1
|
Wang Y, Han J, Meng X, Sun M, Qu S, Liu Y, Li Y, Zhan Y, Teng W, Li H, Zhao X, Han Y. Genome-Wide Association Study and Marker Development for Fusarium Oxysporum Root Rot Resistance in Soybean. Int J Mol Sci 2024; 25:12573. [PMID: 39684293 DOI: 10.3390/ijms252312573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 11/19/2024] [Accepted: 11/20/2024] [Indexed: 12/18/2024] Open
Abstract
Fusarium oxysporum root rot (FORR) is an important disease threatening soybean production. The development of marker-assisted selection (MAS) molecular markers will help accelerate the disease resistance breeding process and achieve the breeding goal of improving soybean disease resistance. This study evaluated the FORR disease resistance of 356 soybean germplasm accessions (SGAs) and screened resistance-related loci using genome-wide association analysis (GWAS) to develop molecular markers for MAS. A total of 1,355,930 high-quality SNPs were analyzed, 150 SNP sites significantly associated with FORR resistance were identified, and these sites were distributed within 41 QTLs. Additionally, 240 candidate genes were screened near these QTL regions, involving multiple functions such as hormone metabolism, signal transduction, stress defense, and growth regulation. Cleaved amplified polymorphic sequence (CAPS) and Kompetitive Allele-Specific PCR (KASP) molecular markers were developed based on candidate genes with significant SNP loci and beneficial haplotypes. The CAPS markers, S15_50486939-CAPS1 and S15_50452626-CAPS2, can effectively distinguish resistant and sensitive genotypes through enzyme digestion. The KASP marker is based on S07_19078765-G/T and exhibits a genotype clustering pattern consistent with disease resistance, demonstrating its application value in breeding. The CAPS and KASP markers developed in this study can provide reliable tools for MAS in FORR disease-resistant varieties. The research results will help reveal the genetic structure of FORR disease resistance and provide support for efficient breeding.
Collapse
Affiliation(s)
- Yuhe Wang
- Key Laboratory of Soybean Biology in Chinese Ministry of Education (Key Laboratory of Soybean Biology and Breeding/Genetics of Chinese Agriculture Ministry), College of Agriculture, Northeast Agricultural University, Harbin 150030, China
| | - Jinfeng Han
- Key Laboratory of Soybean Biology in Chinese Ministry of Education (Key Laboratory of Soybean Biology and Breeding/Genetics of Chinese Agriculture Ministry), College of Agriculture, Northeast Agricultural University, Harbin 150030, China
| | - Xiangkun Meng
- Key Laboratory of Soybean Biology in Chinese Ministry of Education (Key Laboratory of Soybean Biology and Breeding/Genetics of Chinese Agriculture Ministry), College of Agriculture, Northeast Agricultural University, Harbin 150030, China
| | - Maolin Sun
- Key Laboratory of Soybean Biology in Chinese Ministry of Education (Key Laboratory of Soybean Biology and Breeding/Genetics of Chinese Agriculture Ministry), College of Agriculture, Northeast Agricultural University, Harbin 150030, China
| | - Shuo Qu
- Key Laboratory of Soybean Biology in Chinese Ministry of Education (Key Laboratory of Soybean Biology and Breeding/Genetics of Chinese Agriculture Ministry), College of Agriculture, Northeast Agricultural University, Harbin 150030, China
| | - Yuanyuan Liu
- Key Laboratory of Soybean Biology in Chinese Ministry of Education (Key Laboratory of Soybean Biology and Breeding/Genetics of Chinese Agriculture Ministry), College of Agriculture, Northeast Agricultural University, Harbin 150030, China
| | - Yongguang Li
- Key Laboratory of Soybean Biology in Chinese Ministry of Education (Key Laboratory of Soybean Biology and Breeding/Genetics of Chinese Agriculture Ministry), College of Agriculture, Northeast Agricultural University, Harbin 150030, China
| | - Yuhang Zhan
- Key Laboratory of Soybean Biology in Chinese Ministry of Education (Key Laboratory of Soybean Biology and Breeding/Genetics of Chinese Agriculture Ministry), College of Agriculture, Northeast Agricultural University, Harbin 150030, China
| | - Weili Teng
- Key Laboratory of Soybean Biology in Chinese Ministry of Education (Key Laboratory of Soybean Biology and Breeding/Genetics of Chinese Agriculture Ministry), College of Agriculture, Northeast Agricultural University, Harbin 150030, China
| | - Haiyan Li
- Key Laboratory of Soybean Biology in Chinese Ministry of Education (Key Laboratory of Soybean Biology and Breeding/Genetics of Chinese Agriculture Ministry), College of Agriculture, Northeast Agricultural University, Harbin 150030, China
| | - Xue Zhao
- Key Laboratory of Soybean Biology in Chinese Ministry of Education (Key Laboratory of Soybean Biology and Breeding/Genetics of Chinese Agriculture Ministry), College of Agriculture, Northeast Agricultural University, Harbin 150030, China
| | - Yingpeng Han
- Key Laboratory of Soybean Biology in Chinese Ministry of Education (Key Laboratory of Soybean Biology and Breeding/Genetics of Chinese Agriculture Ministry), College of Agriculture, Northeast Agricultural University, Harbin 150030, China
| |
Collapse
|
2
|
Liu G, Fang Y, Liu X, Jiang J, Ding G, Wang Y, Zhao X, Xu X, Liu M, Wang Y, Yang C. Genome-wide association study and haplotype analysis reveal novel candidate genes for resistance to powdery mildew in soybean. FRONTIERS IN PLANT SCIENCE 2024; 15:1369650. [PMID: 38628361 PMCID: PMC11019568 DOI: 10.3389/fpls.2024.1369650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Accepted: 03/07/2024] [Indexed: 04/19/2024]
Abstract
Powdery mildew disease (PMD) is caused by the obligate biotrophic fungus Microsphaera diffusa Cooke & Peck (M. diffusa) and results in significant yield losses in soybean (Glycine max (L.) Merr.) crops. By identifying disease-resistant genes and breeding soybean accessions with enhanced resistance, we can effectively mitigate the detrimental impact of PMD on soybeans. We analyzed PMD resistance in a diversity panel of 315 soybean accessions in two locations over 3 years, and candidate genes associated with PMD resistance were identified through genome-wide association studies (GWAS), haplotype analysis, qRT-PCR, and EMS mutant analysis. Based on the GWAS approach, we identified a region on chromosome 16 (Chr16) in which 21 genes form a gene cluster that is highly correlated with PMD resistance. In order to validate and refine these findings, we conducted haplotype analysis of 21 candidate genes and indicated there are single nucleotide polymorphisms (SNPs) and insertion-deletions (InDels) variations of Glyma.16G214000, Glyma.16G214200, Glyma.16G215100 and Glyma.16G215300 within the coding and promoter regions that exhibit a strong association with resistance against PMD. Subsequent structural analysis of candidate genes within this cluster revealed that in 315 accessions, the majority of accessions exhibited resistance to PMD when Glyma.16G214300, Glyma.16G214800 and Glyma.16G215000 were complete; however, they demonstrated susceptibility to PMD when these genes were incomplete. Quantitative real-time PCR assays (qRT-PCR) of possible candidate genes showed that 14 candidate genes (Glyma.16G213700, Glyma.16G213800, Glyma.16G213900, Glyma.16G214000, Glyma.16G214200, Glyma.16G214300, Glyma.16G214500, Glyma.16G214585, Glyma.16G214669, Glyma.16G214700, Glyma.16G214800, Glyma.16G215000, Glyma.16G215100 and Glyma.16G215300) were involved in PMD resistance. Finally, we evaluated the PMD resistance of mutant lines from the Williams 82 EMS mutations library, which revealed that mutants of Glyma.16G214000, Glyma.16G214200, Glyma.16G214300, Glyma.16G214800, Glyma.16G215000, Glyma.16G215100 and Glyma.16G215300, exhibited sensitivity to PMD. Combined with the analysis results of GWAS, haplotypes, qRT-PCR and mutants, the genes Glyma.16G214000, Glyma.16G214200, Glyma.16G214300, Glyma.16G214800, Glyma.16G215000, Glyma.16G215100 and Glyma.16G215300 were identified as highly correlated with PMD resistance. The candidate genes identified above are all NLR family genes, and these discoveries deepen our understanding of the molecular basis of PMD resistance in soybeans and will be useful for guiding breeding strategies.
Collapse
Affiliation(s)
- Guoqiang Liu
- Guangdong Provincial Key Laboratory of Plant Molecular Breeding, College of Agriculture, South China Agricultural University, Guangzhou, China
- Key Laboratory for Enhancing Resource Use Efficiency of Crops in South China, Ministry of Agriculture and Rural Affairs, South China Agricultural University, Guangzhou, China
| | - Yuan Fang
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
| | - Xueling Liu
- Guangdong Provincial Key Laboratory of Plant Molecular Breeding, College of Agriculture, South China Agricultural University, Guangzhou, China
- Key Laboratory for Enhancing Resource Use Efficiency of Crops in South China, Ministry of Agriculture and Rural Affairs, South China Agricultural University, Guangzhou, China
| | - Jiacan Jiang
- Guangdong Provincial Key Laboratory of Plant Molecular Breeding, College of Agriculture, South China Agricultural University, Guangzhou, China
- Key Laboratory for Enhancing Resource Use Efficiency of Crops in South China, Ministry of Agriculture and Rural Affairs, South China Agricultural University, Guangzhou, China
| | - Guangquan Ding
- Guangdong Provincial Key Laboratory of Plant Molecular Breeding, College of Agriculture, South China Agricultural University, Guangzhou, China
- Key Laboratory for Enhancing Resource Use Efficiency of Crops in South China, Ministry of Agriculture and Rural Affairs, South China Agricultural University, Guangzhou, China
| | - Yongzhen Wang
- Guangdong Provincial Key Laboratory of Plant Molecular Breeding, College of Agriculture, South China Agricultural University, Guangzhou, China
- Key Laboratory for Enhancing Resource Use Efficiency of Crops in South China, Ministry of Agriculture and Rural Affairs, South China Agricultural University, Guangzhou, China
| | - Xueqian Zhao
- Guangdong Provincial Key Laboratory of Plant Molecular Breeding, College of Agriculture, South China Agricultural University, Guangzhou, China
- Key Laboratory for Enhancing Resource Use Efficiency of Crops in South China, Ministry of Agriculture and Rural Affairs, South China Agricultural University, Guangzhou, China
| | - Xiaomin Xu
- Guangdong Provincial Key Laboratory of Plant Molecular Breeding, College of Agriculture, South China Agricultural University, Guangzhou, China
- Key Laboratory for Enhancing Resource Use Efficiency of Crops in South China, Ministry of Agriculture and Rural Affairs, South China Agricultural University, Guangzhou, China
| | - Mengshi Liu
- Guangdong Provincial Key Laboratory of Plant Molecular Breeding, College of Agriculture, South China Agricultural University, Guangzhou, China
- Key Laboratory for Enhancing Resource Use Efficiency of Crops in South China, Ministry of Agriculture and Rural Affairs, South China Agricultural University, Guangzhou, China
| | - Yingxiang Wang
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
- Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, College of Life Sciences, South China Agricultural University, Guangzhou, China
| | - Cunyi Yang
- Guangdong Provincial Key Laboratory of Plant Molecular Breeding, College of Agriculture, South China Agricultural University, Guangzhou, China
- Key Laboratory for Enhancing Resource Use Efficiency of Crops in South China, Ministry of Agriculture and Rural Affairs, South China Agricultural University, Guangzhou, China
| |
Collapse
|
3
|
Huang CC, Lin CH, Lin YC, Chang HX. Application of bulk segregant RNA-Seq (BSR-Seq) and allele-specific primers to study soybean powdery mildew resistance. BMC PLANT BIOLOGY 2024; 24:155. [PMID: 38424508 PMCID: PMC10905810 DOI: 10.1186/s12870-024-04822-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Accepted: 02/14/2024] [Indexed: 03/02/2024]
Abstract
BACKGROUND Powdery mildew (PM) is one of the important soybean diseases, and host resistance could practically contribute to soybean PM management. To date, only the Rmd locus on chromosome (Chr) 16 was identified through traditional QTL mapping and GWAS, and it remains unclear if the bulk segregant RNA-Seq (BSR-Seq) methodology is feasible to explore additional PM resistance that might exist in other varieties. RESULTS BSR-Seq was applied to contrast genotypes and gene expressions between the resistant bulk (R bulk) and the susceptible bulk (S bulk), as well as the parents. The ∆(SNP-index) and G' value identified several QTL and significant SNPs/Indels on Chr06, Chr15, and Chr16. Differentially expressed genes (DEGs) located within these QTL were identified using HISAT2 and Kallisto, and allele-specific primers (AS-primers) were designed to validate the accuracy of phenotypic prediction. While the AS-primers on Chr06 or Chr15 cannot distinguish the resistant and susceptible phenotypes, AS-primers on Chr16 exhibited 82% accuracy prediction with an additive effect, similar to the SSR marker Satt431. CONCLUSIONS Evaluation of additional AS-primers in the linkage disequilibrium (LD) block on Chr16 further confirmed the resistant locus, derived from the resistant parental variety 'Kaohsiung 11' ('KS11'), not only overlaps with the Rmd locus with unique up-regulated LRR genes (Glyma.16G213700 and Glyma.16G215100), but also harbors a down-regulated MLO gene (Glyma.16G145600). Accordingly, this study exemplified the feasibility of BSR-Seq in studying biotrophic disease resistance in soybean, and showed the genetic makeup of soybean variety 'KS11' comprising the Rmd locus and one MLO gene.
Collapse
Affiliation(s)
- Cheng-Chun Huang
- Master Program for Plant Medicine, National Taiwan University, Taipei, 106319, Taiwan
| | - Chen-Hsiang Lin
- Taoyuan District Agricultural Research and Extension Station. Ministry of Agriculture, Taoyuan, 327005, Taiwan
| | - Yu-Cheng Lin
- Department of Plant Pathology and Microbiology, National Taiwan University, Taipei, 106319, Taiwan
- Department of Ecology and Evolutionary Biology, The University of Michigan, Ann Arbor, MI, 48109, USA
| | - Hao-Xun Chang
- Master Program for Plant Medicine, National Taiwan University, Taipei, 106319, Taiwan.
- Department of Plant Pathology and Microbiology, National Taiwan University, Taipei, 106319, Taiwan.
- Center of Biotechnology, National Taiwan University, Taipei, 106319, Taiwan.
| |
Collapse
|
4
|
Million CR, Wijeratne S, Karhoff S, Cassone BJ, McHale LK, Dorrance AE. Molecular mechanisms underpinning quantitative resistance to Phytophthora sojae in Glycine max using a systems genomics approach. FRONTIERS IN PLANT SCIENCE 2023; 14:1277585. [PMID: 38023885 PMCID: PMC10662313 DOI: 10.3389/fpls.2023.1277585] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Accepted: 10/16/2023] [Indexed: 12/01/2023]
Abstract
Expression of quantitative disease resistance in many host-pathogen systems is controlled by genes at multiple loci, each contributing a small effect to the overall response. We used a systems genomics approach to study the molecular underpinnings of quantitative disease resistance in the soybean-Phytophthora sojae pathosystem, incorporating expression quantitative trait loci (eQTL) mapping and gene co-expression network analysis to identify the genes putatively regulating transcriptional changes in response to inoculation. These findings were compared to previously mapped phenotypic (phQTL) to identify the molecular mechanisms contributing to the expression of this resistance. A subset of 93 recombinant inbred lines (RILs) from a Conrad × Sloan population were inoculated with P. sojae isolate 1.S.1.1 using the tray-test method; RNA was extracted, sequenced, and the normalized read counts were genetically mapped from tissue collected at the inoculation site 24 h after inoculation from both mock and inoculated samples. In total, more than 100,000 eQTLs were mapped. There was a switch from predominantly cis-eQTLs in the mock treatment to an almost entirely nonoverlapping set of predominantly trans-eQTLs in the inoculated treatment, where greater than 100-fold more eQTLs were mapped relative to mock, indicating vast transcriptional reprogramming due to P. sojae infection occurred. The eQTLs were organized into 36 hotspots, with the four largest hotspots from the inoculated treatment corresponding to more than 70% of the eQTLs, each enriched for genes within plant-pathogen interaction pathways. Genetic regulation of trans-eQTLs in response to the pathogen was predicted to occur through transcription factors and signaling molecules involved in plant-pathogen interactions, plant hormone signal transduction, and MAPK pathways. Network analysis identified three co-expression modules that were correlated with susceptibility to P. sojae and associated with three eQTL hotspots. Among the eQTLs co-localized with phQTLs, two cis-eQTLs with putative functions in the regulation of root architecture or jasmonic acid, as well as the putative master regulators of an eQTL hotspot nearby a phQTL, represent candidates potentially underpinning the molecular control of these phQTLs for resistance.
Collapse
Affiliation(s)
- Cassidy R. Million
- Department of Plant Pathology, The Ohio State University, Wooster, OH, United States
- Center for Soybean Research and Center for Applied Plant Sciences, The Ohio State University, Columbus, OH, United States
| | - Saranga Wijeratne
- Molecular and Cellular Imaging Center, The Ohio State University, Wooster, OH, United States
| | - Stephanie Karhoff
- Center for Soybean Research and Center for Applied Plant Sciences, The Ohio State University, Columbus, OH, United States
- Translational Plant Sciences Graduate Program, The Ohio State University, Columbus, OH, United States
| | - Bryan J. Cassone
- Center for Soybean Research and Center for Applied Plant Sciences, The Ohio State University, Columbus, OH, United States
- Department of Biology, Brandon University, Brandon, Manitoba, MB, Canada
| | - Leah K. McHale
- Center for Soybean Research and Center for Applied Plant Sciences, The Ohio State University, Columbus, OH, United States
- Department of Horticulture and Crop Science, The Ohio State University, Columbus, OH, United States
| | - Anne E. Dorrance
- Department of Plant Pathology, The Ohio State University, Wooster, OH, United States
- Center for Soybean Research and Center for Applied Plant Sciences, The Ohio State University, Columbus, OH, United States
| |
Collapse
|
5
|
Sang Y, Zhao H, Liu X, Yuan C, Qi G, Li Y, Dong L, Wang Y, Wang D, Wang Y, Dong Y. Genome-wide association study of powdery mildew resistance in cultivated soybean from Northeast China. FRONTIERS IN PLANT SCIENCE 2023; 14:1268706. [PMID: 38023859 PMCID: PMC10651740 DOI: 10.3389/fpls.2023.1268706] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Accepted: 10/17/2023] [Indexed: 12/01/2023]
Abstract
Powdery mildew (PMD), caused by the pathogen Microsphaera diffusa, leads to substantial yield decreases in susceptible soybean under favorable environmental conditions. Effective prevention of soybean PMD damage can be achieved by identifying resistance genes and developing resistant cultivars. In this study, we genotyped 331 soybean germplasm accessions, primarily from Northeast China, using the SoySNP50K BeadChip, and evaluated their resistance to PMD in a greenhouse setting. To identify marker-trait associations while effectively controlling for population structure, we conducted genome-wide association studies utilizing factored spectrally transformed linear mixed models, mixed linear models, efficient mixed-model association eXpedited, and compressed mixed linear models. The results revealed seven single nucleotide polymorphism (SNP) loci strongly associated with PMD resistance in soybean. Among these, one SNP was localized on chromosome (Chr) 14, and six SNPs with low linkage disequilibrium were localized near or in the region of previously mapped genes on Chr 16. In the reference genome of Williams82, we discovered 96 genes within the candidate region, including 17 resistance (R)-like genes, which were identified as potential candidate genes for PMD resistance. In addition, we performed quantitative real-time reverse transcription polymerase chain reaction analysis to evaluate the gene expression levels in highly resistant and susceptible genotypes, focusing on leaf tissues collected at different times after M. diffusa inoculation. Among the examined genes, three R-like genes, including Glyma.16G210800, Glyma.16G212300, and Glyma.16G213900, were identified as strong candidates associated with PMD resistance. This discovery can significantly enhance our understanding of soybean resistance to PMD. Furthermore, the significant SNPs strongly associated with resistance can serve as valuable markers for genetic improvement in breeding M. diffusa-resistant soybean cultivars.
Collapse
Affiliation(s)
- Yongsheng Sang
- College of Agronomy, Jilin Agricultural University, Changchun, Jilin, China
- Soybean Institute, Jilin Academy of Agricultural Sciences, Changchun, Jilin, China
| | - Hongkun Zhao
- Soybean Institute, Jilin Academy of Agricultural Sciences, Changchun, Jilin, China
| | - Xiaodong Liu
- Crop Germplasm Institute, Jilin Academy of Agricultural Sciences, Changchun, Jilin, China
| | - Cuiping Yuan
- Soybean Institute, Jilin Academy of Agricultural Sciences, Changchun, Jilin, China
| | - Guangxun Qi
- Soybean Institute, Jilin Academy of Agricultural Sciences, Changchun, Jilin, China
| | - Yuqiu Li
- Soybean Institute, Jilin Academy of Agricultural Sciences, Changchun, Jilin, China
| | - Lingchao Dong
- Soybean Institute, Jilin Academy of Agricultural Sciences, Changchun, Jilin, China
| | - Yingnan Wang
- Soybean Institute, Jilin Academy of Agricultural Sciences, Changchun, Jilin, China
| | - Dechun Wang
- Department of Plant, Soil and Microbial Sciences, Michigan State University, East Lansing, MI, United States
| | - Yumin Wang
- Soybean Institute, Jilin Academy of Agricultural Sciences, Changchun, Jilin, China
| | - Yingshan Dong
- College of Agronomy, Jilin Agricultural University, Changchun, Jilin, China
- Soybean Institute, Jilin Academy of Agricultural Sciences, Changchun, Jilin, China
| |
Collapse
|
6
|
Xian P, Cai Z, Jiang B, Xia Q, Cheng Y, Yang Y, Zhou Q, Lian T, Ma Q, Wang Y, Ge L, Nian H. GmRmd1 encodes a TIR-NBS-BSP protein and confers resistance to powdery mildew in soybean. PLANT COMMUNICATIONS 2022; 3:100418. [PMID: 35957521 PMCID: PMC9700122 DOI: 10.1016/j.xplc.2022.100418] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 07/13/2022] [Accepted: 08/01/2022] [Indexed: 06/15/2023]
Affiliation(s)
- Peiqi Xian
- The State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, South China Agricultural University, Guangzhou 510642, China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China; The Key Laboratory of Plant Molecular Breeding of Guangdong Province, College of Agriculture, South China Agricultural University, Guangzhou 510642, China
| | - Zhandong Cai
- The State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, South China Agricultural University, Guangzhou 510642, China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China; Department of Grassland Science, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou 510642, China
| | - Bingzhi Jiang
- The State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, South China Agricultural University, Guangzhou 510642, China; The Key Laboratory of Plant Molecular Breeding of Guangdong Province, College of Agriculture, South China Agricultural University, Guangzhou 510642, China
| | - Qiuju Xia
- Beijing Genome Institute (BGI), Shenzhen 518083, China
| | - Yanbo Cheng
- The State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, South China Agricultural University, Guangzhou 510642, China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China; The Key Laboratory of Plant Molecular Breeding of Guangdong Province, College of Agriculture, South China Agricultural University, Guangzhou 510642, China
| | - Yuan Yang
- The State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, South China Agricultural University, Guangzhou 510642, China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China; The Key Laboratory of Plant Molecular Breeding of Guangdong Province, College of Agriculture, South China Agricultural University, Guangzhou 510642, China
| | - Qianghua Zhou
- The State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, South China Agricultural University, Guangzhou 510642, China; The Key Laboratory of Plant Molecular Breeding of Guangdong Province, College of Agriculture, South China Agricultural University, Guangzhou 510642, China
| | - Tengxiang Lian
- The State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, South China Agricultural University, Guangzhou 510642, China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China; The Key Laboratory of Plant Molecular Breeding of Guangdong Province, College of Agriculture, South China Agricultural University, Guangzhou 510642, China
| | - Qibin Ma
- The State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, South China Agricultural University, Guangzhou 510642, China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China; The Key Laboratory of Plant Molecular Breeding of Guangdong Province, College of Agriculture, South China Agricultural University, Guangzhou 510642, China
| | - Yingxiang Wang
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China; College of Life Sciences, Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, South China Agricultural University, Guangzhou 510642, China; State Key Laboratory of Genetic Engineering and Ministry of Education Key Laboratory of Biodiversity Sciences and Ecological Engineering, Institute of Plant Biology, School of Life Sciences, Fudan University, Shanghai 200433, China.
| | - Liangfa Ge
- The State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, South China Agricultural University, Guangzhou 510642, China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China; Department of Grassland Science, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou 510642, China.
| | - Hai Nian
- The State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, South China Agricultural University, Guangzhou 510642, China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China; The Key Laboratory of Plant Molecular Breeding of Guangdong Province, College of Agriculture, South China Agricultural University, Guangzhou 510642, China.
| |
Collapse
|
7
|
Molecular Breeding to Overcome Biotic Stresses in Soybean: Update. PLANTS 2022; 11:plants11151967. [PMID: 35956444 PMCID: PMC9370206 DOI: 10.3390/plants11151967] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 06/18/2022] [Revised: 07/16/2022] [Accepted: 07/25/2022] [Indexed: 11/17/2022]
Abstract
Soybean (Glycine max (L.) Merr.) is an important leguminous crop and biotic stresses are a global concern for soybean growers. In recent decades, significant development has been carried outtowards identification of the diseases caused by pathogens, sources of resistance and determination of loci conferring resistance to different diseases on linkage maps of soybean. Host-plant resistance is generally accepted as the bestsolution because of its role in the management of environmental and economic conditions of farmers owing to low input in terms of chemicals. The main objectives of soybean crop improvement are based on the identification of sources of resistance or tolerance against various biotic as well as abiotic stresses and utilization of these sources for further hybridization and transgenic processes for development of new cultivars for stress management. The focus of the present review is to summarize genetic aspects of various diseases caused by pathogens in soybean and molecular breeding research work conducted to date.
Collapse
|
8
|
Sulima AS, Zhukov VA. War and Peas: Molecular Bases of Resistance to Powdery Mildew in Pea ( Pisum sativum L.) and Other Legumes. PLANTS (BASEL, SWITZERLAND) 2022; 11:plants11030339. [PMID: 35161319 PMCID: PMC8838241 DOI: 10.3390/plants11030339] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 01/19/2022] [Accepted: 01/25/2022] [Indexed: 05/27/2023]
Abstract
Grain legumes, or pulses, have many beneficial properties that make them potentially attractive to agriculture. However, the large-scale cultivation of legumes faces a number of difficulties, in particular the vulnerability of the currently available cultivars to various diseases that significantly impair yields and seed quality. One of the most dangerous legume pathogens is powdery mildew (a common name for parasitic fungi of the order Erisyphales). This review examines the methods of controlling powdery mildew that are used in modern practice, including fungicides and biological agents. Special attention is paid to the plant genetic mechanisms of resistance, which are the most durable, universal and environmentally friendly. The most studied legume plant in this regard is the garden pea (Pisum sativum L.), which possesses naturally occurring resistance conferred by mutations in the gene MLO1 (Er1), for which we list here all the known resistant alleles, including er1-12 discovered by the authors of this review. Recent achievements in the genetics of resistance to powdery mildew in other legumes and prospects for the introduction of this resistance into other agriculturally important legume species are also discussed.
Collapse
|
9
|
Alotaibi F, Alharbi S, Alotaibi M, Al Mosallam M, Motawei M, Alrajhi A. Wheat omics: Classical breeding to new breeding technologies. Saudi J Biol Sci 2021; 28:1433-1444. [PMID: 33613071 PMCID: PMC7878716 DOI: 10.1016/j.sjbs.2020.11.083] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Revised: 11/26/2020] [Accepted: 11/29/2020] [Indexed: 12/26/2022] Open
Abstract
Wheat is an important cereal crop, and its significance is more due to compete for dietary products in the world. Many constraints facing by the wheat crop due to environmental hazardous, biotic, abiotic stress and heavy matters factors, as a result, decrease the yield. Understanding the molecular mechanism related to these factors is significant to figure out genes regulate under specific conditions. Classical breeding using hybridization has been used to increase the yield but not prospered at the desired level. With the development of newly emerging technologies in biological sciences i.e., marker assisted breeding (MAB), QTLs mapping, mutation breeding, proteomics, metabolomics, next-generation sequencing (NGS), RNA_sequencing, transcriptomics, differential expression genes (DEGs), computational resources and genome editing techniques i.e. (CRISPR cas9; Cas13) advances in the field of omics. Application of new breeding technologies develops huge data; considerable development is needed in bioinformatics science to interpret the data. However, combined omics application to address physiological questions linked with genetics is still a challenge. Moreover, viroid discovery opens the new direction for research, economics, and target specification. Comparative genomics important to figure gene of interest processes are further discussed about considering the identification of genes, genomic loci, and biochemical pathways linked with stress resilience in wheat. Furthermore, this review extensively discussed the omics approaches and their effective use. Integrated plant omics technologies have been used viroid genomes associated with CRISPR and CRISPR-associated Cas13a proteins system used for engineering of viroid interference along with high-performance multidimensional phenotyping as a significant limiting factor for increasing stress resistance in wheat.
Collapse
Affiliation(s)
- Fahad Alotaibi
- King Abdulaziz City for Science and Technology (KACST), Riyadh, Saudi Arabia
| | - Saif Alharbi
- King Abdulaziz City for Science and Technology (KACST), Riyadh, Saudi Arabia
| | - Majed Alotaibi
- King Abdulaziz City for Science and Technology (KACST), Riyadh, Saudi Arabia
| | - Mobarak Al Mosallam
- King Abdulaziz City for Science and Technology (KACST), Riyadh, Saudi Arabia
| | | | - Abdullah Alrajhi
- King Abdulaziz City for Science and Technology (KACST), Riyadh, Saudi Arabia
| |
Collapse
|
10
|
Jiang B, Li M, Cheng Y, Cai Z, Ma Q, Jiang Z, Ma R, Xia Q, Zhang G, Nian H. Genetic mapping of powdery mildew resistance genes in soybean by high-throughput genome-wide sequencing. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2019; 132:1833-1845. [PMID: 30826863 DOI: 10.1007/s00122-019-03319-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Accepted: 02/25/2019] [Indexed: 06/09/2023]
Abstract
KEY MESSAGE The Mendelian locus conferring resistance to powdery mildew in soybean was precisely mapped using a combination of phenotypic screening, genetic analyses, and high-throughput genome-wide sequencing. Powdery mildew (PMD), caused by the fungus Microsphaera diffusa Cooke & Peck, leads to considerable yield losses in soybean [Glycine max (L.) Merr.] under favourable environmental conditions and can be controlled by identifying germplasm resources with resistance genes. In this study, resistance to M. diffusa among resistant varieties B3, Fudou234, and B13 is mapped as a single Mendelian locus using three mapping populations derived from crossing susceptible with resistant cultivars. The position of the PMD resistance locus in B3 is located between simple sequence repeat (SSR) markers GMES6959 and Satt_393 on chromosome 16, at genetic distances of 7.1 cM and 4.6 cM, respectively. To more finely map the PMD resistance gene, a high-density genetic map was constructed using 248 F8 recombinant inbred lines derived from a cross of Guizao1 × B13. The final map includes 3748 bins and is 3031.9 cM in length, with an average distance of 0.81 cM between adjacent markers. This genotypic analysis resulted in the precise delineation of the B13 PMD resistance locus to a 188.06-kb genomic region on chromosome 16 that harbours 28 genes, including 17 disease resistance (R)-like genes in the reference Williams 82 genome. Quantitative real-time PCR assays of possible candidate genes revealed differences in the expression levels of 9 R-like genes between the resistant and susceptible parents. These results provide useful information for marker-assisted breeding and gene cloning for PMD resistance.
Collapse
Affiliation(s)
- Bingzhi Jiang
- The State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, South China Agricultural University, Guangzhou, 510642, Guangdong, People's Republic of China
- The Key Laboratory of Plant Molecular Breeding of Guangdong Province, College of Agriculture, South China Agricultural University, Guangzhou, 510642, Guangdong, People's Republic of China
| | - Mu Li
- The State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, South China Agricultural University, Guangzhou, 510642, Guangdong, People's Republic of China
- The Key Laboratory of Plant Molecular Breeding of Guangdong Province, College of Agriculture, South China Agricultural University, Guangzhou, 510642, Guangdong, People's Republic of China
| | - Yanbo Cheng
- The State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, South China Agricultural University, Guangzhou, 510642, Guangdong, People's Republic of China
- The Key Laboratory of Plant Molecular Breeding of Guangdong Province, College of Agriculture, South China Agricultural University, Guangzhou, 510642, Guangdong, People's Republic of China
| | - Zhandong Cai
- The State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, South China Agricultural University, Guangzhou, 510642, Guangdong, People's Republic of China
- The Key Laboratory of Plant Molecular Breeding of Guangdong Province, College of Agriculture, South China Agricultural University, Guangzhou, 510642, Guangdong, People's Republic of China
| | - Qibin Ma
- The State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, South China Agricultural University, Guangzhou, 510642, Guangdong, People's Republic of China
- The Key Laboratory of Plant Molecular Breeding of Guangdong Province, College of Agriculture, South China Agricultural University, Guangzhou, 510642, Guangdong, People's Republic of China
| | - Ze Jiang
- The State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, South China Agricultural University, Guangzhou, 510642, Guangdong, People's Republic of China
- The Key Laboratory of Plant Molecular Breeding of Guangdong Province, College of Agriculture, South China Agricultural University, Guangzhou, 510642, Guangdong, People's Republic of China
| | - Ruirui Ma
- The State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, South China Agricultural University, Guangzhou, 510642, Guangdong, People's Republic of China
- The Key Laboratory of Plant Molecular Breeding of Guangdong Province, College of Agriculture, South China Agricultural University, Guangzhou, 510642, Guangdong, People's Republic of China
| | - Qiuju Xia
- Beijing Genomics Institute (BGI)-Shenzhen, Shenzhen, 518086, People's Republic of China
| | - Gengyun Zhang
- Beijing Genomics Institute (BGI)-Shenzhen, Shenzhen, 518086, People's Republic of China
| | - Hai Nian
- The State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, South China Agricultural University, Guangzhou, 510642, Guangdong, People's Republic of China.
- The Key Laboratory of Plant Molecular Breeding of Guangdong Province, College of Agriculture, South China Agricultural University, Guangzhou, 510642, Guangdong, People's Republic of China.
| |
Collapse
|
11
|
Shah T, Xu J, Zou X, Cheng Y, Nasir M, Zhang X. Omics Approaches for Engineering Wheat Production under Abiotic Stresses. Int J Mol Sci 2018; 19:E2390. [PMID: 30110906 PMCID: PMC6121627 DOI: 10.3390/ijms19082390] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2018] [Revised: 07/14/2018] [Accepted: 07/24/2018] [Indexed: 02/05/2023] Open
Abstract
Abiotic stresses greatly influenced wheat productivity executed by environmental factors such as drought, salt, water submergence and heavy metals. The effective management at the molecular level is mandatory for a thorough understanding of plant response to abiotic stress. Understanding the molecular mechanism of stress tolerance is complex and requires information at the omic level. In the areas of genomics, transcriptomics and proteomics enormous progress has been made in the omics field. The rising field of ionomics is also being utilized for examining abiotic stress resilience in wheat. Omic approaches produce a huge amount of data and sufficient developments in computational tools have been accomplished for efficient analysis. However, the integration of omic-scale information to address complex genetics and physiological questions is still a challenge. Though, the incorporation of omic-scale data to address complex genetic qualities and physiological inquiries is as yet a challenge. In this review, we have reported advances in omic tools in the perspective of conventional and present day approaches being utilized to dismember abiotic stress tolerance in wheat. Attention was given to methodologies, for example, quantitative trait loci (QTL), genome-wide association studies (GWAS) and genomic selection (GS). Comparative genomics and candidate genes methodologies are additionally talked about considering the identification of potential genomic loci, genes and biochemical pathways engaged with stress resilience in wheat. This review additionally gives an extensive list of accessible online omic assets for wheat and its effective use. We have additionally addressed the significance of genomics in the integrated approach and perceived high-throughput multi-dimensional phenotyping as a significant restricting component for the enhancement of abiotic stress resistance in wheat.
Collapse
Affiliation(s)
- Tariq Shah
- Key Lab of Biology and Genetic Improvement of Oil Crops, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences (CAAS), Wuhan 430062, China.
| | - Jinsong Xu
- Key Lab of Biology and Genetic Improvement of Oil Crops, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences (CAAS), Wuhan 430062, China.
| | - Xiling Zou
- Key Lab of Biology and Genetic Improvement of Oil Crops, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences (CAAS), Wuhan 430062, China.
| | - Yong Cheng
- Key Lab of Biology and Genetic Improvement of Oil Crops, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences (CAAS), Wuhan 430062, China.
| | - Mubasher Nasir
- College of Natural Resources and Environment, Northwest Agriculture and Forestry University, Yangling 712100, China.
| | - Xuekun Zhang
- Key Lab of Biology and Genetic Improvement of Oil Crops, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences (CAAS), Wuhan 430062, China.
| |
Collapse
|
12
|
Cheng P, Gedling CR, Patil G, Vuong TD, Shannon JG, Dorrance AE, Nguyen HT. Genetic mapping and haplotype analysis of a locus for quantitative resistance to Fusarium graminearum in soybean accession PI 567516C. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2017; 130:999-1010. [PMID: 28275816 DOI: 10.1007/s00122-017-2866-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2016] [Accepted: 01/24/2017] [Indexed: 05/16/2023]
Abstract
KEY MESSAGE A major novel quantitative disease resistance locus, qRfg_Gm06, for Fusarium graminearum was genetically mapped to chromosome 6. Genomic-assisted haplotype analysis within this region identified three putative candidate genes. Fusarium graminearum causes seed, root rot, and seedling damping-off in soybean which contributes to reduced stands and yield. A cultivar Magellan and PI 567516C were identified with low and high levels of partial resistance to F. graminearum, respectively. Quantitative disease resistance loci (QDRL) were mapped with 241 F7:8 recombinant inbred lines (RILs) derived from a cross of Magellan × PI 567516C. Phenotypic evaluation for resistance to F. graminearum used the rolled towel assay in a randomized incomplete block design. The genetic map was constructed from 927 polymorphic single nucleotide polymorphism (SNP) and simple sequence repeat (SSR) markers. One major QDRL qRfg_Gm06 was detected and mapped to chromosome 6 with a LOD score of 20.3 explaining 40.2% of the total phenotypic variation. This QDRL was mapped to a ~400 kb genomic region of the Williams 82 reference genome. Genome mining of this region identified 14 putative candidate disease resistance genes. Haplotype analysis of this locus using whole genome re-sequencing (WGRS) of 106 diverse soybean lines narrowed the list to three genes. A SNP genotyping Kompetitive allele-specific PCR (KASP) assay was designed for one of the genes and was validated in a subset of the RILs and all 106 diverse lines.
Collapse
Affiliation(s)
- Peng Cheng
- Division of Plant Sciences and National Center for Soybean Biotechnology, University of Missouri, Columbia, MO, 65211, USA
| | - Cassidy R Gedling
- Department of Plant Pathology, The Ohio State University, 1680 Madison Avenue, Wooster, OH, 44691, USA
| | - Gunvant Patil
- Division of Plant Sciences and National Center for Soybean Biotechnology, University of Missouri, Columbia, MO, 65211, USA
| | - Tri D Vuong
- Division of Plant Sciences and National Center for Soybean Biotechnology, University of Missouri, Columbia, MO, 65211, USA
| | - J Grover Shannon
- Division of Plant Sciences, University of Missouri-Fisher Delta Research Center, Portageville, MO, 63873, USA
| | - Anne E Dorrance
- Department of Plant Pathology, The Ohio State University, 1680 Madison Avenue, Wooster, OH, 44691, USA.
| | - Henry T Nguyen
- Division of Plant Sciences and National Center for Soybean Biotechnology, University of Missouri, Columbia, MO, 65211, USA.
| |
Collapse
|
13
|
Acharya B, Lee S, Rouf Mian MA, Jun TH, McHale LK, Michel AP, Dorrance AE. Identification and mapping of quantitative trait loci (QTL) conferring resistance to Fusarium graminearum from soybean PI 567301B. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2015; 128:827-38. [PMID: 25690715 PMCID: PMC4544499 DOI: 10.1007/s00122-015-2473-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2014] [Accepted: 01/31/2015] [Indexed: 05/16/2023]
Abstract
KEY MESSAGE A major novel QTL was identified in a recombinant inbred line population derived from a cross of 'Wyandot' × PI 567301B for Fusarium graminearum, a seed and seedling pathogen of soybean. Fusarium graminearum is now recognized as a primary pathogen of soybean, causing root, seed rot and seedling damping-off in North America. In a preliminary screen, 'Wyandot' and PI 567301B were identified with medium and high levels of partial resistance to F. graminearum, respectively. The objective of this study was to characterise resistance towards F. graminearum using 184 recombinant inbred lines (RILs) derived from a cross of 'Wyandot' × PI 567301B. The parents and the RILs of the mapping population were evaluated for resistance towards F. graminearum using the rolled towel assay in a randomized incomplete block design. A genetic map was constructed from 2545 SNP markers and 2 SSR markers by composite interval mapping. One major and one minor QTL were identified on chromosomes 8 and 6, respectively, which explained 38.5 and 8.1 % of the phenotypic variance. The major QTL on chromosome 8 was mapped to a 300 kb size genomic region of the Williams 82 sequence. Annotation of this region indicates that there are 39 genes including the Rhg4 locus for soybean cyst nematode (SCN) resistance. Based on previous screens, PI 567301B is susceptible to SCN. Fine mapping of this locus will assist in cloning these candidate genes as well as identifying DNA markers flanking the QTL that can be used in marker-assisted breeding to develop cultivars with high levels of resistance to F. graminearum.
Collapse
Affiliation(s)
- Bhupendra Acharya
- Department of Plant Pathology, The Ohio State University, 1680 Madison Avenue, Wooster, OH 44691 USA
| | - Sungwoo Lee
- Department of Entomology, The Ohio State University, 1680 Madison Avenue, Wooster, OH 44691 USA
- Present Address: Department of Crop Science, North Carolina State University, 3127 Ligon Street, Raleigh, NC 27607 USA
| | - M. A. Rouf Mian
- USDA-ARS and Department of Horticulture and Crop Science, The Ohio State University, 1680 Madison Avenue, Wooster, OH 44691 USA
- Present Address: USDA-ARS, Soybean Nitrogen Fixation Unit, Raleigh, NC 27606 USA
| | - Tae-Hwan Jun
- Department of Entomology, The Ohio State University, 1680 Madison Avenue, Wooster, OH 44691 USA
- Present Address: Department of Plant Bioscience, Pusan National University, Busan, 609-735 South Korea
| | - Leah K. McHale
- Department of Horticulture and Crop Science, The Ohio State University, 2021 Coffey Road, Columbus, OH 43210 USA
| | - Andrew P. Michel
- Department of Entomology, The Ohio State University, 1680 Madison Avenue, Wooster, OH 44691 USA
| | - Anne E. Dorrance
- Department of Plant Pathology, The Ohio State University, 1680 Madison Avenue, Wooster, OH 44691 USA
| |
Collapse
|
14
|
Deshmukh R, Sonah H, Patil G, Chen W, Prince S, Mutava R, Vuong T, Valliyodan B, Nguyen HT. Integrating omic approaches for abiotic stress tolerance in soybean. FRONTIERS IN PLANT SCIENCE 2014; 5:244. [PMID: 24917870 PMCID: PMC4042060 DOI: 10.3389/fpls.2014.00244] [Citation(s) in RCA: 121] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2014] [Accepted: 05/13/2014] [Indexed: 05/18/2023]
Abstract
Soybean production is greatly influenced by abiotic stresses imposed by environmental factors such as drought, water submergence, salt, and heavy metals. A thorough understanding of plant response to abiotic stress at the molecular level is a prerequisite for its effective management. The molecular mechanism of stress tolerance is complex and requires information at the omic level to understand it effectively. In this regard, enormous progress has been made in the omics field in the areas of genomics, transcriptomics, and proteomics. The emerging field of ionomics is also being employed for investigating abiotic stress tolerance in soybean. Omic approaches generate a huge amount of data, and adequate advancements in computational tools have been achieved for effective analysis. However, the integration of omic-scale information to address complex genetics and physiological questions is still a challenge. In this review, we have described advances in omic tools in the view of conventional and modern approaches being used to dissect abiotic stress tolerance in soybean. Emphasis was given to approaches such as quantitative trait loci (QTL) mapping, genome-wide association studies (GWAS), and genomic selection (GS). Comparative genomics and candidate gene approaches are also discussed considering identification of potential genomic loci, genes, and biochemical pathways involved in stress tolerance mechanism in soybean. This review also provides a comprehensive catalog of available online omic resources for soybean and its effective utilization. We have also addressed the significance of phenomics in the integrated approaches and recognized high-throughput multi-dimensional phenotyping as a major limiting factor for the improvement of abiotic stress tolerance in soybean.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Henry T. Nguyen
- National Center for Soybean Biotechnology and Division of Plant Sciences, University of MissouriColumbia, MO, USA
| |
Collapse
|
15
|
Pérez-Vega E, Trabanco N, Campa A, Ferreira JJ. Genetic mapping of two genes conferring resistance to powdery mildew in common bean (Phaseolus vulgaris L.). TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2013; 126:1503-1512. [PMID: 23456179 DOI: 10.1007/s00122-013-2068-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2012] [Accepted: 02/08/2013] [Indexed: 06/01/2023]
Abstract
Powdery mildew (PM) is a serious disease in many legume species, including the common bean (Phaseolus vulgaris L.). This study investigated the genetic control behind resistance reaction to PM in the bean genotype, Cornell 49242. The results revealed evidence supporting a qualitative mode of inheritance for resistance and the involvement of two independent genes in the resistance reaction. The location of these resistance genes was investigated in a linkage genetic map developed for the XC RIL population. Contingency tests revealed significant associations for 28 loci out of a total of 329 mapped loci. Fifteen were isolated or formed groups with less than two loci. The thirteen remaining loci were located at three regions in linkage groups Pv04, Pv09, and Pv11. The involvement of Pv09 was discarded due to the observed segregation in the subpopulation obtained from the Xana genotype for the loci located in this region. In contrast, the two subpopulations obtained from the Xana genotype for the BM161 locus, linked to the Co-3/9 anthracnose resistance gene (Pv04), and from the Xana genotype for the SCAReoli locus, linked to the Co-2 anthracnose resistance gene (Pv11), exhibited monogenic segregations, suggesting that both regions were involved in the genetic control of resistance. A genetic dissection was carried out to verify the involvement of both regions in the reaction to PM. Two resistant recombinant lines were selected, according to their genotypes, for the block of loci included in the Co-2 and Co-3/9 regions, and they were crossed with the susceptible parent, Xana. Linkage analysis in the respective F2 populations supported the hypothesis that a dominant gene (Pm1) was located in the linkage group Pv11 and another gene (Pm2) was located in the linkage group Pv04. This is the first report showing the localization of resistance genes against powdery mildew in Phaseolus vulgaris and the results offer the opportunity to increase the efficiency of breeding programs by means of marker-assisted selection.
Collapse
Affiliation(s)
- Elena Pérez-Vega
- Área de Cultivos Hortofrutícolas y Forestales, Servicio Regional de Investigación y Desarrollo Agroalimentario (SERIDA), 33300 Villaviciosa, Asturias, Spain
| | | | | | | |
Collapse
|