1
|
Canales Holzeis C, Gepts P, Koebner R, Mathur PN, Morgan S, Muñoz-Amatriaín M, Parker TA, Southern EM, Timko MP. The Kirkhouse Trust: Successes and Challenges in Twenty Years of Supporting Independent, Contemporary Grain Legume Breeding Projects in India and African Countries. PLANTS (BASEL, SWITZERLAND) 2024; 13:1818. [PMID: 38999658 PMCID: PMC11243813 DOI: 10.3390/plants13131818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 06/19/2024] [Accepted: 06/25/2024] [Indexed: 07/14/2024]
Abstract
This manuscript reviews two decades of projects funded by the Kirkhouse Trust (KT), a charity registered in the UK. KT was established to improve the productivity of legume crops important in African countries and in India. KT's requirements for support are: (1) the research must be conducted by national scientists in their home institution, either a publicly funded agricultural research institute or a university; (2) the projects need to include a molecular biology component, which to date has mostly comprised the use of molecular markers for the selection of one or more target traits in a crop improvement programme; (3) the projects funded are included in consortia, to foster the creation of scientific communities and the sharing of knowledge and breeding resources. This account relates to the key achievements and challenges, reflects on the lessons learned and outlines future research priorities.
Collapse
Affiliation(s)
| | - Paul Gepts
- Section of Crop & Ecosystem Sciences, Department of Plant Sciences, University of California, 1 Shields Avenue, Davis, CA 95616, USA
| | - Robert Koebner
- The Kirkhouse Trust, Unit 6 Fenlock Court, Long Hanborough OX29 8LN, UK
| | | | - Sonia Morgan
- The Kirkhouse Trust, Unit 6 Fenlock Court, Long Hanborough OX29 8LN, UK
| | - María Muñoz-Amatriaín
- Departamento de Biología Molecular (Área Genética), Universidad de León, 24071 León, Spain
| | - Travis A Parker
- Section of Crop & Ecosystem Sciences, Department of Plant Sciences, University of California, 1 Shields Avenue, Davis, CA 95616, USA
| | - Edwin M Southern
- The Kirkhouse Trust, Unit 6 Fenlock Court, Long Hanborough OX29 8LN, UK
| | - Michael P Timko
- Department of Biology, University of Virginia, Charlottesville, VA 22904, USA
| |
Collapse
|
2
|
Campa A, Geffroy V, Bitocchi E, Noly A, Papa R, Ferreira JJ. Screening for resistance to four fungal diseases and associated genomic regions in a snap bean diversity panel. FRONTIERS IN PLANT SCIENCE 2024; 15:1386877. [PMID: 38919821 PMCID: PMC11196787 DOI: 10.3389/fpls.2024.1386877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Accepted: 05/22/2024] [Indexed: 06/27/2024]
Abstract
Anthracnose, white mold, powdery mildew, and root rot caused by Colletotrichum lindemuthianum, Scletorinia sclerotiorum, Erysiphe spp., and Pythium ultimum, respectively, are among the most frequent diseases that cause significant production losses worldwide in common bean (Phaseolus vulgaris L.). Reactions against these four fungal diseases were investigated under controlled conditions using a diversity panel of 311 bean lines for snap consumption (Snap bean Panel). The genomic regions involved in these resistance responses were identified based on a genome-wide association study conducted with 16,242 SNP markers. The highest number of resistant lines was observed against the three C. lindemuthianum isolates evaluated: 156 lines were resistant to CL124 isolate, 146 lines resistant to CL18, and 109 lines were resistant to C531 isolate. Two well-known anthracnose resistance clusters were identified, the Co-2 on chromosome Pv11 for isolates CL124 and CL18, and the Co-3 on chromosome Pv04 for isolates CL124 and C531. In addition, other lesser-known regions of anthracnose resistance were identified on chromosomes Pv02, Pv06, Pv08, and Pv10. For the white mold isolate tested, 24 resistant lines were identified and the resistance was localized to three different positions on chromosome Pv08. For the powdery mildew local isolate, only 12 resistant lines were identified, and along with the two previous resistance genes on chromosomes Pv04 and Pv11, a new region on chromosome Pv06 was also identified. For root rot caused by Pythium, 31 resistant lines were identified and two main regions were located on chromosomes Pv04 and Pv05. Relevant information for snap bean breeding programs was provided in this work. A total of 20 lines showed resistant or intermediate responses against four or five isolates, which can be suitable for sustainable farm production and could be used as resistance donors. Potential genes and genomic regions to be considered for targeted improvement were provided, including new or less characterized regions that should be validated in future works. Powdery mildew disease was identified as a potential risk for snap bean production and should be considered a main goal in breeding programs.
Collapse
Affiliation(s)
- Ana Campa
- Plant Genetic Group, Regional Service for Agrofood Research and Development (SERIDA), Villaviciosa, Asturias, Spain
| | - Valérie Geffroy
- Université Paris-Saclay, CNRS, INRAE, Université Evry, Institute of Plant Sciences Paris-Saclay (IPS2), Gif sur Yvette, France
- Université Paris-Cité, CNRS, INRAE, Institute of Plant Sciences Paris-Saclay (IPS2), Gif sur Yvette, France
| | - Elena Bitocchi
- Department of Agricultural, Food and Environmental Sciences, Marche Polytechnic University, Via Brecce Bianche, Ancona, Italy
| | - Alicia Noly
- Université Paris-Saclay, CNRS, INRAE, Université Evry, Institute of Plant Sciences Paris-Saclay (IPS2), Gif sur Yvette, France
- Université Paris-Cité, CNRS, INRAE, Institute of Plant Sciences Paris-Saclay (IPS2), Gif sur Yvette, France
| | - Roberto Papa
- Department of Agricultural, Food and Environmental Sciences, Marche Polytechnic University, Via Brecce Bianche, Ancona, Italy
| | - Juan José Ferreira
- Plant Genetic Group, Regional Service for Agrofood Research and Development (SERIDA), Villaviciosa, Asturias, Spain
| |
Collapse
|
3
|
Leitão ST, Mendes FA, Rubiales D, Vaz Patto MC. Oligogenic Control of Quantitative Resistance Against Powdery Mildew Revealed in Portuguese Common Bean Germplasm. PLANT DISEASE 2023; 107:3113-3122. [PMID: 37102726 DOI: 10.1094/pdis-02-23-0313-re] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
Common bean (Phaseolus vulgaris L.) is one of the most important food legumes worldwide, and its production is severely affected by fungal diseases such as powdery mildew. Portugal has a diverse germplasm, with accessions of Andean, Mesoamerican, and admixed origin, making it a valuable resource for common bean genetic studies. In this work, we evaluated the response of a Portuguese collection of 146 common bean accessions to Erysiphe diffusa infection, observing a wide range of disease severity and different levels of compatible and incompatible reactions, revealing the presence of different resistance mechanisms. We identified 11 incompletely hypersensitive resistant and 80 partially resistant accessions. We performed a genome-wide association study to clarify its genetic control, resulting in the identification of eight disease severity-associated single-nucleotide polymorphisms, spread across chromosomes Pv03, Pv09, and Pv10. Two of the associations were unique to partial resistance and one to incomplete hypersensitive resistance. The proportion of variance explained by each association varied between 15 and 86%. The absence of a major locus, together with the relatively small number of loci controlling disease severity, suggested an oligogenic inheritance of both types of resistance. Seven candidate genes were proposed, including a disease resistance protein (toll interleukin 1 receptor-nucleotide binding site-leucine-rich repeat class), an NF-Y transcription factor complex component, and an ABC-2 type transporter family protein. This work contributes with new resistance sources and genomic targets valuable to develop selection molecular tools and support powdery mildew resistance precision breeding in common bean.
Collapse
|
4
|
Gomes-Messias LM, Vianello RP, Marinho GR, Rodrigues LA, Coelho AG, Pereira HS, Melo LC, de Souza TLPO. Genetic mapping of the Andean anthracnose resistance gene present in the common bean cultivar BRSMG Realce. FRONTIERS IN PLANT SCIENCE 2022; 13:1033687. [PMID: 36507385 PMCID: PMC9728541 DOI: 10.3389/fpls.2022.1033687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Accepted: 10/28/2022] [Indexed: 06/17/2023]
Abstract
The rajado seeded Andean bean (Phaseolus vulgaris L.) cultivar BRSMG Realce (striped seed coat) developed by Embrapa expressed a high level of anthracnose resistance, caused by Colletotrichum lindemuthianum, in field and greenhouse screenings. The main goal of this study was to evaluate the inheritance of anthracnose resistance in BRSMG Realce, map the resistance locus or major gene cluster previously named as Co-Realce, identify resistance-related positional genes, and analyze potential markers linked to the resistance allele. F2 plants derived from the cross BRSMG Realce × BRS FC104 (Mesoamerican) and from the cross BRSMG Realce × BRS Notável (Mesoamerican) were inoculated with the C. lindemuthianum races 475 and 81, respectively. The BRSMG Realce × BRS FC104 F2 population was also genotyped using the DArTseq technology. Crosses between BRSMG Realce and BAT 93 (Mesoamerican) were also conducted and resulting F2 plants were inoculated with the C. lindemuthianum races 65 and 1609, individually. The results shown that anthracnose resistance in BRSMG Realce is controlled by a single locus with complete dominance. A genetic map including 1,118 SNP markers was built and shown 78% of the markers mapped at a distances less than 5.0 cM, with a total genetic length of 4,473.4 cM. A major locus (Co-Realce) explaining 54.6% of the phenotypic variation of symptoms caused by the race 475 was identified in Pv04, flanked by the markers snp1327 and snp12782 and 4.48 cM apart each other. These SNPs are useful for marker-assisted selection, due to an estimated selection efficiency of 99.2%. The identified resistance allele segregates independently of the resistance allele Co-33 (Pv04) present in BAT 93. The mapped genomic region with 704,867 bp comprising 63 putative genes, 44 of which were related to the pathogen-host interaction. Based on all these results and evidence, anthracnose resistance in BRSMG Realce should be considered as monogenic, useful for breeding purpose. It is proposed that locus Co-Realce is unique and be provisionally designated as CoPv04R until be officially nominated in accordance with the rules established by the Bean Improvement Cooperative Genetics Committee.
Collapse
|
5
|
Binagwa PH, Traore SM, Egnin M, Bernard GC, Ritte I, Mortley D, Kamfwa K, He G, Bonsi C. Genome-Wide Identification of Powdery Mildew Resistance in Common Bean ( Phaseolus vulgaris L.). Front Genet 2021; 12:673069. [PMID: 34239540 PMCID: PMC8258261 DOI: 10.3389/fgene.2021.673069] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Accepted: 05/10/2021] [Indexed: 11/17/2022] Open
Abstract
Genome-wide association studies (GWAS) have been utilized to detect genetic variations related to several agronomic traits and disease resistance in common bean. However, its application in the powdery mildew (PM) disease to identify candidate genes and their location in the common bean genome has not been fully addressed. Single-nucleotide polymorphism (SNP) genotyping with a BeadChip containing 5398 SNPs was used to detect genetic variations related to PM disease resistance in a panel of 211 genotypes grown under two field conditions for two consecutive years. Significant SNPs identified on chromosomes Pv04 and Pv10 were repeatable, ensuring the phenotypic data’s reliability and the causal relationship. A cluster of resistance genes was revealed on the Pv04 of the common bean genome, coiled-coil-nucleotide-binding site–leucine-rich repeat (CC-NBS-LRR, CNL), and Toll/interleukin-1 receptor-nucleotide-binding site–leucine-rich repeat type (TIR-NBS-LRR, TNL)-like resistance genes were identified. Furthermore, two resistance genes, Phavu_010G1320001g and Phavu_010G136800g, were also identified on Pv10. Further sequence analysis showed that these genes were homologs to the disease-resistance protein (RLM1A-like) and the putative disease-resistance protein (At4g11170.1) in Arabidopsis. Significant SNPs related to two LRR receptor-like kinases (RLK) were only identified on Pv11 in 2018. Many genes encoding the auxin-responsive protein, TIFY10A protein, growth-regulating factor five-like, ubiquitin-like protein, and cell wall RBR3-like protein related to PM disease resistance were identified nearby significant SNPs. These results suggested that the resistance to PM pathogen involves a network of many genes constitutively co-expressed.
Collapse
Affiliation(s)
- Papias H Binagwa
- Integrative Biosciences (IBS), Ph.D. Program, Tuskegee University, Tuskegee, AL, United States.,Department of Agricultural and Environmental Sciences, Tuskegee University, Tuskegee, AL, United States
| | - Sy M Traore
- Department of Agricultural and Environmental Sciences, Tuskegee University, Tuskegee, AL, United States
| | - Marceline Egnin
- Department of Agricultural and Environmental Sciences, Tuskegee University, Tuskegee, AL, United States
| | - Gregory C Bernard
- Department of Agricultural and Environmental Sciences, Tuskegee University, Tuskegee, AL, United States
| | - Inocent Ritte
- Integrative Biosciences (IBS), Ph.D. Program, Tuskegee University, Tuskegee, AL, United States.,Department of Agricultural and Environmental Sciences, Tuskegee University, Tuskegee, AL, United States
| | - Desmond Mortley
- Department of Agricultural and Environmental Sciences, Tuskegee University, Tuskegee, AL, United States
| | - Kelvin Kamfwa
- Department of Plant Sciences, School of Agricultural Sciences, University of Zambia, Lusaka, Zambia
| | - Guohao He
- Department of Agricultural and Environmental Sciences, Tuskegee University, Tuskegee, AL, United States
| | - Conrad Bonsi
- Department of Agricultural and Environmental Sciences, Tuskegee University, Tuskegee, AL, United States
| |
Collapse
|
6
|
Campa A, Ferreira JJ. Gene coding for an elongation factor is involved in resistance against powdery mildew in common bean. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2017; 130:849-860. [PMID: 28233030 DOI: 10.1007/s00122-017-2864-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2016] [Accepted: 01/24/2017] [Indexed: 05/29/2023]
Abstract
Genetic control of the resistance response against powdery mildew in common bean was studied combining genetic, genomic and transcriptomic analyses. A candidate resistance gene in cultivar Porrillo Sintetico was proposed. The species causing the fungal disease powdery mildew (PM) in the local common bean crop was identified as Erysiphe polygoni through the molecular analysis of the internal transcribed spacer region. A genetic analysis of the resistance in cultivar Porrillo Sintetico was conducted using different F2:3 populations, and a dominant gene conferring total resistance against a local PM isolate was physically located between 84,188 and 218,664 bp of chromosome Pv04. An in silico analysis of this region, based on the common bean reference sequence, revealed four genes candidate to be involved in the resistance reaction. Relative expression levels of these genes after PM infection showed a significant over-expression of the candidate gene Phvul.004G001500 in the resistant genotype Porrillo Sintetico. This gene was re-sequenced in the parental genotypes X2776 and Porrillo Sintetico to explain their different phenotypic responses against PM. Several substitutions where identified in exon regions, all of them synonymous, so differences in the produced amino acid sequence were not expected. However, a total of 37 mutations were identified in non-coding regions of the gene sequence, suggesting that intron variation could be responsible for the different gene expression levels after PM infection. No evidence of other regulatory mechanisms, such as alternative splicing or methylation, was identified. Candidate resistance gene Phvul.004G001500 codes for an elongation factor that is not a typical gene related to recognition of specific pathogens in plants, suggesting its involvement in the resistance through plant immune system.
Collapse
Affiliation(s)
- Ana Campa
- Plant Genetics, Area of Horticultural and Forest Crops, SERIDA, Asturias, Spain.
| | - Juan José Ferreira
- Plant Genetics, Area of Horticultural and Forest Crops, SERIDA, Asturias, Spain
| |
Collapse
|
7
|
Bassi D, Briñez B, Rosa JS, Oblessuc PR, Almeida CPD, Nucci SM, Silva LCDD, Chiorato AF, Vianello RP, Camargo LEA, Blair MW, Benchimol-Reis LL. Linkage and mapping of quantitative trait loci associated with angular leaf spot and powdery mildew resistance in common beans. Genet Mol Biol 2017; 40:109-122. [PMID: 28222201 PMCID: PMC5409766 DOI: 10.1590/1678-4685-gmb-2015-0314] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2015] [Accepted: 06/20/2016] [Indexed: 11/23/2022] Open
Abstract
Angular leaf spot (ALS) and powdery mildew (PWM) are two important fungi diseases
causing significant yield losses in common beans. In this study, a new genetic
linkage map was constructed using single sequence repeats (SSRs) and single
nucleotide polymorphisms (SNPs), in a segregating population derived from the AND 277
x SEA 5 cross, with 105 recombinant inbred lines. Phenotypic evaluations were
performed in the greenhouse to identify quantitative trait loci
(QTLs) associated with resistance by means of the composite interval mapping
analysis. Four QTLs were identified for ALS resistance. The QTL ALS11AS,
linked on the SNP BAR 5054, mapped on chromosome Pv11, showed the greatest effect
(R2 = 26.5%) on ALS phenotypic variance. For PWM resistance, two QTLs
were detected, PWM2AS and PWM11AS, on Pv2 and Pv11, explaining
7% and 66% of the phenotypic variation, respectively. Both QTLs on Pv11 were mapped
on the same genomic region, suggesting that it is a pleiotropic region. The present
study resulted in the identification of new markers closely linked to ALS and PWM
QTLs, which can be used for marker-assisted selection, fine mapping and positional
cloning.
Collapse
Affiliation(s)
- Denis Bassi
- Centro de Recursos Genéticos Vegetais, Instituto Agronômico de Campinas (IAC), Campinas, SP, Brazil
| | - Boris Briñez
- Centro de Recursos Genéticos Vegetais, Instituto Agronômico de Campinas (IAC), Campinas, SP, Brazil
| | - Juliana Santa Rosa
- Centro de Recursos Genéticos Vegetais, Instituto Agronômico de Campinas (IAC), Campinas, SP, Brazil
| | - Paula Rodrigues Oblessuc
- Centro de Recursos Genéticos Vegetais, Instituto Agronômico de Campinas (IAC), Campinas, SP, Brazil
| | - Caléo Panhoca de Almeida
- Centro de Recursos Genéticos Vegetais, Instituto Agronômico de Campinas (IAC), Campinas, SP, Brazil
| | - Stella Maris Nucci
- Centro de Recursos Genéticos Vegetais, Instituto Agronômico de Campinas (IAC), Campinas, SP, Brazil
| | | | | | | | - Luis Eduardo Aranha Camargo
- Departamento de Fitopatologia, Escola Superior de Agricultura Luiz de Queiroz (ESALQ), Universidade de São Paulo (USP), Piracicaba, SP, Brazil
| | - Matthew Wohlgemuth Blair
- Department of Agriculture and Environmental Sciences, Tennessee State University, Nashville, TN, USA
| | | |
Collapse
|
8
|
Meziadi C, Richard MMS, Derquennes A, Thareau V, Blanchet S, Gratias A, Pflieger S, Geffroy V. Development of molecular markers linked to disease resistance genes in common bean based on whole genome sequence. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2016; 242:351-357. [PMID: 26566851 DOI: 10.1016/j.plantsci.2015.09.006] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2015] [Revised: 09/01/2015] [Accepted: 09/02/2015] [Indexed: 05/03/2023]
Abstract
Common bean (Phaseolus vulgaris) is the most important grain legume for direct human consumption in the world, particularly in developing countries where it constitutes the main source of protein. Unfortunately, common bean yield stability is constrained by a number of pests and diseases. As use of resistant genotypes is the most economic and ecologically safe means for controlling plant diseases, efforts have been made to genetically characterize resistance genes (R genes) in common bean. Despite its agronomic importance, genomic resources available in common bean were limited until the recent sequencing of common bean genome (Andean genotype G19833). Besides allowing the annotation of Nucleotide Binding-Leucine Rich Repeat (NB-LRR) encoding gene family, which is the prevalent class of disease R genes in plants, access to the whole genome sequence of common bean can be of great help for intense selection to increase the overall efficiency of crop improvement programs using marker-assisted selection (MAS). This review presents the state of the art of common bean NB-LRR gene clusters, their peculiar location in subtelomeres and correlation with genetically characterized monogenic R genes, as well as how the availability of the whole genome sequence can boost the development of molecular markers for MAS.
Collapse
Affiliation(s)
- Chouaïb Meziadi
- Institute of Plant Sciences Paris-Saclay (IPS2), CNRS, INRA, Université Paris-Sud, Université d'Evry, Université Paris-Diderot, Sorbonne Paris-Cité, Université Paris-Saclay, Bâtiment 630, 91405 Orsay, France
| | - Manon M S Richard
- Institute of Plant Sciences Paris-Saclay (IPS2), CNRS, INRA, Université Paris-Sud, Université d'Evry, Université Paris-Diderot, Sorbonne Paris-Cité, Université Paris-Saclay, Bâtiment 630, 91405 Orsay, France
| | - Amandine Derquennes
- Institute of Plant Sciences Paris-Saclay (IPS2), CNRS, INRA, Université Paris-Sud, Université d'Evry, Université Paris-Diderot, Sorbonne Paris-Cité, Université Paris-Saclay, Bâtiment 630, 91405 Orsay, France
| | - Vincent Thareau
- Institute of Plant Sciences Paris-Saclay (IPS2), CNRS, INRA, Université Paris-Sud, Université d'Evry, Université Paris-Diderot, Sorbonne Paris-Cité, Université Paris-Saclay, Bâtiment 630, 91405 Orsay, France
| | - Sophie Blanchet
- Institute of Plant Sciences Paris-Saclay (IPS2), CNRS, INRA, Université Paris-Sud, Université d'Evry, Université Paris-Diderot, Sorbonne Paris-Cité, Université Paris-Saclay, Bâtiment 630, 91405 Orsay, France
| | - Ariane Gratias
- Institute of Plant Sciences Paris-Saclay (IPS2), CNRS, INRA, Université Paris-Sud, Université d'Evry, Université Paris-Diderot, Sorbonne Paris-Cité, Université Paris-Saclay, Bâtiment 630, 91405 Orsay, France
| | - Stéphanie Pflieger
- Institute of Plant Sciences Paris-Saclay (IPS2), CNRS, INRA, Université Paris-Sud, Université d'Evry, Université Paris-Diderot, Sorbonne Paris-Cité, Université Paris-Saclay, Bâtiment 630, 91405 Orsay, France
| | - Valérie Geffroy
- Institute of Plant Sciences Paris-Saclay (IPS2), CNRS, INRA, Université Paris-Sud, Université d'Evry, Université Paris-Diderot, Sorbonne Paris-Cité, Université Paris-Saclay, Bâtiment 630, 91405 Orsay, France.
| |
Collapse
|