-assisted gene pyramiding in sunflower (Helianthus annuus L.). Mol Genet Genomics 2017; 292:551-563. [PMID: 28160079 DOI: 10.1007/s00438-017-1290-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2016] [Accepted: 01/09/2017] [Indexed: 12/17/2022]
Abstract
Diagnostic DNA markers are an invaluable resource in breeding programs for successful introgression and pyramiding of disease resistance genes. Resistance to downy mildew (DM) disease in sunflower is mediated by Pl genes which are known to be effective against the causal fungus, Plasmopara halstedii. Two DM resistance genes, Pl Arg and Pl 8 , are highly effective against P. halstedii races in the USA, and have been previously mapped to the sunflower linkage groups (LGs) 1 and 13, respectively, using simple sequence repeat (SSR) markers. In this study, we developed high-density single nucleotide polymorphism (SNP) maps encompassing the Pl arg and Pl 8 genes and identified diagnostic SNP markers closely linked to these genes. The specificity of the diagnostic markers was validated in a highly diverse panel of 548 sunflower lines. Dissection of a large marker cluster co-segregated with Pl Arg revealed that the closest SNP markers NSA_007595 and NSA_001835 delimited Pl Arg to an interval of 2.83 Mb on the LG1 physical map. The SNP markers SFW01497 and SFW06597 delimited Pl 8 to an interval of 2.85 Mb on the LG13 physical map. We also developed sunflower lines with homozygous, three gene pyramids carrying Pl Arg , Pl 8 , and the sunflower rust resistance gene R 12 using the linked SNP markers from a segregating F2 population of RHA 340 (carrying Pl 8 )/RHA 464 (carrying Pl Arg and R 12 ). The high-throughput diagnostic SNP markers developed in this study will facilitate marker-assisted selection breeding, and the pyramided sunflower lines will provide durable resistance to downy mildew and rust diseases.
Collapse
Affiliation(s)
- L L Qi
- Northern Crop Science Laboratory, USDA-Agricultural Research Service, 1605 Albrecht Blvd N, Fargo, ND, 58102-2765, USA.
| | - Z I Talukder
- Department of Plant Sciences, North Dakota State University, Fargo, ND, 58108, USA
| | - B S Hulke
- Northern Crop Science Laboratory, USDA-Agricultural Research Service, 1605 Albrecht Blvd N, Fargo, ND, 58102-2765, USA
| | - M E Foley
- Northern Crop Science Laboratory, USDA-Agricultural Research Service, 1605 Albrecht Blvd N, Fargo, ND, 58102-2765, USA
| |
Collapse
|
18
|
Qi LL, Foley ME, Cai XW, Gulya TJ. Genetics and mapping of a novel downy mildew resistance gene, Pl(18), introgressed from wild Helianthus argophyllus into cultivated sunflower (Helianthus annuus L.). TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2016; 129:741-752. [PMID: 26747047 DOI: 10.1007/s00122-015-2662-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2015] [Accepted: 12/14/2015] [Indexed: 05/20/2023]
Abstract
A novel downy mildew resistance gene, Pl(18), was introgressed from wild Helianthus argophyllus into cultivated sunflower and genetically mapped to linkage group 2 of the sunflower genome. The new germplasm, HA-DM1, carrying Pl(18) has been released to the public. Sunflower downy mildew (DM) is considered to be the most destructive foliar disease that has spread to every major sunflower-growing country of the world, except Australia. A new dominant downy mildew resistance gene (Pl 18) transferred from wild Helianthus argophyllus (PI 494573) into cultivated sunflower was mapped to linkage group (LG) 2 of the sunflower genome using bulked segregant analysis with 869 simple sequence repeat (SSR) markers. Phenotyping 142 BC1F2:3 families derived from the cross of HA 89 and H. argophyllus confirmed the single gene inheritance of resistance. Since no other Pl gene has been mapped to LG2, this gene was novel and designated as Pl (18). SSR markers CRT214 and ORS203 flanked Pl(18) at a genetic distance of 1.1 and 0.4 cM, respectively. Forty-six single nucleotide polymorphism (SNP) markers that cover the Pl(18) region were surveyed for saturation mapping of the region. Six co-segregating SNP markers were 1.2 cM distal to Pl(18), and another four co-segregating SNP markers were 0.9 cM proximal to Pl(18). The new BC2F4-derived germplasm, HA-DM1, carrying Pl(18) has been released to the public. This new line is highly resistant to all Plasmopara halstedii races identified in the USA providing breeders with an effective new source of resistance against downy mildew in sunflower. The molecular markers that were developed will be especially useful in marker-assisted selection and pyramiding of Pl resistance genes because of their close proximity to the gene and the availability of high-throughput SNP detection assays.
Collapse
Affiliation(s)
- L L Qi
- USDA-Agricultural Research Service, Northern Crop Science Laboratory, 1605 Albrecht Blvd. N, Fargo, ND, 58102-2765, USA.
| | - M E Foley
- USDA-Agricultural Research Service, Northern Crop Science Laboratory, 1605 Albrecht Blvd. N, Fargo, ND, 58102-2765, USA
| | - X W Cai
- Department of Plant Sciences, North Dakota State University, Fargo, ND, 58108, USA
| | - T J Gulya
- USDA-Agricultural Research Service, Northern Crop Science Laboratory, 1605 Albrecht Blvd. N, Fargo, ND, 58102-2765, USA
| |
Collapse
|
19
|
Gascuel Q, Buendia L, Pecrix Y, Blanchet N, Muños S, Vear F, Godiard L. RXLR and CRN Effectors from the Sunflower Downy Mildew Pathogen Plasmopara halstedii Induce Hypersensitive-Like Responses in Resistant Sunflower Lines. FRONTIERS IN PLANT SCIENCE 2016; 7:1887. [PMID: 28066456 PMCID: PMC5165252 DOI: 10.3389/fpls.2016.01887] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2016] [Accepted: 11/29/2016] [Indexed: 05/20/2023]
Abstract
Plasmopara halstedii is an obligate biotrophic oomycete causing downy mildew disease on sunflower, Helianthus annuus, an economically important oil crop. Severe symptoms of the disease (e.g., plant dwarfism, leaf bleaching, sporulation and production of infertile flower) strongly impair seed yield. Pl resistance genes conferring resistance to specific P. halstedii pathotypes were located on sunflower genetic map but yet not cloned. They are present in cultivated lines to protect them against downy mildew disease. Among the 16 different P. halstedii pathotypes recorded in France, pathotype 710 is frequently found, and therefore continuously controlled in sunflower by different Pl genes. High-throughput sequencing of cDNA from P. halstedii led us to identify potential effectors with the characteristic RXLR or CRN motifs described in other oomycetes. Expression of six P. halstedii putative effectors, five RXLR and one CRN, was analyzed by qRT-PCR in pathogen spores and in the pathogen infecting sunflower leaves and selected for functional analyses. We developed a new method for transient expression in sunflower plant leaves and showed for the first time subcellular localization of P. halstedii effectors fused to a fluorescent protein in sunflower leaf cells. Overexpression of the CRN and of 3 RXLR effectors induced hypersensitive-like cell death reactions in some sunflower near-isogenic lines resistant to pathotype 710 and not in susceptible corresponding lines, suggesting they could be involved in Pl loci-mediated resistances.
Collapse
Affiliation(s)
- Quentin Gascuel
- Laboratoire des Interactions Plantes Microorganismes, INRA, CNRS, Université de ToulouseCastanet Tolosan, France
| | - Luis Buendia
- Laboratoire des Interactions Plantes Microorganismes, INRA, CNRS, Université de ToulouseCastanet Tolosan, France
| | - Yann Pecrix
- Laboratoire des Interactions Plantes Microorganismes, INRA, CNRS, Université de ToulouseCastanet Tolosan, France
| | - Nicolas Blanchet
- Laboratoire des Interactions Plantes Microorganismes, INRA, CNRS, Université de ToulouseCastanet Tolosan, France
| | - Stéphane Muños
- Laboratoire des Interactions Plantes Microorganismes, INRA, CNRS, Université de ToulouseCastanet Tolosan, France
| | | | - Laurence Godiard
- Laboratoire des Interactions Plantes Microorganismes, INRA, CNRS, Université de ToulouseCastanet Tolosan, France
- *Correspondence: Laurence Godiard,
| |
Collapse
|
20
|
Qi LL, Long YM, Jan CC, Ma GJ, Gulya TJ. Pl(17) is a novel gene independent of known downy mildew resistance genes in the cultivated sunflower (Helianthus annuus L.). TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2015; 128:757-67. [PMID: 25673143 DOI: 10.1007/s00122-015-2470-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2014] [Accepted: 01/26/2015] [Indexed: 05/02/2023]
Abstract
Pl 17, a novel downy mildew resistance gene independent of known downy mildew resistance genes in sunflowers, was genetically mapped to linkage group 4 of the sunflower genome. Downy mildew (DM), caused by Plasmopara halstedii (Farl.). Berl. et de Toni, is one of the serious sunflower diseases in the world due to its high virulence and the variability of the pathogen. DM resistance in the USDA inbred line, HA 458, has been shown to be effective against all virulent races of P. halstedii currently identified in the USA. To determine the chromosomal location of this resistance, 186 F 2:3 families derived from a cross of HA 458 with HA 234 were phenotyped for their resistance to race 734 of P. halstedii. The segregation ratio of the population supported that the resistance was controlled by a single dominant gene, Pl 17. Simple sequence repeat (SSR) and single nucleotide polymorphism (SNP) primers were used to identify molecular markers linked to Pl 17. Bulked segregant analysis using 849 SSR markers located Pl 17 to linkage group (LG) 4, which is the first DM gene discovered in this linkage group. An F2 population of 186 individuals was screened with polymorphic SSR and SNP primers from LG4. Two flanking markers, SNP SFW04052 and SSR ORS963, delineated Pl 17 in an interval of 3.0 cM. The markers linked to Pl 17 were validated in a BC3 population. A search for the physical location of flanking markers in sunflower genome sequences revealed that the Pl 17 region had a recombination frequency of 0.59 Mb/cM, which was a fourfold higher recombination rate relative to the genomic average. This region can be considered amenable to molecular manipulation for further map-based cloning of Pl 17.
Collapse
Affiliation(s)
- L L Qi
- USDA-Agricultural Research Service, Northern Crop Science Laboratory, 1605 Albrecht Blvd N, Fargo, ND, 58102-2765, USA,
| | | | | | | | | |
Collapse
|
21
|
Gascuel Q, Martinez Y, Boniface MC, Vear F, Pichon M, Godiard L. The sunflower downy mildew pathogen Plasmopara halstedii. MOLECULAR PLANT PATHOLOGY 2015; 16:109-22. [PMID: 25476405 PMCID: PMC6638465 DOI: 10.1111/mpp.12164] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
UNLABELLED Downy mildew of sunflower is caused by Plasmopara halstedii (Farlow) Berlese & de Toni. Plasmopara halstedii is an obligate biotrophic oomycete pathogen that attacks annual Helianthus species and cultivated sunflower, Helianthus annuus. Depending on the sunflower developmental stage at which infection occurs, the characteristic symptoms range from young seedling death, plant dwarfing, leaf bleaching and sporulation to the production of infertile flowers. Downy mildew attacks can have a great economic impact on sunflower crops, and several Pl resistance genes are present in cultivars to protect them against the disease. Nevertheless, some of these resistances have been overcome by the occurrence of novel isolates of the pathogen showing increased virulence. A better characterization of P. halstedii infection and dissemination mechanisms, and the identification of the molecular basis of the interaction with sunflower, is a prerequisite to efficiently fight this pathogen. This review summarizes what is currently known about P. halstedii, provides new insights into its infection cycle on resistant and susceptible sunflower lines using scanning electron and light microscopy imaging, and sheds light on the pathogenicity factors of P. halstedii obtained from recent molecular data. TAXONOMY Kingdom Stramenopila; Phylum Oomycota; Class Oomycetes; Order Peronosporales; Family Peronosporaceae; Genus Plasmopara; Species Plasmopara halstedii. DISEASE SYMPTOMS Sunflower seedling damping off, dwarfing of the plant, bleaching of leaves, starting from veins, and visible white sporulation, initially on the lower side of cotyledons and leaves. Plasmopara halstedii infection may severely impact sunflower seed yield. INFECTION PROCESS In spring, germination of overwintered sexual oospores leads to sunflower root infection. Intercellular hyphae are responsible for systemic plant colonization and the induction of disease symptoms. Under humid and fresh conditions, dissemination structures are produced by the pathogen on all plant organs to release asexual zoosporangia. These zoosporangia play an important role in pathogen dissemination, as they release motile zoospores that are responsible for leaf infections on neighbouring plants. DISEASE CONTROL Disease control is obtained by both chemical seed treatment (mefenoxam) and the deployment of dominant major resistance genes, denoted Pl. However, the pathogen has developed fungicide resistance and has overcome some plant resistance genes. Research for more sustainable strategies based on the identification of the molecular basis of the interaction are in progress. USEFUL WEBSITES http://www.heliagene.org/HP, http://lipm-helianthus.toulouse.inra.fr/dokuwiki/doku.php?id=start, https://www.heliagene.org/PlasmoparaSpecies (soon available).
Collapse
Affiliation(s)
- Quentin Gascuel
- INRA, Laboratoire des Interactions Plantes-Microorganismes (LIPM), UMR441, F-31326, Castanet-Tolosan, France; CNRS, Laboratoire des Interactions Plantes-Microorganismes (LIPM), UMR2594, F-31326, Castanet-Tolosan, France
| | | | | | | | | | | |
Collapse
|
22
|
Adiredjo AL, Navaud O, Grieu P, Lamaze T. Hydraulic conductivity and contribution of aquaporins to water uptake in roots of four sunflower genotypes. BOTANICAL STUDIES 2014; 55:75. [PMID: 28510954 PMCID: PMC5430332 DOI: 10.1186/s40529-014-0075-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2014] [Accepted: 10/23/2014] [Indexed: 05/08/2023]
Abstract
BACKGROUND This article evaluates the potential of intraspecific variation for whole-root hydraulic properties in sunflower. We investigated genotypic differences related to root water transport in four genotypes selected because of their differing water use efficiency (JAC doi: 10.1111/jac.12079. 2014). We used a pressure-flux approach to characterize hydraulic conductance (L 0 ) which reflects the overall water uptake capacity of the roots and hydraulic conductivity (Lp r ) which represents the root intrinsic water permeability on an area basis. The contribution of aquaporins (AQPs) to water uptake was explored using mercuric chloride (HgCl2), a general AQP blocker. RESULTS There were considerable variations in root morphology between genotypes. Mean values of L 0 and Lp r showed significant variation (above 60% in both cases) between recombinant inbred lines in control plants. Pressure-induced sap flow was strongly inhibited by HgCl2 treatment in all genotypes (more than 50%) and contribution of AQPs to hydraulic conductivity varied between genotypes. Treated root systems displayed markedly different L 0 values between genotypes whereas Lp r values were similar. CONCLUSIONS Our analysis points to marked differences between genotypes in the intrinsic aquaporin-dependent path (Lp r in control plants) but not in the intrinsic AQP-independent paths (Lp r in HgCl2 treated plants). Overall, root anatomy was a major determinant of water transport properties of the whole organ and can compensate for a low AQP contribution. Hydraulic properties of root tissues and organs might have to be taken into account for plant breeding since they appear to play a key role in sunflower water balance and water use efficiency.
Collapse
Affiliation(s)
- Afifuddin Latif Adiredjo
- Université de Toulouse, INP - ENSAT, UMR 1248 AGIR (INPT-INRA), Castanet-Tolosan, 31326 France
- Faculty of Agriculture, Department of Agronomy, Plant Breeding Laboratory, Brawijaya University, Veteran street, Malang, 65145 Indonesia
| | - Olivier Navaud
- Université de Toulouse, UPS - Toulouse III, UMR 5126 CESBIO, 18 avenue Edouard Belin, Toulouse, 31401 Cedex 9 France
| | - Philippe Grieu
- Université de Toulouse, INP - ENSAT, UMR 1248 AGIR (INPT-INRA), Castanet-Tolosan, 31326 France
| | - Thierry Lamaze
- Université de Toulouse, UPS - Toulouse III, UMR 5126 CESBIO, 18 avenue Edouard Belin, Toulouse, 31401 Cedex 9 France
| |
Collapse
|
23
|
Adiredjo AL, Navaud O, Muños S, Langlade NB, Lamaze T, Grieu P. Genetic control of water use efficiency and leaf carbon isotope discrimination in sunflower (Helianthus annuus L.) subjected to two drought scenarios. PLoS One 2014; 9:e101218. [PMID: 24992022 PMCID: PMC4081578 DOI: 10.1371/journal.pone.0101218] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2014] [Accepted: 06/04/2014] [Indexed: 01/22/2023] Open
Abstract
High water use efficiency (WUE) can be achieved by coordination of biomass accumulation and water consumption. WUE is physiologically and genetically linked to carbon isotope discrimination (CID) in leaves of plants. A population of 148 recombinant inbred lines (RILs) of sunflower derived from a cross between XRQ and PSC8 lines was studied to identify quantitative trait loci (QTL) controlling WUE and CID, and to compare QTL associated with these traits in different drought scenarios. We conducted greenhouse experiments in 2011 and 2012 by using 100 balances which provided a daily measurement of water transpired, and we determined WUE, CID, biomass and cumulative water transpired by plants. Wide phenotypic variability, significant genotypic effects, and significant negative correlations between WUE and CID were observed in both experiments. A total of nine QTL controlling WUE and eight controlling CID were identified across the two experiments. A QTL for phenotypic response controlling WUE and CID was also significantly identified. The QTL for WUE were specific to the drought scenarios, whereas the QTL for CID were independent of the drought scenarios and could be found in all the experiments. Our results showed that the stable genomic regions controlling CID were located on the linkage groups 06 and 13 (LG06 and LG13). Three QTL for CID were co-localized with the QTL for WUE, biomass and cumulative water transpired. We found that CID and WUE are highly correlated and have common genetic control. Interestingly, the genetic control of these traits showed an interaction with the environment (between the two drought scenarios and control conditions). Our results open a way for breeding higher WUE by using CID and marker-assisted approaches and therefore help to maintain the stability of sunflower crop production.
Collapse
Affiliation(s)
- Afifuddin Latif Adiredjo
- Université de Toulouse, INP-ENSAT, UMR 1248 AGIR (INPT-INRA), Castanet-Tolosan, France
- Brawijaya University, Faculty of Agriculture, Department of Agronomy, Plant Breeding Laboratory, Malang, Indonesia
| | - Olivier Navaud
- Université de Toulouse, UPS-Toulouse III, UMR 5126 CESBIO, Toulouse, France
| | - Stephane Muños
- INRA, Laboratoire des Interactions Plantes-Microorganismes (LIPM), UMR 441, Castanet-Tolosan, France
- CNRS, Laboratoire des Interactions Plantes-Microorganismes(LIPM), UMR 2594, Castanet-Tolosan, France
| | - Nicolas B. Langlade
- INRA, Laboratoire des Interactions Plantes-Microorganismes (LIPM), UMR 441, Castanet-Tolosan, France
- CNRS, Laboratoire des Interactions Plantes-Microorganismes(LIPM), UMR 2594, Castanet-Tolosan, France
| | - Thierry Lamaze
- Université de Toulouse, UPS-Toulouse III, UMR 5126 CESBIO, Toulouse, France
| | - Philippe Grieu
- Université de Toulouse, INP-ENSAT, UMR 1248 AGIR (INPT-INRA), Castanet-Tolosan, France
| |
Collapse
|
24
|
Gong L, Gulya TJ, Markell SG, Hulke BS, Qi LL. Genetic mapping of rust resistance genes in confection sunflower line HA-R6 and oilseed line RHA 397. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2013; 126:2039-49. [PMID: 23719761 DOI: 10.1007/s00122-013-2116-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2012] [Accepted: 05/08/2013] [Indexed: 05/20/2023]
Abstract
Few widely effective resistance sources to sunflower rust, incited by Puccinia helianthi Schwein., have been identified in confection sunflower (Helianthus annuus L.). The USDA inbred line HA-R6 is one of the few confection sunflower lines resistant to rust. A previous allelism test indicated that rust resistance genes in HA-R6 and RHA 397, an oilseed-type restorer line, are either allelic or closely linked; however, neither have been characterized nor molecularly mapped. The objectives of this study are (1) to locate the rust resistance genes in HA-R6 and RHA 397 on a molecular map, (2) to develop closely linked molecular markers for rust resistance diagnostics, and (3) to determine the resistance spectrum of two lines when compared with other rust-resistant lines. Two populations of 140 F2:3 families each from the crosses of HA 89, as susceptible parent, with HA-R6 and RHA 397 were inoculated with race 336 of P. helianthi in the greenhouse. The resistance genes (R-genes) in HA-R6 and RHA 397 were molecularly mapped to the lower end of linkage group 13, which encompasses a large R-gene cluster, and were designated as R 13a and R 13b, respectively. In the initial maps, SSR (simple sequence repeat) and InDel (insertion and deletion) markers revealed 2.8 and 8.2 cM flanking regions for R 13a and R 13b, respectively, linked with a common marker set of four co-segregating markers, ORS191, ORS316, ORS581, and ZVG61, in the distal side and one marker ORS464 in the proximal side. To identify new markers closer to the genes, sunflower RGC (resistance gene candidate) markers linked to the downy mildew R-gene Pl 8 and located at the same region as R 13a and R 13b were selected to screen the two F2 populations. The RGC markers RGC15/16 and a newly developed marker SUN14 designed from a BAC contig anchored by RGC251 further narrowed down the region flanking R 13a and R 13b to 1.1 and 0.1 cM, respectively. Both R 13a and R 13b are highly effective against all rust races tested so far. Our newly developed molecular markers will facilitate breeding efforts to pyramid the R 13 genes with other rust R-genes and accelerate the development of rust-resistant sunflower hybrids in both confection and oilseed sunflowers.
Collapse
Affiliation(s)
- L Gong
- Department of Plant Pathology, North Dakota State University, Fargo, ND 58102, USA
| | | | | | | | | |
Collapse
|
25
|
Cadic E, Coque M, Vear F, Grezes-Besset B, Pauquet J, Piquemal J, Lippi Y, Blanchard P, Romestant M, Pouilly N, Rengel D, Gouzy J, Langlade N, Mangin B, Vincourt P. Combined linkage and association mapping of flowering time in Sunflower (Helianthus annuus L.). TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2013; 126:1337-56. [PMID: 23435733 DOI: 10.1007/s00122-013-2056-2] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2012] [Accepted: 01/20/2013] [Indexed: 05/20/2023]
Abstract
Association mapping and linkage mapping were used to identify quantitative trait loci (QTL) and/or causative mutations involved in the control of flowering time in cultivated sunflower Helianthus annuus. A panel of 384 inbred lines was phenotyped through testcrosses with two tester inbred lines across 15 location × year combinations. A recombinant inbred line (RIL) population comprising 273 lines was phenotyped both per se and through testcrosses with one or two testers in 16 location × year combinations. In the association mapping approach, kinship estimation using 5,923 single nucleotide polymorphisms was found to be the best covariate to correct for effects of panel structure. Linkage disequilibrium decay ranged from 0.08 to 0.26 cM for a threshold of 0.20, after correcting for structure effects, depending on the linkage group (LG) and the ancestry of inbred lines. A possible hitchhiking effect is hypothesized for LG10 and LG08. A total of 11 regions across 10 LGs were found to be associated with flowering time, and QTLs were mapped on 11 LGs in the RIL population. Whereas eight regions were demonstrated to be common between the two approaches, the linkage disequilibrium approach did not detect a documented QTL that was confirmed using the linkage mapping approach.
Collapse
Affiliation(s)
- Elena Cadic
- Laboratoire des Interactions Plantes-Microorganismes (LIPM), INRA, UMR441, 31326 Castanet-Tolosan, France.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Merah O, Langlade N, Alignan M, Roche J, Pouilly N, Lippi Y, Vear F, Cerny M, Bouniols A, Mouloungui Z, Vincourt P. Genetic analysis of phytosterol content in sunflower seeds. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2012; 125:1589-601. [PMID: 22824968 DOI: 10.1007/s00122-012-1937-0] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2012] [Accepted: 06/28/2012] [Indexed: 05/09/2023]
Abstract
Interest in phytosterol contents due to their potential benefits for human health has been largely documented in several crop species. Studies were focused mainly on total sterol content and their concentration or distribution in seed. This study aimed at providing new insight into the genetic control of total and individual sterol contents in sunflower seed through QTL analyses in a RIL population characterized over 2 years showing contrasted rainfall during seed filling. Results indicated that 13 regions on 9 linkage groups were involved in different phytosterol traits. Most of the QTL mapped were stable across years in spite of contrasted growing conditions. Some of them explained up to 30 % of phenotypic variation. Two QTL, located on LG10, near b1, and on LG14, were found to co-localize with QTL for oil content, indicating that likely, a part of the genetic variation for sterol content is only the result of genetic variation for oil content. However, three other QTL, stable over the 2 years, were found on LG1, LG4 and LG7 each associated with a particular class of sterols, suggesting that some enzymes known to be involved in the sterol metabolic pathway may determine the specificity of sterol profiles in sunflower seeds. These results suggest that it may be possible to introduce these traits as criteria in breeding programmes for quality in sunflower. The molecular markers linked to genetic factors controlling phytosterol contents could help selection during breeding programs.
Collapse
Affiliation(s)
- Othmane Merah
- Laboratoire de Chimie Agro-industrielle (LCA), INP-ENSIACET, Université de Toulouse, 31030 Toulouse, France.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|