1
|
Mwale SE, Shimelis H, Abincha W, Nkhata W, Sefasi A, Mashilo J. Genetic differentiation of a southern Africa tepary bean (Phaseolus acutifolius A Gray) germplasm collection using high-density DArTseq SNP markers. PLoS One 2023; 18:e0295773. [PMID: 38096255 PMCID: PMC10721083 DOI: 10.1371/journal.pone.0295773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Accepted: 11/29/2023] [Indexed: 12/17/2023] Open
Abstract
Genetic resources of tepary bean (Phaseolus acutifolius A. Gray) germplasm collections are not well characterized due to a lack of dedicated genomic resources. There is a need to assemble genomic resources specific to tepary bean for germplasm characterization, heterotic grouping, and breeding. Therefore, the objectives of this study were to deduce the genetic groups in tepary bean germplasm collection using high-density Diversity Array Technology (DArT) based single nucleotide polymorphism (SNP) markers and select contrasting genotypes for breeding. Seventy-eight tepary bean accessions were genotyped using 10527 SNPs markers, and genetic parameters were estimated. Population structure was delineated using principal component and admixture analyses. A mean polymorphic information content (PIC) of 0.27 was recorded, indicating a relatively low genetic resolution of the developed SNPs markers. Low genetic variation (with a genetic distance [GD] = 0.32) existed in the assessed tepary bean germplasm collection. Population structure analysis identified five sub-populations through sparse non-negative matrix factorization (snmf) with high admixtures. Analysis of molecular variance indicated high genetic differentiation within populations (61.88%) and low between populations (38.12%), indicating high gene exchange. The five sub-populations exhibited variable fixation index (FST). The following genetically distant accessions were selected: Cluster 1:Tars-Tep 112, Tars-Tep 10, Tars-Tep 23, Tars-Tep-86, Tars-Tep-83, and Tars-Tep 85; Cluster 3: G40022, Tars-Tep-93, and Tars-Tep-100; Cluster 5: Zimbabwe landrace, G40017, G40143, and G40150. The distantly related and contrasting accessions are useful to initiate crosses to enhance genetic variation and for the selection of economic traits in tepary bean.
Collapse
Affiliation(s)
- Saul Eric Mwale
- School of Agricultural, Earth and Environmental Sciences, African Centre for Crop Improvement (ACCI), University of KwaZulu-Natal, Pietermaritzburg, South Africa
- Biological Sciences Department, The African Centre of Excellence in Neglected and Underutilized Biodiversity (ACENUB), Mzuzu University, Luwinga, Mzuzu, Malawi
| | - Hussein Shimelis
- School of Agricultural, Earth and Environmental Sciences, African Centre for Crop Improvement (ACCI), University of KwaZulu-Natal, Pietermaritzburg, South Africa
| | - Wilfred Abincha
- Kenya Agricultural and Livestock Research Organization (KALRO), Non-Ruminant Research Institute, Kakamega, Kenya
| | - Wilson Nkhata
- School of Agricultural, Earth and Environmental Sciences, African Centre for Crop Improvement (ACCI), University of KwaZulu-Natal, Pietermaritzburg, South Africa
- Alliance of Bioversity International Institute of Tropical Agriculture (CIAT), Chitedze Agricultural Station, Lilongwe, Malawi
| | - Abel Sefasi
- Lilongwe University of Agriculture and Natural Resources, Lilongwe, Malawi
| | - Jacob Mashilo
- School of Agricultural, Earth and Environmental Sciences, African Centre for Crop Improvement (ACCI), University of KwaZulu-Natal, Pietermaritzburg, South Africa
| |
Collapse
|
2
|
Rodriguez DFC, Urban MO, Santaella M, Gereda JM, Contreras AD, Wenzl P. Using phenomics to identify and integrate traits of interest for better-performing common beans: A validation study on an interspecific hybrid and its Acutifolii parents. FRONTIERS IN PLANT SCIENCE 2022; 13:1008666. [PMID: 36570940 PMCID: PMC9773562 DOI: 10.3389/fpls.2022.1008666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Accepted: 11/14/2022] [Indexed: 06/17/2023]
Abstract
INTRODUCTION Evaluations of interspecific hybrids are limited, as classical genebank accession descriptors are semi-subjective, have qualitative traits and show complications when evaluating intermediate accessions. However, descriptors can be quantified using recognized phenomic traits. This digitalization can identify phenomic traits which correspond to the percentage of parental descriptors remaining expressed/visible/measurable in the particular interspecific hybrid. In this study, a line of P. vulgaris, P. acutifolius and P. parvifolius accessions and their crosses were sown in the mesh house according to CIAT seed regeneration procedures. METHODOLOGY Three accessions and one derived breeding line originating from their interspecific crosses were characterized and classified by selected phenomic descriptors using multivariate and machine learning techniques. The phenomic proportions of the interspecific hybrid (line INB 47) with respect to its three parent accessions were determined using a random forest and a respective confusion matrix. RESULTS The seed and pod morphometric traits, physiological behavior and yield performance were evaluated. In the classification of the accession, the phenomic descriptors with highest prediction force were Fm', Fo', Fs', LTD, Chl, seed area, seed height, seed Major, seed MinFeret, seed Minor, pod AR, pod Feret, pod round, pod solidity, pod area, pod major, pod seed weight and pod weight. Physiological traits measured in the interspecific hybrid present 2.2% similarity with the P. acutifolius and 1% with the P. parvifolius accessions. In addition, in seed morphometric characteristics, the hybrid showed 4.5% similarity with the P. acutifolius accession. CONCLUSIONS Here we were able to determine the phenomic proportions of individual parents in their interspecific hybrid accession. After some careful generalization the methodology can be used to: i) verify trait-of-interest transfer from P. acutifolius and P. parvifolius accessions into their hybrids; ii) confirm selected traits as "phenomic markers" which would allow conserving desired physiological traits of exotic parental accessions, without losing key seed characteristics from elite common bean accessions; and iii) propose a quantitative tool that helps genebank curators and breeders to make better-informed decisions based on quantitative analysis.
Collapse
Affiliation(s)
- Diego Felipe Conejo Rodriguez
- Genetic Resources Program, International Center for Tropical Agriculture (CIAT), Recta Cali-Palmira, Valle del Cauca, Colombia
| | - Milan Oldřich Urban
- Bean Physiology and Breeding Program, International Center for Tropical Agriculture, Recta Cali-Palmira, Valle del Cauca, Colombia
| | - Marcela Santaella
- Genetic Resources Program, International Center for Tropical Agriculture (CIAT), Recta Cali-Palmira, Valle del Cauca, Colombia
| | - Javier Mauricio Gereda
- Genetic Resources Program, International Center for Tropical Agriculture (CIAT), Recta Cali-Palmira, Valle del Cauca, Colombia
| | - Aquiles Darghan Contreras
- Department of Agronomy, Faculty of Agricultural Sciences, Universidad Nacional de Colombia, Bogotá, Colombia
| | - Peter Wenzl
- Genetic Resources Program, International Center for Tropical Agriculture (CIAT), Recta Cali-Palmira, Valle del Cauca, Colombia
| |
Collapse
|
3
|
Suárez JC, Contreras AT, Anzola JA, Vanegas JI, Rao IM. Physiological Characteristics of Cultivated Tepary Bean (Phaseolus acutifolius A. Gray) and Its Wild Relatives Grown at High Temperature and Acid Soil Stress Conditions in the Amazon Region of Colombia. PLANTS 2021; 11:plants11010116. [PMID: 35009119 PMCID: PMC8747739 DOI: 10.3390/plants11010116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 12/12/2021] [Accepted: 12/18/2021] [Indexed: 11/30/2022]
Abstract
Common bean (Phaseolus vulgaris L.) is sensitive to different types of abiotic stresses (drought, high temperature, low soil fertility, and acid soil), and this may limit its adaptation and consequently to its yield under stress. Because of this, a sister species, tepary bean (Phaseolus acutifolius A. Gray), has recently gained attention in breeding for improved abiotic stress tolerance in common bean. In this study, we evaluated the adaptation of 302 accessions of tepary bean (Phaseolus acutifolius A. Gray) and its wild relatives (grouped in four types of tepary bean genetic resource: cultivated, acutifolius regressive, acutifolius wild, tenuifolius wild) when grown under high temperature and acid soil conditions with aluminum toxicity in the Amazon region of Colombia. Our objective was to determine differences among four types of tepary bean genetic resource in their morpho-phenological, agronomic, and physiological responses to combined high temperature and acid soil stress conditions. We found that cultivated P. acutifolius var acutifolius presented a greater number of pods per plant, as well as larger seeds and a greater number of seeds per pod. Some traits, such as root biomass, days to flowering and physiological maturity, specific leaf area, and stomatal density, showed significant differences between types of tepary bean genetic resource, probably contributing to difference in adaptation to combined stress conditions of high temperature and acid soil conditions. The photochemical quenching (qP) was higher in cultivated P. acutifolius var. acutifolius, while energy dissipation by non-photochemical quenching (NPQ) in the form of heat and the coefficient of non-photochemical dissipation (qN) were higher in acutifolius regressive and tenuifolius wild accessions. We have identified 6 accessions of cultivated and 19 accessions of tenuifolius wild that exhibited grain yields above 1800 kg ha−1. These accessions could be suitable to use as parents to improve dry seed production of tepary bean under combined stress conditions of high temperature and acid soil.
Collapse
Affiliation(s)
- Juan Carlos Suárez
- Programa de Ingeniería Agroecológica, Facultad de Ingeniería, Universidad de la Amazonia, Florencia 180001, Colombia; (A.T.C.); (J.A.A.); (J.I.V.)
- Programa de Maestría en Sistemas Sostenibles de Producción, Facultad de Ingeniería, Universidad de la Amazonia, Florencia 180001, Colombia
- Grupo de Investigaciones Agroecosistemas y Conservación en Bosques Amazónicos-GAIA, Centro de Investigaciones Amazónicas CIMAZ Macagual César Augusto Estrada González, Florencia 180001, Colombia
- Correspondence: ; Tel.: +57-320-280-4455
| | - Amara Tatiana Contreras
- Programa de Ingeniería Agroecológica, Facultad de Ingeniería, Universidad de la Amazonia, Florencia 180001, Colombia; (A.T.C.); (J.A.A.); (J.I.V.)
- Programa de Maestría en Sistemas Sostenibles de Producción, Facultad de Ingeniería, Universidad de la Amazonia, Florencia 180001, Colombia
| | - José Alexander Anzola
- Programa de Ingeniería Agroecológica, Facultad de Ingeniería, Universidad de la Amazonia, Florencia 180001, Colombia; (A.T.C.); (J.A.A.); (J.I.V.)
| | - José Iván Vanegas
- Programa de Ingeniería Agroecológica, Facultad de Ingeniería, Universidad de la Amazonia, Florencia 180001, Colombia; (A.T.C.); (J.A.A.); (J.I.V.)
| | - Idupulapati M. Rao
- International Center for Tropical Agriculture (CIAT), Km 17 Recta Cali-Palmira, Cali 763537, Colombia;
| |
Collapse
|
4
|
Cortés AJ, López-Hernández F. Harnessing Crop Wild Diversity for Climate Change Adaptation. Genes (Basel) 2021; 12:783. [PMID: 34065368 PMCID: PMC8161384 DOI: 10.3390/genes12050783] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 04/28/2021] [Accepted: 05/19/2021] [Indexed: 12/20/2022] Open
Abstract
Warming and drought are reducing global crop production with a potential to substantially worsen global malnutrition. As with the green revolution in the last century, plant genetics may offer concrete opportunities to increase yield and crop adaptability. However, the rate at which the threat is happening requires powering new strategies in order to meet the global food demand. In this review, we highlight major recent 'big data' developments from both empirical and theoretical genomics that may speed up the identification, conservation, and breeding of exotic and elite crop varieties with the potential to feed humans. We first emphasize the major bottlenecks to capture and utilize novel sources of variation in abiotic stress (i.e., heat and drought) tolerance. We argue that adaptation of crop wild relatives to dry environments could be informative on how plant phenotypes may react to a drier climate because natural selection has already tested more options than humans ever will. Because isolated pockets of cryptic diversity may still persist in remote semi-arid regions, we encourage new habitat-based population-guided collections for genebanks. We continue discussing how to systematically study abiotic stress tolerance in these crop collections of wild and landraces using geo-referencing and extensive environmental data. By uncovering the genes that underlie the tolerance adaptive trait, natural variation has the potential to be introgressed into elite cultivars. However, unlocking adaptive genetic variation hidden in related wild species and early landraces remains a major challenge for complex traits that, as abiotic stress tolerance, are polygenic (i.e., regulated by many low-effect genes). Therefore, we finish prospecting modern analytical approaches that will serve to overcome this issue. Concretely, genomic prediction, machine learning, and multi-trait gene editing, all offer innovative alternatives to speed up more accurate pre- and breeding efforts toward the increase in crop adaptability and yield, while matching future global food demands in the face of increased heat and drought. In order for these 'big data' approaches to succeed, we advocate for a trans-disciplinary approach with open-source data and long-term funding. The recent developments and perspectives discussed throughout this review ultimately aim to contribute to increased crop adaptability and yield in the face of heat waves and drought events.
Collapse
Affiliation(s)
- Andrés J. Cortés
- Corporación Colombiana de Investigación Agropecuaria AGROSAVIA, C.I. La Selva, Km 7 Vía Rionegro, Las Palmas, Rionegro 054048, Colombia;
- Departamento de Ciencias Forestales, Facultad de Ciencias Agrarias, Universidad Nacional de Colombia, Sede Medellín, Medellín 050034, Colombia
| | - Felipe López-Hernández
- Corporación Colombiana de Investigación Agropecuaria AGROSAVIA, C.I. La Selva, Km 7 Vía Rionegro, Las Palmas, Rionegro 054048, Colombia;
| |
Collapse
|
5
|
Allelic Diversity at Abiotic Stress Responsive Genes in Relationship to Ecological Drought Indices for Cultivated Tepary Bean, Phaseolus acutifolius A. Gray, and Its Wild Relatives. Genes (Basel) 2021; 12:genes12040556. [PMID: 33921270 PMCID: PMC8070098 DOI: 10.3390/genes12040556] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2021] [Revised: 04/01/2021] [Accepted: 04/09/2021] [Indexed: 12/22/2022] Open
Abstract
Some of the major impacts of climate change are expected in regions where drought stress is already an issue. Grain legumes are generally drought susceptible. However, tepary bean and its wild relatives within Phaseolus acutifolius or P. parvifolius are from arid areas between Mexico and the United States. Therefore, we hypothesize that these bean accessions have diversity signals indicative of adaptation to drought at key candidate genes such as: Asr2, Dreb2B, and ERECTA. By sequencing alleles of these genes and comparing to estimates of drought tolerance indices from climate data for the collection site of geo-referenced, tepary bean accessions, we determined the genotype x environmental association (GEA) of each gene. Diversity analysis found that cultivated and wild P. acutifolius were intermingled with var. tenuifolius and P. parvifolius, signifying that allele diversity was ample in the wild and cultivated clade over a broad sense (sensu lato) evaluation. Genes Dreb2B and ERECTA harbored signatures of directional selection, represented by six SNPs correlated with the environmental drought indices. This suggests that wild tepary bean is a reservoir of novel alleles at genes for drought tolerance, as expected for a species that originated in arid environments. Our study corroborated that candidate gene approach was effective for marker validation across a broad genetic base of wild tepary accessions.
Collapse
|
6
|
|
7
|
Bitocchi E, Rau D, Bellucci E, Rodriguez M, Murgia ML, Gioia T, Santo D, Nanni L, Attene G, Papa R. Beans ( Phaseolus ssp.) as a Model for Understanding Crop Evolution. FRONTIERS IN PLANT SCIENCE 2017; 8:722. [PMID: 28533789 PMCID: PMC5420584 DOI: 10.3389/fpls.2017.00722] [Citation(s) in RCA: 86] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2016] [Accepted: 04/19/2017] [Indexed: 05/03/2023]
Abstract
Here, we aim to provide a comprehensive and up-to-date overview of the most significant outcomes in the literature regarding the origin of Phaseolus genus, the geographical distribution of the wild species, the domestication process, and the wide spread out of the centers of origin. Phaseolus can be considered as a unique model for the study of crop evolution, and in particular, for an understanding of the convergent phenotypic evolution that occurred under domestication. The almost unique situation that characterizes the Phaseolus genus is that five of its ∼70 species have been domesticated (i.e., Phaseolus vulgaris, P. coccineus, P. dumosus, P. acutifolius, and P. lunatus), and in addition, for P. vulgaris and P. lunatus, the wild forms are distributed in both Mesoamerica and South America, where at least two independent and isolated episodes of domestication occurred. Thus, at least seven independent domestication events occurred, which provides the possibility to unravel the genetic basis of the domestication process not only among species of the same genus, but also between gene pools within the same species. Along with this, other interesting features makes Phaseolus crops very useful in the study of evolution, including: (i) their recent divergence, and the high level of collinearity and synteny among their genomes; (ii) their different breeding systems and life history traits, from annual and autogamous, to perennial and allogamous; and (iii) their adaptation to different environments, not only in their centers of origin, but also out of the Americas, following their introduction and wide spread through different countries. In particular for P. vulgaris this resulted in the breaking of the spatial isolation of the Mesoamerican and Andean gene pools, which allowed spontaneous hybridization, thus increasing of the possibility of novel genotypes and phenotypes. This knowledge that is associated to the genetic resources that have been conserved ex situ and in situ represents a crucial tool in the hands of researchers, to preserve and evaluate this diversity, and at the same time, to identify the genetic basis of adaptation and to develop new improved varieties to tackle the challenges of climate change, and food security and sustainability.
Collapse
Affiliation(s)
- Elena Bitocchi
- Department of Agricultural, Food and Environmental Sciences, Marche Polytechnic UniversityAncona, Italy
| | - Domenico Rau
- Department of Agriculture, University of SassariSassari, Italy
| | - Elisa Bellucci
- Department of Agricultural, Food and Environmental Sciences, Marche Polytechnic UniversityAncona, Italy
| | | | - Maria L. Murgia
- Department of Agriculture, University of SassariSassari, Italy
| | - Tania Gioia
- School of Agricultural, Forestry, Food and Environmental Sciences, University of BasilicataPotenza, Italy
| | - Debora Santo
- Department of Agricultural, Food and Environmental Sciences, Marche Polytechnic UniversityAncona, Italy
| | - Laura Nanni
- Department of Agricultural, Food and Environmental Sciences, Marche Polytechnic UniversityAncona, Italy
| | - Giovanna Attene
- Department of Agriculture, University of SassariSassari, Italy
| | - Roberto Papa
- Department of Agricultural, Food and Environmental Sciences, Marche Polytechnic UniversityAncona, Italy
| |
Collapse
|
8
|
Gujaria-Verma N, Ramsay L, Sharpe AG, Sanderson LA, Debouck DG, Tar'an B, Bett KE. Gene-based SNP discovery in tepary bean (Phaseolus acutifolius) and common bean (P. vulgaris) for diversity analysis and comparative mapping. BMC Genomics 2016; 17:239. [PMID: 26979462 PMCID: PMC4793507 DOI: 10.1186/s12864-016-2499-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2015] [Accepted: 02/18/2016] [Indexed: 11/10/2022] Open
Abstract
Background Common bean (Phaseolus vulgaris) is an important grain legume and there has been a recent resurgence in interest in its relative, tepary bean (P. acutifolius), owing to this species’ ability to better withstand abiotic stresses. Genomic resources are scarce for this minor crop species and a better knowledge of the genome-level relationship between these two species would facilitate improvement in both. High-throughput genotyping has facilitated large-scale single nucleotide polymorphism (SNP) identification leading to the development of molecular markers with associated sequence information that can be used to place them in the context of a full genome assembly. Results Transcript-based SNPs were identified from six common bean and two tepary bean accessions and a subset were used to generate a 768-SNP Illumina GoldenGate assay for each species. The tepary bean assay was used to assess diversity in wild and cultivated tepary bean and to generate the first gene-based map of the tepary bean genome. Genotypic analyses of the diversity panel showed a clear separation between domesticated and cultivated tepary beans, two distinct groups within the domesticated types, and P. parvifolius was confirmed to be distinct. The genetic map of tepary bean was compared to the common bean genome assembly to demonstrate high levels of collinearity between the two species with differences limited to a few intra-chromosomal rearrangements. Conclusions The development of the first set of genomic resources specifically for tepary bean has allowed for greater insight into the structure of this species and its relationship to its agriculturally more prominent relative, common bean. These resources will be helpful in the development of efficient breeding strategies for both species and will facilitate the introgression of agriculturally important traits from one crop into the other. Electronic supplementary material The online version of this article (doi:10.1186/s12864-016-2499-3) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Neha Gujaria-Verma
- Department of Plant Sciences, University of Saskatchewan, 51 Campus Dr., Saskatoon, SK, S7N 5A8, Canada
| | - Larissa Ramsay
- Department of Plant Sciences, University of Saskatchewan, 51 Campus Dr., Saskatoon, SK, S7N 5A8, Canada
| | - Andrew G Sharpe
- National Research Council Canada, 110 Gymnasium Place, Saskatoon, SK, S7N 0W9, Canada
| | - Lacey-Anne Sanderson
- Department of Plant Sciences, University of Saskatchewan, 51 Campus Dr., Saskatoon, SK, S7N 5A8, Canada
| | - Daniel G Debouck
- Genetic Resources Program, International Center for Tropical Agriculture, Km 17 recta a Palmira, AA6713, Cali, Colombia
| | - Bunyamin Tar'an
- Department of Plant Sciences, University of Saskatchewan, 51 Campus Dr., Saskatoon, SK, S7N 5A8, Canada
| | - Kirstin E Bett
- Department of Plant Sciences, University of Saskatchewan, 51 Campus Dr., Saskatoon, SK, S7N 5A8, Canada.
| |
Collapse
|
9
|
Symbiont shift towards Rhizobium nodulation in a group of phylogenetically related Phaseolus species. Mol Phylogenet Evol 2014; 79:1-11. [DOI: 10.1016/j.ympev.2014.06.006] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2014] [Revised: 06/05/2014] [Accepted: 06/06/2014] [Indexed: 11/23/2022]
|