1
|
Hu H, Yuan X, Saini DK, Yang T, Wu X, Wu R, Liu Z, Jan F, Mir RR, Liu L, Miao J, Liu N, Xu P. A panomics-driven framework for the improvement of major food legume crops: advances, challenges, and future prospects. HORTICULTURE RESEARCH 2025; 12:uhaf091. [PMID: 40352287 PMCID: PMC12064956 DOI: 10.1093/hr/uhaf091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/04/2025] [Accepted: 03/13/2025] [Indexed: 05/14/2025]
Abstract
Food legume crops, including common bean, faba bean, mungbean, cowpea, chickpea, and pea, have long served as vital sources of energy, protein, and minerals worldwide, both as grains and vegetables. Advancements in high-throughput phenotyping, next-generation sequencing, transcriptomics, proteomics, and metabolomics have significantly expanded genomic resources for food legumes, ushering research into the panomics era. Despite their nutritional and agronomic importance, food legumes still face constraints in yield potential and genetic improvement due to limited genomic resources, complex inheritance patterns, and insufficient exploration of key traits, such as quality and stress resistance. This highlights the need for continued efforts to comprehensively dissect the phenome, genome, and regulome of these crops. This review summarizes recent advances in technological innovations and multi-omics applications in food legumes research and improvement. Given the critical role of germplasm resources and the challenges in applying phenomics to food legumes-such as complex trait architecture and limited standardized methodologies-we first address these foundational areas. We then discuss recent gene discoveries associated with yield stability, seed composition, and stress tolerance and their potential as breeding targets. Considering the growing role of genetic engineering, we provide an update on gene-editing applications in legumes, particularly CRISPR-based approaches for trait enhancement. We advocate for integrating chemical and biochemical signatures of cells ('molecular phenomics') with genetic mapping to accelerate gene discovery. We anticipate that combining panomics approaches with advanced breeding technologies will accelerate genetic gains in food legumes, enhancing their productivity, resilience, and contribution to sustainable global food security.
Collapse
Affiliation(s)
- Hongliang Hu
- Zhejiang-Israel Joint Laboratory for Plant Metrology and Equipment Innovation, College of Life Sciences, China Jiliang University, Hangzhou 310018, China
| | - Xingxing Yuan
- Institute of Industrial Crops, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - Dinesh Kumar Saini
- Department of Plant and Soil Science, Texas Tech University, Lubbock, TX 79409, USA
| | - Tao Yang
- State Key Laboratory of Crop Gene Resources and Breeding/ Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Haidian District, Beijing 100081, China
| | - Xinyi Wu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Vegetables, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Ranran Wu
- Institute of Industrial Crops, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - Zehao Liu
- State Key Laboratory of Crop Gene Resources and Breeding/ Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Haidian District, Beijing 100081, China
| | - Farkhandah Jan
- Division of Genetics & Plant Breeding, Faculty of Agriculture, SKUAST-Kashmir, Wadura Campus, Sopore, Jammu and Kashmir 193201, India
| | - Reyazul Rouf Mir
- Centre for Crop and Food Innovation, WA State Agricultural Biotechnology Centre, Murdoch University, Murdoch WA 6150, Australia
| | - Liu Liu
- Zhejiang Xianghu Laboratory, Hangzhou, China
| | | | - Na Liu
- Zhejiang Xianghu Laboratory, Hangzhou, China
- State Key Laboratory for Quality and Safety of Agro-products, Institute of Vegetables, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Pei Xu
- Zhejiang-Israel Joint Laboratory for Plant Metrology and Equipment Innovation, College of Life Sciences, China Jiliang University, Hangzhou 310018, China
| |
Collapse
|
2
|
Manoharan R, Nair CS, Nishanth D, Subramanian R, Xie X, Ren M, Jaleel A. Crop Wild Relatives (CWRs) in the United Arab Emirates: Resources for Climate Resilience and Their Potential Medicinal Applications. Drug Des Devel Ther 2025; 19:1515-1525. [PMID: 40061816 PMCID: PMC11887499 DOI: 10.2147/dddt.s497800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Accepted: 02/05/2025] [Indexed: 05/13/2025] Open
Abstract
Global climate change threatens the production, growth, and sustainability of plants. Crop wild relatives (CWRs) offer a practical and sustainable solution to these climatic issues by boosting genetic diversity and crop resilience. Even though CWRs are wild relatives of domesticated plants, they are nevertheless mostly neglected. This review focuses on the possible application of CWRs, which are found in the United Arab Emirates (UAE) and are known for their abiotic stress tolerance and potential medicinal properties. In olden days, traditionally, CWRs has been used as medicine for various ailments as they are rich in phytochemical compounds. However, the medicinal potential of these wild plant species is decreasing at an alarming rate due to climate change stress factors. The medicinal potential of these native crop wild plant species must be investigated because they could be a useful asset in the healthcare sector. Research on pangenomics studies of certain CWRs is also highlighted in the review, which reveals genetic variability caused due to climate change stress factors and how these genetic variability changes affect the production of secondary metabolites that have potent medicinal value. This provides insights into developing personalized medicine, in which particular CWRs plant species can be chosen or modified to generate medicinal compounds. Despite their superior medicinal properties, many CWRs in the UAE are still not well understood. Finding the desired genes coding for the biosynthesis of specific phytochemicals or secondary metabolites may help us better understand how these substances are synthesized and how to increase their production for a range of treatments.
Collapse
Affiliation(s)
- Ramya Manoharan
- Department of Integrative Agriculture, College of Agriculture and Veterinary Medicine, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Chythra Somanathan Nair
- Department of Integrative Agriculture, College of Agriculture and Veterinary Medicine, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Drishya Nishanth
- Department of Integrative Agriculture, College of Agriculture and Veterinary Medicine, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Radhakrishnan Subramanian
- Department of Integrative Agriculture, College of Agriculture and Veterinary Medicine, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Xiulan Xie
- Laboratory of Space Biology, Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences, Chengdu, People’s Republic of China
| | - Maozhi Ren
- Laboratory of Space Biology, Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences, Chengdu, People’s Republic of China
| | - Abdul Jaleel
- Department of Integrative Agriculture, College of Agriculture and Veterinary Medicine, United Arab Emirates University, Al Ain, United Arab Emirates
| |
Collapse
|
3
|
Ogiso-Tanaka E, Chankaew S, Isemura T, Marubodee R, Kongjaimun A, Baba-Kasai A, Okuno K, Ehara H, Tomooka N. Diversity of salt tolerance in Vigna nakashimae, wild related species of the azuki bean ( Vigna angularis). BREEDING SCIENCE 2024; 74:166-172. [PMID: 39355625 PMCID: PMC11442110 DOI: 10.1270/jsbbs.23050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Accepted: 01/15/2024] [Indexed: 10/03/2024]
Abstract
Vigna nakashimae is a wild species closely related to the azuki bean (V. angularis), with salt-tolerance abilities. The present study aimed to explore the genetic and salt tolerance diversity within the species, by evaluating the phylogenetic relationships of 55 accessions of V. nakashimae including 25 newly collected from the Gotō Islands and Iki in Nagasaki Prefecture, Japan. We conducted salt-tolerance analysis for 48 of the accessions, including 18 of the newly collected accessions. Phylogenetic analysis based on single-nucleotide polymorphisms obtained from MIGseq and RADseq analyses revealed the genetic diversity of V. nakashimae to reflect the geographic arrangement of the habitat islands. Korean accessions formed one clade, while Japanese accessions predominantly grouped into Uku Island and Fukue Island subclades. Within this population, we identified "G4-2" (JP248291) as the most salt tolerant, surpassing even the previously reported "Ukushima" accession. Both accessions collected from Uku Island, with accessions belonging to the Uku Island subclade exhibiting a strong trend of salt tolerance. Our results strongly suggest the occurrence of genetic mutations conferring enhanced salt tolerance in specific clade and region. This study highlights the potential of genetic analyses for identifying regions suitable for collecting valuable genetic resources for stress tolerance.
Collapse
Affiliation(s)
- Eri Ogiso-Tanaka
- Genetic Resources Center, National Institute of Agrobiological Sciences (NIAS), 2-1-2 Kannondai, Tsukuba, Ibaraki 305-8602, Japan
| | - Sompong Chankaew
- Program in Plant Breeding, Faculty of Agriculture at Kamphaeng Saen, Kasetsart University, Kamphaeng Saen, Nakhon Pathom 73140, Thailand
| | - Takehisa Isemura
- Genetic Resources Center, National Institute of Agrobiological Sciences (NIAS), 2-1-2 Kannondai, Tsukuba, Ibaraki 305-8602, Japan
| | - Rusama Marubodee
- Graduate School of Bioresources, Mie University, 1577 Kurimamachiya-cho, Tsu, Mie 514-0102, Japan
| | - Alisa Kongjaimun
- Program in Plant Breeding, Faculty of Agriculture at Kamphaeng Saen, Kasetsart University, Kamphaeng Saen, Nakhon Pathom 73140, Thailand
| | - Akiko Baba-Kasai
- Genetic Resources Center, National Institute of Agrobiological Sciences (NIAS), 2-1-2 Kannondai, Tsukuba, Ibaraki 305-8602, Japan
| | - Kazutoshi Okuno
- Graduate School of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8571, Japan
| | - Hiroshi Ehara
- Graduate School of Bioresources, Mie University, 1577 Kurimamachiya-cho, Tsu, Mie 514-0102, Japan
| | - Norihiko Tomooka
- Genetic Resources Center, National Institute of Agrobiological Sciences (NIAS), 2-1-2 Kannondai, Tsukuba, Ibaraki 305-8602, Japan
| |
Collapse
|
4
|
Xu N, Chen B, Cheng Y, Su Y, Song M, Guo R, Wang M, Deng K, Lan T, Bao S, Wang G, Guo Z, Yu L. Integration of GWAS and RNA-Seq Analysis to Identify SNPs and Candidate Genes Associated with Alkali Stress Tolerance at the Germination Stage in Mung Bean. Genes (Basel) 2023; 14:1294. [PMID: 37372474 DOI: 10.3390/genes14061294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 06/13/2023] [Accepted: 06/16/2023] [Indexed: 06/29/2023] Open
Abstract
Soil salt-alkalization seriously impacts crop growth and productivity worldwide. Breeding and applying tolerant varieties is the most economical and effective way to address soil alkalization. However, genetic resources for breeders to improve alkali tolerance are limited in mung bean. Here, a genome-wide association study (GWAS) was performed to detect alkali-tolerant genetic loci and candidate genes in 277 mung bean accessions during germination. Using the relative values of two germination traits, 19 QTLs containing 32 SNPs significantly associated with alkali tolerance on nine chromosomes were identified, and they explained 3.6 to 14.6% of the phenotypic variance. Moreover, 691 candidate genes were mined within the LD intervals containing significant trait-associated SNPs. Transcriptome sequencing of alkali-tolerant accession 132-346 under alkali and control conditions after 24 h of treatment was conducted, and 2565 DEGs were identified. An integrated analysis of the GWAS and DEGs revealed six hub genes involved in alkali tolerance responses. Moreover, the expression of hub genes was further validated by qRT-PCR. These findings improve our understanding of the molecular mechanism of alkali stress tolerance and provide potential resources (SNPs and genes) for the genetic improvement of alkali tolerance in mung bean.
Collapse
Affiliation(s)
- Ning Xu
- College of Agriculture, Heilongjiang Bayi Agricultural University, Daqing 163319, China
- Institute of Crop Germplasm Resources, Jilin Academy of Agricultural Sciences, Gongzhuling 136100, China
| | - Bingru Chen
- Institute of Crop Germplasm Resources, Jilin Academy of Agricultural Sciences, Gongzhuling 136100, China
| | - Yuxin Cheng
- Institute of Crop Germplasm Resources, Jilin Academy of Agricultural Sciences, Gongzhuling 136100, China
| | - Yufei Su
- Institute of Crop Germplasm Resources, Jilin Academy of Agricultural Sciences, Gongzhuling 136100, China
| | - Mengyuan Song
- Institute of Crop Germplasm Resources, Jilin Academy of Agricultural Sciences, Gongzhuling 136100, China
| | - Rongqiu Guo
- Institute of Crop Germplasm Resources, Jilin Academy of Agricultural Sciences, Gongzhuling 136100, China
| | - Minghai Wang
- Institute of Crop Germplasm Resources, Jilin Academy of Agricultural Sciences, Gongzhuling 136100, China
| | - Kunpeng Deng
- Institute of Crop Germplasm Resources, Jilin Academy of Agricultural Sciences, Gongzhuling 136100, China
| | - Tianjiao Lan
- Institute of Crop Germplasm Resources, Jilin Academy of Agricultural Sciences, Gongzhuling 136100, China
| | - Shuying Bao
- Institute of Crop Germplasm Resources, Jilin Academy of Agricultural Sciences, Gongzhuling 136100, China
| | - Guifang Wang
- Institute of Crop Germplasm Resources, Jilin Academy of Agricultural Sciences, Gongzhuling 136100, China
| | - Zhongxiao Guo
- Institute of Crop Germplasm Resources, Jilin Academy of Agricultural Sciences, Gongzhuling 136100, China
| | - Lihe Yu
- College of Agriculture, Heilongjiang Bayi Agricultural University, Daqing 163319, China
| |
Collapse
|
5
|
Ogiso-Tanaka E, Chankaew S, Yoshida Y, Isemura T, Marubodee R, Kongjaimun A, Baba-Kasai A, Okuno K, Ehara H, Tomooka N. Unique Salt-Tolerance-Related QTLs, Evolved in Vigna riukiuensis (Na + Includer) and V. nakashimae (Na + Excluder), Shed Light on the Development of Super-Salt-Tolerant Azuki Bean ( V. angularis) Cultivars. PLANTS (BASEL, SWITZERLAND) 2023; 12:1680. [PMID: 37111908 PMCID: PMC10146836 DOI: 10.3390/plants12081680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/04/2023] [Revised: 04/12/2023] [Accepted: 04/13/2023] [Indexed: 06/19/2023]
Abstract
Wild relatives of crops have the potential to improve food crops, especially in terms of improving abiotic stress tolerance. Two closely related wild species of the traditional East Asian legume crops, Azuki bean (Vigna angularis), V. riukiuensis "Tojinbaka" and V. nakashimae "Ukushima" were shown to have much higher levels of salt tolerance than azuki beans. To identify the genomic regions responsible for salt tolerance in "Tojinbaka" and "Ukushima", three interspecific hybrids were developed: (A) azuki bean cultivar "Kyoto Dainagon" × "Tojinbaka", (B) "Kyoto Dainagon" × "Ukushima" and (C) "Ukushima" × "Tojinbaka". Linkage maps were developed using SSR or restriction-site-associated DNA markers. There were three QTLs for "percentage of wilt leaves" in populations A, B and C, while populations A and B had three QTLs and population C had two QTLs for "days to wilt". In population C, four QTLs were detected for Na+ concentration in the primary leaf. Among the F2 individuals in population C, 24% showed higher salt tolerance than both wild parents, suggesting that the salt tolerance of azuki beans can be further improved by combining the QTL alleles of the two wild relatives. The marker information would facilitate the transfer of salt tolerance alleles from "Tojinbaka" and "Ukushima" to azuki beans.
Collapse
Affiliation(s)
- Eri Ogiso-Tanaka
- Genetic Resources Center, National Institute of Agrobiological Sciences (NIAS), 2-1-2 Kannondai, Tsukuba 305-8602, Ibaraki, Japan
| | - Sompong Chankaew
- Program in Plant Breeding, Faculty of Agriculture at Kamphaeng Saen, Kasetsart University, Kamphaeng Saen, Nakhon Pathom 73140, Thailand
| | - Yutaro Yoshida
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Tennohdai 1-1-1, Tsukuba 305-8571, Ibaraki, Japan
| | - Takehisa Isemura
- Genetic Resources Center, National Institute of Agrobiological Sciences (NIAS), 2-1-2 Kannondai, Tsukuba 305-8602, Ibaraki, Japan
| | - Rusama Marubodee
- Graduate School of Bioresources, Mie University, 1577 Kurimamachiya-cho, Tsu 514-0102, Mie, Japan
| | - Alisa Kongjaimun
- Genetic Resources Center, National Institute of Agrobiological Sciences (NIAS), 2-1-2 Kannondai, Tsukuba 305-8602, Ibaraki, Japan
| | - Akiko Baba-Kasai
- Genetic Resources Center, National Institute of Agrobiological Sciences (NIAS), 2-1-2 Kannondai, Tsukuba 305-8602, Ibaraki, Japan
| | - Kazutoshi Okuno
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Tennohdai 1-1-1, Tsukuba 305-8571, Ibaraki, Japan
| | - Hiroshi Ehara
- Graduate School of Bioresources, Mie University, 1577 Kurimamachiya-cho, Tsu 514-0102, Mie, Japan
| | - Norihiko Tomooka
- Genetic Resources Center, National Institute of Agrobiological Sciences (NIAS), 2-1-2 Kannondai, Tsukuba 305-8602, Ibaraki, Japan
| |
Collapse
|
6
|
Kapazoglou A, Gerakari M, Lazaridi E, Kleftogianni K, Sarri E, Tani E, Bebeli PJ. Crop Wild Relatives: A Valuable Source of Tolerance to Various Abiotic Stresses. PLANTS (BASEL, SWITZERLAND) 2023; 12:plants12020328. [PMID: 36679041 PMCID: PMC9861506 DOI: 10.3390/plants12020328] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 12/22/2022] [Accepted: 12/23/2022] [Indexed: 05/27/2023]
Abstract
Global climate change is one of the major constraints limiting plant growth, production, and sustainability worldwide. Moreover, breeding efforts in the past years have focused on improving certain favorable crop traits, leading to genetic bottlenecks. The use of crop wild relatives (CWRs) to expand genetic diversity and improve crop adaptability seems to be a promising and sustainable approach for crop improvement in the context of the ongoing climate challenges. In this review, we present the progress that has been achieved towards CWRs exploitation for enhanced resilience against major abiotic stressors (e.g., water deficiency, increased salinity, and extreme temperatures) in crops of high nutritional and economic value, such as tomato, legumes, and several woody perennial crops. The advances in -omics technologies have facilitated the elucidation of the molecular mechanisms that may underlie abiotic stress tolerance. Comparative analyses of whole genome sequencing (WGS) and transcriptomic profiling (RNA-seq) data between crops and their wild relative counterparts have unraveled important information with respect to the molecular basis of tolerance to abiotic stressors. These studies have uncovered genomic regions, specific stress-responsive genes, gene networks, and biochemical pathways associated with resilience to adverse conditions, such as heat, cold, drought, and salinity, and provide useful tools for the development of molecular markers to be used in breeding programs. CWRs constitute a highly valuable resource of genetic diversity, and by exploiting the full potential of this extended allele pool, new traits conferring abiotic-stress tolerance may be introgressed into cultivated varieties leading to superior and resilient genotypes. Future breeding programs may greatly benefit from CWRs utilization for overcoming crop production challenges arising from extreme environmental conditions.
Collapse
Affiliation(s)
- Aliki Kapazoglou
- Institute of Olive Tree, Subtropical Crops and Viticulture (IOSV), Department of Vitis, Hellenic Agricultural Organization-Dimitra (ELGO-Dimitra), Sofokli Venizelou 1, Lykovrysi, 14123 Athens, Greece
| | - Maria Gerakari
- Laboratory of Plant Breeding and Biometry, Department of Crop Science, Agricultural University of Athens, Iera Odos 75, 11855 Athens, Greece
| | - Efstathia Lazaridi
- Laboratory of Plant Breeding and Biometry, Department of Crop Science, Agricultural University of Athens, Iera Odos 75, 11855 Athens, Greece
| | - Konstantina Kleftogianni
- Laboratory of Plant Breeding and Biometry, Department of Crop Science, Agricultural University of Athens, Iera Odos 75, 11855 Athens, Greece
| | - Efi Sarri
- Laboratory of Plant Breeding and Biometry, Department of Crop Science, Agricultural University of Athens, Iera Odos 75, 11855 Athens, Greece
| | - Eleni Tani
- Laboratory of Plant Breeding and Biometry, Department of Crop Science, Agricultural University of Athens, Iera Odos 75, 11855 Athens, Greece
| | - Penelope J. Bebeli
- Laboratory of Plant Breeding and Biometry, Department of Crop Science, Agricultural University of Athens, Iera Odos 75, 11855 Athens, Greece
| |
Collapse
|
7
|
Kumari G, Shanmugavadivel PS, Lavanya GR, Tiwari P, Singh D, Gore PG, Tripathi K, Madhavan Nair R, Gupta S, Pratap A. Association mapping for important agronomic traits in wild and cultivated Vigna species using cross-species and cross-genera simple sequence repeat markers. Front Genet 2022; 13:1000440. [PMID: 36406138 PMCID: PMC9669911 DOI: 10.3389/fgene.2022.1000440] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Accepted: 10/06/2022] [Indexed: 10/10/2023] Open
Abstract
The genus Vigna is an agronomically important taxon, with many of its species inhabiting a wide range of environments and offering numerous useful genes for the improvement of the cultivated types. The present study aimed to detect the genomic regions associated with yield-attributing traits by genome-wide association mapping. A diverse panel of 98 wild and cultivated Vigna accessions (acc.) belonging to 13 different species was evaluated for yield and related traits during the kharif season of 2017 and 2018. The panel was also genotyped using 92 cross-genera and cross-species simple sequence repeat markers to study the population genetic structure and useful market-trait associations. The PCA and trait correlation established relationships amongst the traits during both seasons while 100-seed weight (HSW) had a positive correlation with pod length (PL), and days to first flowering (DFF) with days to maturity (DM). The population genetic structure analysis grouped different acc. into three genetically distinct sub-populations with SP-1 comprising 34 acc., SP-2 (24 acc.), and SP-3 (33 acc.) and one admixture group (7 acc.). Mixed linear model analysis revealed an association of 13 markers, namely, VR018, VR039, VR022, CEDG033, GMES0337, MBSSR008, CEDG220, VM27, CP1225, CP08695, CEDG100, CEDG008, and CEDG096A with nine traits. Seven of the aforementioned markers, namely, VR018 for plant height (PH) and terminal leaflet length (TLL), VR022 for HSW and pod length (PL), CEDG033 for DFF and DM, MBSSR008 for DFF and DM, CP1225 for CC at 30 days (CC30), DFF and DM, CEDG100 for PH and terminal leaflet length (TLL), and CEDG096A for CC30 and chlorophyll content at 45 days were associated with multiple traits. The marker CEDG100, associated with HSW, PH, and TLL, is co-localized in gene-encoding histone-lysine N-methyltransferase ATX5. Similarly, VR22, associated with PL and HSW, is co-located in gene-encoding SHOOT GRAVITROPISM 5 in mungbean. These associations may be highly useful for marker-assisted genetic improvement of mungbean and other related Vigna species.
Collapse
Affiliation(s)
- Gita Kumari
- ICAR-Indian Institute of Pulses Research, Kanpur, India
| | | | - G. Roopa Lavanya
- Sam Higginbottom University of Agricultural Technology and Sciences, Prayagraj, India
| | - Pravin Tiwari
- ICAR-Indian Institute of Pulses Research, Kanpur, India
| | | | - P. G. Gore
- ICAR-National Bureau of Plant Genetic Resources, New Delhi, India
| | - Kuldeep Tripathi
- ICAR-National Bureau of Plant Genetic Resources, New Delhi, India
| | | | - Sanjeev Gupta
- ICAR-Indian Institute of Pulses Research, Kanpur, India
| | - Aditya Pratap
- ICAR-Indian Institute of Pulses Research, Kanpur, India
| |
Collapse
|
8
|
Ali A, Altaf MT, Nadeem MA, Karaköy T, Shah AN, Azeem H, Baloch FS, Baran N, Hussain T, Duangpan S, Aasim M, Boo KH, Abdelsalam NR, Hasan ME, Chung YS. Recent advancement in OMICS approaches to enhance abiotic stress tolerance in legumes. FRONTIERS IN PLANT SCIENCE 2022; 13:952759. [PMID: 36247536 PMCID: PMC9554552 DOI: 10.3389/fpls.2022.952759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Accepted: 08/12/2022] [Indexed: 06/16/2023]
Abstract
The world is facing rapid climate change and a fast-growing global population. It is believed that the world population will be 9.7 billion in 2050. However, recent agriculture production is not enough to feed the current population of 7.9 billion people, which is causing a huge hunger problem. Therefore, feeding the 9.7 billion population in 2050 will be a huge target. Climate change is becoming a huge threat to global agricultural production, and it is expected to become the worst threat to it in the upcoming years. Keeping this in view, it is very important to breed climate-resilient plants. Legumes are considered an important pillar of the agriculture production system and a great source of high-quality protein, minerals, and vitamins. During the last two decades, advancements in OMICs technology revolutionized plant breeding and emerged as a crop-saving tool in wake of the climate change. Various OMICs approaches like Next-Generation sequencing (NGS), Transcriptomics, Proteomics, and Metabolomics have been used in legumes under abiotic stresses. The scientific community successfully utilized these platforms and investigated the Quantitative Trait Loci (QTL), linked markers through genome-wide association studies, and developed KASP markers that can be helpful for the marker-assisted breeding of legumes. Gene-editing techniques have been successfully proven for soybean, cowpea, chickpea, and model legumes such as Medicago truncatula and Lotus japonicus. A number of efforts have been made to perform gene editing in legumes. Moreover, the scientific community did a great job of identifying various genes involved in the metabolic pathways and utilizing the resulted information in the development of climate-resilient legume cultivars at a rapid pace. Keeping in view, this review highlights the contribution of OMICs approaches to abiotic stresses in legumes. We envisage that the presented information will be helpful for the scientific community to develop climate-resilient legume cultivars.
Collapse
Affiliation(s)
- Amjad Ali
- Faculty of Agricultural Sciences and Technologies, Sivas University of Science and Technology, Sivas, Turkey
| | - Muhammad Tanveer Altaf
- Faculty of Agricultural Sciences and Technologies, Sivas University of Science and Technology, Sivas, Turkey
| | - Muhammad Azhar Nadeem
- Faculty of Agricultural Sciences and Technologies, Sivas University of Science and Technology, Sivas, Turkey
| | - Tolga Karaköy
- Faculty of Agricultural Sciences and Technologies, Sivas University of Science and Technology, Sivas, Turkey
| | - Adnan Noor Shah
- Department of Agricultural Engineering, Khwaja Fareed University of Engineering and Information Technology, Rahim Yar Khan, Pakistan
| | - Hajra Azeem
- Department of Plant Pathology, Faculty of Agricultural Sciences & Technology, Bahauddin Zakariya University, Multan, Pakistan
| | - Faheem Shehzad Baloch
- Faculty of Agricultural Sciences and Technologies, Sivas University of Science and Technology, Sivas, Turkey
| | - Nurettin Baran
- Bitkisel Uretim ve Teknolojileri Bolumu, Uygulamali Bilimler Faku Itesi, Mus Alparslan Universitesi, Mus, Turkey
| | - Tajamul Hussain
- Laboratory of Plant Breeding and Climate Resilient Agriculture, Agricultural Innovation and Management Division, Faculty of Natural Resources, Prince of Songkla University, Hat Yai, Thailand
| | - Saowapa Duangpan
- Laboratory of Plant Breeding and Climate Resilient Agriculture, Agricultural Innovation and Management Division, Faculty of Natural Resources, Prince of Songkla University, Hat Yai, Thailand
| | - Muhammad Aasim
- Faculty of Agricultural Sciences and Technologies, Sivas University of Science and Technology, Sivas, Turkey
| | - Kyung-Hwan Boo
- Subtropical/Tropical Organism Gene Bank, Department of Biotechnology, College of Applied Life Science, Jeju National University, Jeju, South Korea
| | - Nader R. Abdelsalam
- Agricultural Botany Department, Faculty of Agriculture (Saba Basha), Alexandria University, Alexandria, Egypt
| | - Mohamed E. Hasan
- Bioinformatics Department, Genetic Engineering and Biotechnology Research Institute, University of Sadat City, Sadat City, Egypt
| | - Yong Suk Chung
- Department of Plant Resources and Environment, Jeju National University, Jeju, South Korea
| |
Collapse
|
9
|
Noda Y, Sugita R, Hirose A, Kawachi N, Tanoi K, Furukawa J, Naito K. Diversity of Na + allocation in salt-tolerant species of the genus Vigna. BREEDING SCIENCE 2022; 72:326-331. [PMID: 36699821 PMCID: PMC9868329 DOI: 10.1270/jsbbs.22012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Accepted: 07/11/2022] [Indexed: 05/14/2023]
Abstract
Wild species in the genus Vigna are a great resource of tolerance to various stresses including salinity. We have previously screened the genetic resources of the genus Vigna and identified several accessions that have independently evolved salt tolerance. However, many aspects of such tolerance have remained unknown. Thus, we used autoradiography with radioactive sodium (22Na+) and Inductively Coupled Plasma Mass Spectrometry (ICP-MS) to visualize and compare Na+ allocation in Vigna angularis (Willd.) Ohwi & H.Ohashi (azuki bean), Vigna nakashimae (Ohwi) Ohwi & H.Ohashi, Vigna riukiuensis (Ohwi) Ohwi & H.Ohashi, Vigna luteola (Jacq.) Benth. and Vigna marina (Burm.) Merr.. The results indicated: 1) Tolerant accessions suppress Na+ accumulation compared to azuki bean. 2) V. nakashimae and V. marina does so by accumulating higher amount of K+, whereas V. riukiuensis and V. luteola does so by other mechanisms. 3) V. luteola avoids salt-shedding by allocating excess Na+ to newly expanded leaves. As the mechanisms of the tolerant species were different, they could be piled up in a single crop via classical breeding or by genetic engineering or genome editing.
Collapse
Affiliation(s)
- Yusaku Noda
- Takasaki Advanced Radiation Research Institute, National Institutes for Quantum Science and Technology (QST), 1233 Watanuki-machi, Takasaki, Gunma 370-1292, Japan
- Research Center of Genetic Resources, National Agriculture and Food Research Organization, 2-1-2 Kannondai, Tsukuba, Ibaraki 305-8602, Japan
| | - Ryohei Sugita
- Radioisotope Research Center, Nagoya University, Furo-cho, Chikusa, Nagoya, Aichi 464-8602, Japan
| | - Atsushi Hirose
- Hoshi University, 2-4-41 Ebara, Shinagawa, Tokyo 142-8501, Japan
| | - Naoki Kawachi
- Takasaki Advanced Radiation Research Institute, National Institutes for Quantum Science and Technology (QST), 1233 Watanuki-machi, Takasaki, Gunma 370-1292, Japan
| | - Keitaro Tanoi
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo, Tokyo 113-8657, Japan
| | - Jun Furukawa
- Faculty of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8572, Japan
| | - Ken Naito
- Research Center of Genetic Resources, National Agriculture and Food Research Organization, 2-1-2 Kannondai, Tsukuba, Ibaraki 305-8602, Japan
- Corresponding author (e-mail: )
| |
Collapse
|
10
|
Panzeri D, Guidi Nissim W, Labra M, Grassi F. Revisiting the Domestication Process of African Vigna Species (Fabaceae): Background, Perspectives and Challenges. PLANTS (BASEL, SWITZERLAND) 2022; 11:plants11040532. [PMID: 35214865 PMCID: PMC8879845 DOI: 10.3390/plants11040532] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 02/12/2022] [Accepted: 02/13/2022] [Indexed: 05/14/2023]
Abstract
Legumes are one of the most economically important and biodiverse families in plants recognised as the basis to develop functional foods. Among these, the Vigna genus stands out as a good representative because of its relatively recent African origin as well as its outstanding potential. Africa is a great biodiversity centre in which a great number of species are spread, but only three of them, Vigna unguiculata, Vigna subterranea and Vigna vexillata, were successfully domesticated. This review aims at analysing and valorising these species by considering the perspective of human activity and what effects it exerts. For each species, we revised the origin history and gave a focus on where, when and how many times domestication occurred. We provided a brief summary of bioactive compounds naturally occurring in these species that are fundamental for human wellbeing. The great number of wild lineages is a key point to improve landraces since the domestication process caused a loss of gene diversity. Their genomes hide a precious gene pool yet mostly unexplored, and genes lost during human activity can be recovered from the wild lineages and reintroduced in cultivated forms through modern technologies. Finally, we describe how all this information is game-changing to the design of future crops by domesticating de novo.
Collapse
Affiliation(s)
- Davide Panzeri
- Department of Biotechnology and Bioscience, University of Milan-Bicocca, Piazza della Scienza 2, 20126 Milano, Italy; (W.G.N.); (M.L.)
- Correspondence: (D.P.); (F.G.)
| | - Werther Guidi Nissim
- Department of Biotechnology and Bioscience, University of Milan-Bicocca, Piazza della Scienza 2, 20126 Milano, Italy; (W.G.N.); (M.L.)
- Department of Agriculture, Food, Environment and Forestry (DAGRI), University of Florence, Viale delle Idee 30, 50019 Sesto Fiorentino, Italy
| | - Massimo Labra
- Department of Biotechnology and Bioscience, University of Milan-Bicocca, Piazza della Scienza 2, 20126 Milano, Italy; (W.G.N.); (M.L.)
| | - Fabrizio Grassi
- Department of Biotechnology and Bioscience, University of Milan-Bicocca, Piazza della Scienza 2, 20126 Milano, Italy; (W.G.N.); (M.L.)
- Correspondence: (D.P.); (F.G.)
| |
Collapse
|
11
|
Singh D, Chaudhary P, Taunk J, Singh CK, Singh D, Tomar RSS, Aski M, Konjengbam NS, Raje RS, Singh S, Sengar RS, Yadav RK, Pal M. Fab Advances in Fabaceae for Abiotic Stress Resilience: From 'Omics' to Artificial Intelligence. Int J Mol Sci 2021; 22:10535. [PMID: 34638885 PMCID: PMC8509049 DOI: 10.3390/ijms221910535] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 09/17/2021] [Accepted: 09/23/2021] [Indexed: 11/16/2022] Open
Abstract
Legumes are a better source of proteins and are richer in diverse micronutrients over the nutritional profile of widely consumed cereals. However, when exposed to a diverse range of abiotic stresses, their overall productivity and quality are hugely impacted. Our limited understanding of genetic determinants and novel variants associated with the abiotic stress response in food legume crops restricts its amelioration. Therefore, it is imperative to understand different molecular approaches in food legume crops that can be utilized in crop improvement programs to minimize the economic loss. 'Omics'-based molecular breeding provides better opportunities over conventional breeding for diversifying the natural germplasm together with improving yield and quality parameters. Due to molecular advancements, the technique is now equipped with novel 'omics' approaches such as ionomics, epigenomics, fluxomics, RNomics, glycomics, glycoproteomics, phosphoproteomics, lipidomics, regulomics, and secretomics. Pan-omics-which utilizes the molecular bases of the stress response to identify genes (genomics), mRNAs (transcriptomics), proteins (proteomics), and biomolecules (metabolomics) associated with stress regulation-has been widely used for abiotic stress amelioration in food legume crops. Integration of pan-omics with novel omics approaches will fast-track legume breeding programs. Moreover, artificial intelligence (AI)-based algorithms can be utilized for simulating crop yield under changing environments, which can help in predicting the genetic gain beforehand. Application of machine learning (ML) in quantitative trait loci (QTL) mining will further help in determining the genetic determinants of abiotic stress tolerance in pulses.
Collapse
Affiliation(s)
- Dharmendra Singh
- Division of Genetics, ICAR-Indian Agricultural Research Institute, New Delhi 110012, India
| | - Priya Chaudhary
- Division of Genetics, ICAR-Indian Agricultural Research Institute, New Delhi 110012, India
| | - Jyoti Taunk
- Division of Plant Physiology, ICAR-Indian Agricultural Research Institute, New Delhi 110012, India
| | - Chandan Kumar Singh
- Division of Genetics, ICAR-Indian Agricultural Research Institute, New Delhi 110012, India
| | - Deepti Singh
- Department of Botany, Meerut College, Meerut 250001, India
| | - Ram Sewak Singh Tomar
- College of Horticulture and Forestry, Rani Lakshmi Bai Central Agricultural University, Jhansi 284003, India
| | - Muraleedhar Aski
- Division of Genetics, ICAR-Indian Agricultural Research Institute, New Delhi 110012, India
| | - Noren Singh Konjengbam
- College of Post Graduate Studies in Agricultural Sciences, Central Agricultural University, Imphal 793103, India
| | - Ranjeet Sharan Raje
- Division of Genetics, ICAR-Indian Agricultural Research Institute, New Delhi 110012, India
| | - Sanjay Singh
- ICAR- National Institute of Plant Biotechnology, LBS Centre, Pusa Campus, New Delhi 110012, India
| | - Rakesh Singh Sengar
- College of Biotechnology, Sardar Vallabh Bhai Patel Agricultural University, Meerut 250001, India
| | - Rajendra Kumar Yadav
- Department of Genetics and Plant Breeding, Chandra Shekhar Azad University of Agriculture and Technology, Kanpur 208002, India
| | - Madan Pal
- Division of Plant Physiology, ICAR-Indian Agricultural Research Institute, New Delhi 110012, India
| |
Collapse
|
12
|
Mbinda W, Mukami A. A Review of Recent Advances and Future Directions in the Management of Salinity Stress in Finger Millet. FRONTIERS IN PLANT SCIENCE 2021; 12:734798. [PMID: 34603359 PMCID: PMC8481900 DOI: 10.3389/fpls.2021.734798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Accepted: 08/16/2021] [Indexed: 06/13/2023]
Abstract
Salinity stress is a major environmental impediment affecting the growth and production of crops. Finger millet is an important cereal grown in many arid and semi-arid areas of the world characterized by erratic rainfall and scarcity of good-quality water. Finger millet salinity stress is caused by the accumulation of soluble salts due to irrigation without a proper drainage system, coupled with the underlying rocks having a high salt content, which leads to the salinization of arable land. This problem is projected to be exacerbated by climate change. The use of new and efficient strategies that provide stable salinity tolerance across a wide range of environments can guarantee sustainable production of finger millet in the future. In this review, we analyze the strategies that have been used for salinity stress management in finger millet production and discuss potential future directions toward the development of salt-tolerant finger millet varieties. This review also describes how advanced biotechnological tools are being used to develop salt-tolerant plants. The biotechnological techniques discussed in this review are simple to implement, have design flexibility, low cost, and highly efficient. This information provides insights into enhancing finger millet salinity tolerance and improving production.
Collapse
Affiliation(s)
- Wilton Mbinda
- Department of Biochemistry and Biotechnology, Pwani University, Kilifi, Kenya
- Pwani University Biosciences Research Centre (PUBReC), Pwani University, Kilifi, Kenya
| | - Asunta Mukami
- Department of Life Sciences, South Eastern Kenya University, Kitui, Kenya
| |
Collapse
|
13
|
Liu G, Liu X, Liu W, Gao K, Chen X, Wang ET, Zhao Z, Du W, Li Y. Biodiversity and Geographic Distribution of Rhizobia Nodulating With Vigna minima. Front Microbiol 2021; 12:665839. [PMID: 34017318 PMCID: PMC8129581 DOI: 10.3389/fmicb.2021.665839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Accepted: 03/22/2021] [Indexed: 11/13/2022] Open
Abstract
Vigna minima is a climbing annual plant widely distributed in barren wilderness, grass land, and shrub bush of China and other countries such as Japan. However, the rhizobia nodulating with this plant has never been systematically studied. In order to reveal the biodiversity of nodulating rhizobia symbiosis with V. minima, a total of 874 rhizobium isolates were obtained from root nodules of the plant spread in 11 sampling sites of Shandong Peninsula, China, and they were designated as 41 haplotypes in the genus Bradyrhizobium based upon recA sequence analyses. By multilocus sequence analysis (MLSA) of five housekeeping genes (dnaK, glnII, gyrB, recA, and rpoB), the 41 strains representing different recA haplotypes were classified into nine defined species and nine novel genospecies. Bradyrhizobium elkanii, Bradyrhizobium ferriligni, and Bradyrhizobium pachyrhizi were the predominant and universally distributed groups. The phylogeny of symbiotic genes of nodC and nifH showed similar topology and phylogenetic relationships, in which all the representative strains were classified into two clades grouped with strains nodulating with Vigna spp., demonstrating that Vigna spp. shared common nodulating groups in the natural environment. All the representative strains formed nodules with V. minima in a nodulation test performed in green house conditions. The correlation between V. minima nodulating rhizobia and soil characteristics analyzed by CANOCO indicates that available nitrogen, total nitrogen, and organic carbon in the soil samples were the main factors affecting the distribution of rhizobia isolated in this study. This study systematically uncovered the biodiversity and distribution characteristics of V. minima nodulating rhizobia for the first time, which provided novel information for the formation of the corresponding rhizobium community.
Collapse
Affiliation(s)
- Guohua Liu
- College of Life Science, Yantai University, Yantai, China
| | - Xiaoling Liu
- College of Life Science, Yantai University, Yantai, China
| | - Wei Liu
- Key Laboratory of Coastal Biology and Bioresource Utilization, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, China
| | - Kangning Gao
- College of Resources and Environment, Shijiazhuang University, Shijiazhuang, China
| | - Xiaoli Chen
- The Fruit Trees Work Station of Penglai, Yantai, China
| | - En-Tao Wang
- Departamento de Microbiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Mexico City, Mexico
| | - Zhenjun Zhao
- College of Life Science, Yantai University, Yantai, China
| | - Wenxiao Du
- College of Life Science, Yantai University, Yantai, China
| | - Yan Li
- College of Life Science, Yantai University, Yantai, China.,Key Laboratory of Coastal Biology and Bioresource Utilization, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, China
| |
Collapse
|
14
|
Ogiso-Tanaka E, Chankaew S, Isemura T, Kongjaimun A, Baba A, Naito K, Kaga A, Tomooka N. Whole genome sequencing data of Vigna nakashimae var. Ukushima and G418. Data Brief 2020; 29:105131. [PMID: 32021887 PMCID: PMC6994819 DOI: 10.1016/j.dib.2020.105131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Revised: 12/17/2019] [Accepted: 01/07/2020] [Indexed: 11/22/2022] Open
Abstract
Vigna nakashimae is one of the closely related species of Vigna angularis (Adzuki bean). Two strain of ‘Ukushima’ and ‘G418’ were identified as salt tolerance strains in Vigna nakashimae from gene bank collection. F2 populations from an inter- or intra-specific cross between the sensitive and tolerant strains are useful for the detection of salt tolerance QTL in Vigna nakashimae. Although Vigna angularis reference genome is available and useful for genetic analysis by genotyping-by-sequencing/RADseq in closely related species, it is not enough for isolation of responsible genes. To reveal sequence variation in Vigna nakashimae “Ukushima” and “G418”, the whole genome sequencing was performed using Illumina HiSeq X Ten system (411,174,986 and 478,116,282 read). NGS data was deposited in the DNA Data Bank of Japan (DDBJ) under accession number DRA009307.
Collapse
Affiliation(s)
- Eri Ogiso-Tanaka
- Genetic Resources Center, National Institute of Agrobiological Sciences (NIAS), 2-1-2 Kannondai, Tsukuba, Ibaraki 305-8602, Japan
- Corresponding author.
| | - Sompong Chankaew
- Program in Plant Breeding, Faculty of Agriculture at Kamphaeng Saen, Kasetsart University, Kamphaeng Saen, Nakhon Pathom 73140, Thailand
| | - Takehisa Isemura
- Genetic Resources Center, National Institute of Agrobiological Sciences (NIAS), 2-1-2 Kannondai, Tsukuba, Ibaraki 305-8602, Japan
| | - Alisa Kongjaimun
- Research Fellow of the Japan Society for the Promotion of Science, Japan
| | - Akiko Baba
- Genetic Resources Center, National Institute of Agrobiological Sciences (NIAS), 2-1-2 Kannondai, Tsukuba, Ibaraki 305-8602, Japan
| | - Ken Naito
- Genetic Resources Center, National Institute of Agrobiological Sciences (NIAS), 2-1-2 Kannondai, Tsukuba, Ibaraki 305-8602, Japan
| | - Akito Kaga
- Genetic Resources Center, National Institute of Agrobiological Sciences (NIAS), 2-1-2 Kannondai, Tsukuba, Ibaraki 305-8602, Japan
| | - Norihiko Tomooka
- Genetic Resources Center, National Institute of Agrobiological Sciences (NIAS), 2-1-2 Kannondai, Tsukuba, Ibaraki 305-8602, Japan
| |
Collapse
|
15
|
Ogiso-Tanaka E, Shimizu T, Hajika M, Kaga A, Ishimoto M. Highly multiplexed AmpliSeq technology identifies novel variation of flowering time-related genes in soybean (Glycine max). DNA Res 2019; 26:243-260. [PMID: 31231761 PMCID: PMC6589554 DOI: 10.1093/dnares/dsz005] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Accepted: 03/11/2019] [Indexed: 02/02/2023] Open
Abstract
Whole-genome re-sequencing is a powerful approach to detect gene variants, but it is expensive to analyse only the target genes. To circumvent this problem, we attempted to detect novel variants of flowering time-related genes and their homologues in soybean mini-core collection by target re-sequencing using AmpliSeq technology. The average depth of 382 amplicons targeting 29 genes was 1,237 with 99.85% of the sequence data mapped to the reference genome. Totally, 461 variants were detected, of which 150 sites were novel and not registered in dbSNP. Known and novel variants were detected in the classical maturity loci-E1, E2, E3, and E4. Additionally, large indel alleles, E1-nl and E3-tr, were successfully identified. Novel loss-of-function and missense variants were found in FT2a, MADS-box, WDR61, phytochromes, and two-component response regulators. The multiple regression analysis showed that four genes-E2, E3, Dt1, and two-component response regulator-can explain 51.1-52.3% of the variation in flowering time of the mini-core collection. Among them, the two-component response regulator with a premature stop codon is a novel gene that has not been reported as a soybean flowering time-related gene. These data suggest that the AmpliSeq technology is a powerful tool to identify novel alleles.
Collapse
Affiliation(s)
- Eri Ogiso-Tanaka
- Institute of Crop Science (NICS), NARO (National Agriculture and Food Research Organization), 2-1-2 Kannondai, Tsukuba, Ibaraki, Japan
| | - Takehiko Shimizu
- Institute of Crop Science (NICS), NARO (National Agriculture and Food Research Organization), 2-1-2 Kannondai, Tsukuba, Ibaraki, Japan
| | - Makita Hajika
- Institute of Crop Science (NICS), NARO (National Agriculture and Food Research Organization), 2-1-2 Kannondai, Tsukuba, Ibaraki, Japan
| | - Akito Kaga
- Institute of Crop Science (NICS), NARO (National Agriculture and Food Research Organization), 2-1-2 Kannondai, Tsukuba, Ibaraki, Japan
| | - Masao Ishimoto
- Institute of Crop Science (NICS), NARO (National Agriculture and Food Research Organization), 2-1-2 Kannondai, Tsukuba, Ibaraki, Japan
| |
Collapse
|
16
|
Zhang H, Yasmin F, Song BH. Neglected treasures in the wild - legume wild relatives in food security and human health. CURRENT OPINION IN PLANT BIOLOGY 2019; 49:17-26. [PMID: 31085425 PMCID: PMC6817337 DOI: 10.1016/j.pbi.2019.04.004] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2018] [Revised: 04/04/2019] [Accepted: 04/09/2019] [Indexed: 05/08/2023]
Abstract
The legume family (Fabaceae) is the third-largest flowering family with over 18 000 species worldwide that are rich in proteins, oils, and nutrients. However, the production potential of legume-derived food cannot meet increasing global demand. Wild legumes represent a large group of wild species adaptive to diverse habitats and harbor rich genetic diversity for the improvement of the agronomic, nutritional, and medicinal values of the domesticated legumes. Accumulating evidence suggests that the genetic variation retained in these under-exploited leguminous wild relatives can be used to improve crop yield, nutrient contents, and resistance/tolerance to environmental stresses via the integration of omics, genetics, and genome-editing technologies.
Collapse
Affiliation(s)
- Hengyou Zhang
- Department of Biological Sciences, University of North Carolina at Charlotte, Charlotte, NC 28223, USA
| | - Farida Yasmin
- Department of Biological Sciences, University of North Carolina at Charlotte, Charlotte, NC 28223, USA
| | - Bao-Hua Song
- Department of Biological Sciences, University of North Carolina at Charlotte, Charlotte, NC 28223, USA.
| |
Collapse
|
17
|
Jha UC, Bohra A, Jha R, Parida SK. Salinity stress response and 'omics' approaches for improving salinity stress tolerance in major grain legumes. PLANT CELL REPORTS 2019; 38:255-277. [PMID: 30637478 DOI: 10.1007/s00299-019-02374-5] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Accepted: 01/04/2019] [Indexed: 05/21/2023]
Abstract
Sustaining yield gains of grain legume crops under growing salt-stressed conditions demands a thorough understanding of plant salinity response and more efficient breeding techniques that effectively integrate modern omics knowledge. Grain legume crops are important to global food security being an affordable source of dietary protein and essential mineral nutrients to human population, especially in the developing countries. The global productivity of grain legume crops is severely challenged by the salinity stress particularly in the face of changing climates coupled with injudicious use of irrigation water and improper agricultural land management. Plants adapt to sustain under salinity-challenged conditions through evoking complex molecular mechanisms. Elucidating the underlying complex mechanisms remains pivotal to our knowledge about plant salinity response. Improving salinity tolerance of plants demand enriching cultivated gene pool of grain legume crops through capitalizing on 'adaptive traits' that contribute to salinity stress tolerance. Here, we review the current progress in understanding the genetic makeup of salinity tolerance and highlight the role of germplasm resources and omics advances in improving salt tolerance of grain legumes. In parallel, scope of next generation phenotyping platforms that efficiently bridge the phenotyping-genotyping gap and latest research advances including epigenetics is also discussed in context to salt stress tolerance. Breeding salt-tolerant cultivars of grain legumes will require an integrated "omics-assisted" approach enabling accelerated improvement of salt-tolerance traits in crop breeding programs.
Collapse
Affiliation(s)
- Uday Chand Jha
- ICAR-Indian Institute of Pulses Research (IIPR), Kanpur, 208024, India.
| | - Abhishek Bohra
- ICAR-Indian Institute of Pulses Research (IIPR), Kanpur, 208024, India.
| | - Rintu Jha
- ICAR-Indian Institute of Pulses Research (IIPR), Kanpur, 208024, India
| | - Swarup Kumar Parida
- National Institute of Plant Genome Research (NIPGR), New Delhi, 110067, India
| |
Collapse
|
18
|
Nadeem M, Li J, Yahya M, Wang M, Ali A, Cheng A, Wang X, Ma C. Grain Legumes and Fear of Salt Stress: Focus on Mechanisms and Management Strategies. Int J Mol Sci 2019; 20:E799. [PMID: 30781763 PMCID: PMC6412900 DOI: 10.3390/ijms20040799] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2019] [Revised: 02/10/2019] [Accepted: 02/11/2019] [Indexed: 12/27/2022] Open
Abstract
Salinity is an ever-present major constraint and a major threat to legume crops, particularly in areas with irrigated agriculture. Legumes demonstrate high sensitivity, especially during vegetative and reproductive phases. This review gives an overview of legumes sensitivity to salt stress (SS) and mechanisms to cope with salinity stress under unfavorable conditions. It also focuses on the promising management approaches, i.e., agronomic practices, breeding approaches, and genome editing techniques to improve performance of legumes under SS. Now, the onus is on researchers to comprehend the plants physiological and molecular mechanisms, in addition to various responses as part of their stress tolerance strategy. Due to their ability to fix biological nitrogen, high protein contents, dietary fiber, and essential mineral contents, legumes have become a fascinating group of plants. There is an immense need to develop SS tolerant legume varieties to meet growing demand of protein worldwide. This review covering crucial areas ranging from effects, mechanisms, and management strategies, may elucidate further the ways to develop SS-tolerant varieties and to produce legume crops in unfavorable environments.
Collapse
Affiliation(s)
- Muhammad Nadeem
- School of Agronomy, Anhui Agricultural University, Hefei 230036, China.
| | - Jiajia Li
- School of Agronomy, Anhui Agricultural University, Hefei 230036, China.
| | - Muhammad Yahya
- School of Life Sciences, Anhui Agricultural University, Hefei 230036, China.
| | - Minghua Wang
- School of Agronomy, Anhui Agricultural University, Hefei 230036, China.
| | - Asif Ali
- School of Life Sciences, Anhui Agricultural University, Hefei 230036, China.
| | - Andong Cheng
- School of Agronomy, Anhui Agricultural University, Hefei 230036, China.
| | - Xiaobo Wang
- School of Agronomy, Anhui Agricultural University, Hefei 230036, China.
| | - Chuanxi Ma
- School of Agronomy, Anhui Agricultural University, Hefei 230036, China.
| |
Collapse
|
19
|
Jasrotia RS, Yadav PK, Iquebal MA, Bhatt SB, Arora V, Angadi UB, Tomar RS, Jaiswal S, Rai A, Kumar D. VigSatDB: genome-wide microsatellite DNA marker database of three species of Vigna for germplasm characterization and improvement. DATABASE-THE JOURNAL OF BIOLOGICAL DATABASES AND CURATION 2019; 2019:5506750. [PMID: 31147679 PMCID: PMC6542692 DOI: 10.1093/database/baz055] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Revised: 03/20/2019] [Accepted: 04/05/2019] [Indexed: 11/25/2022]
Abstract
Genus Vigna represented by more than 100 species is a source of nutritious edible seeds and sprouts that are rich sources of protein and dietary supplements. It is further valuable because of therapeutic attributes due to its antioxidant and anti-diabetic properties. A highly diverse and an extremely ecological niche of different species can be valuable genomic resources for productivity enhancement. It is one of the most underutilized crops for food security and animal feeds. In spite of huge species diversity, only three species of Vigna have been sequenced; thus, there is a need for molecular markers for the remaining species. Computational approach of microsatellite marker discovery along with evaluation of polymorphism utilizing available genomic data of different genotypes can be a quick and an economical approach for genomic resource development. Cross-species transferability by e-PCR over available genomes can further prioritize the potential SSR markers, which could be used for genetic diversity and population differentiation of the remaining species saving cost and time. We present VigSatDB—the world’s first comprehensive microsatellite database of genus Vigna, containing >875 K putative microsatellite markers with 772 354 simple and 103 865 compound markers mined from six genome assemblies of three Vigna species, namely, Vigna radiata (Mung bean), Vigna angularis (Adzuki bean) and Vigna unguiculata (Cowpea). It also contains 1976 validated published markers. Markers can be selected on the basis of chromosomes/location specificity, and primers can be generated using Primer3core tool integrated at backend. Efficacy of VigSatDB for microsatellite loci genotyping has been evaluated by 15 markers over a panel of 10 diverse genotype of V. radiata. Our web genomic resources can be used in diversity analysis, population and varietal differentiation, discovery of quantitative trait loci/genes, marker-assisted varietal improvement in endeavor of Vigna crop productivity and management.
Collapse
Affiliation(s)
- Rahul Singh Jasrotia
- Sam Higginbottom University of Agriculture, Technology and Sciences, Allahabad, Uttar Pradesh, India.,Centre for Agricultural Bioinformatics, Indian Council of Agricultural Research (ICAR)-Indian Agricultural Statistics Research Institute, New Delhi , India
| | - Pramod Kumar Yadav
- Sam Higginbottom University of Agriculture, Technology and Sciences, Allahabad, Uttar Pradesh, India
| | - Mir Asif Iquebal
- Centre for Agricultural Bioinformatics, Indian Council of Agricultural Research (ICAR)-Indian Agricultural Statistics Research Institute, New Delhi , India
| | - S B Bhatt
- Department of Biochemistry and Biotechnology, Junagadh Agricultural University, Junagadh, Gujarat, India
| | - Vasu Arora
- Centre for Agricultural Bioinformatics, Indian Council of Agricultural Research (ICAR)-Indian Agricultural Statistics Research Institute, New Delhi , India
| | - U B Angadi
- Centre for Agricultural Bioinformatics, Indian Council of Agricultural Research (ICAR)-Indian Agricultural Statistics Research Institute, New Delhi , India
| | - Rukam Singh Tomar
- Department of Biochemistry and Biotechnology, Junagadh Agricultural University, Junagadh, Gujarat, India
| | - Sarika Jaiswal
- Centre for Agricultural Bioinformatics, Indian Council of Agricultural Research (ICAR)-Indian Agricultural Statistics Research Institute, New Delhi , India
| | - Anil Rai
- Centre for Agricultural Bioinformatics, Indian Council of Agricultural Research (ICAR)-Indian Agricultural Statistics Research Institute, New Delhi , India
| | - Dinesh Kumar
- Centre for Agricultural Bioinformatics, Indian Council of Agricultural Research (ICAR)-Indian Agricultural Statistics Research Institute, New Delhi , India
| |
Collapse
|
20
|
Iseki K, Takahashi Y, Muto C, Naito K, Tomooka N. Diversity and Evolution of Salt Tolerance in the Genus Vigna. PLoS One 2016; 11:e0164711. [PMID: 27736995 PMCID: PMC5063378 DOI: 10.1371/journal.pone.0164711] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2016] [Accepted: 09/27/2016] [Indexed: 11/19/2022] Open
Abstract
Breeding salt tolerant plants is difficult without utilizing a diversity of wild crop relatives. Since the genus Vigna (family Fabaceae) is comprised of many wild relatives adapted to various environmental conditions, we evaluated the salt tolerance of 69 accessions of this genus, including that of wild and domesticated accessions originating from Asia, Africa, Oceania, and South America. We grew plants under 50 mM and 200 mM NaCl for two weeks and then measured the biomass, relative quantum yield of photosystem II, leaf Na+ concentrations, and leaf K+ concentrations. The accessions were clustered into four groups: the most tolerant, tolerant, moderately susceptible, and susceptible. From the most tolerant group, we selected six accessions, all of which were wild accessions adapted to coastal environments, as promising sources of salt tolerance because of their consistently high relative shoot biomass and relative quantum yield. Interestingly, variations in leaf Na+ concentration were observed between the accessions in the most tolerant group, suggesting different mechanisms were responsible for their salt tolerance. Phylogenetic analysis with nuclear DNA sequences revealed that salt tolerance had evolved independently at least four times in the genus Vigna, within a relatively short period. The findings suggested that simple genetic changes in a few genes might have greatly affected salt tolerances. The elucidation of genetic mechanisms of salt tolerances in the selected accessions may contribute to improving the poor salt tolerance in legume crops.
Collapse
Affiliation(s)
- Kohtaro Iseki
- Biological Resources and Post-harvest Division, Japan International Research Center for Agricultural Sciences, Tsukuba, Ibaraki, Japan
| | - Yu Takahashi
- Genetic Resources Center, National Agriculture and Food Science Organization, Tsukuba, Ibaraki, Japan
| | - Chiaki Muto
- Genetic Resources Center, National Agriculture and Food Science Organization, Tsukuba, Ibaraki, Japan
| | - Ken Naito
- Genetic Resources Center, National Agriculture and Food Science Organization, Tsukuba, Ibaraki, Japan
| | - Norihiko Tomooka
- Genetic Resources Center, National Agriculture and Food Science Organization, Tsukuba, Ibaraki, Japan
| |
Collapse
|
21
|
Rigó G, Valkai I, Faragó D, Kiss E, Van Houdt S, Van de Steene N, Hannah MA, Szabados L. Gene mining in halophytes: functional identification of stress tolerance genes in Lepidium crassifolium. PLANT, CELL & ENVIRONMENT 2016; 39:2074-84. [PMID: 27343166 DOI: 10.1111/pce.12768] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2015] [Accepted: 05/08/2016] [Indexed: 05/27/2023]
Abstract
Extremophile plants are valuable sources of genes conferring tolerance traits, which can be explored to improve stress tolerance of crops. Lepidium crassifolium is a halophytic relative of the model plant Arabidopsis thaliana, and displays tolerance to salt, osmotic and oxidative stresses. We have employed the modified Conditional cDNA Overexpression System to transfer a cDNA library from L. crassifolium to the glycophyte A. thaliana. By screening for salt, osmotic and oxidative stress tolerance through in vitro growth assays and non-destructive chlorophyll fluorescence imaging, 20 Arabidopsis lines were identified with superior performance under restrictive conditions. Several cDNA inserts were cloned and confirmed to be responsible for the enhanced tolerance by analysing independent transgenic lines. Examples include full-length cDNAs encoding proteins with high homologies to GDSL-lipase/esterase or acyl CoA-binding protein or proteins without known function, which could confer tolerance to one or several stress conditions. Our results confirm that random gene transfer from stress tolerant to sensitive plant species is a valuable tool to discover novel genes with potential for biotechnological applications.
Collapse
Affiliation(s)
- Gábor Rigó
- Biological Research Centre, Institute of Plant Biology, 6726, Szeged, Hungary
| | - Ildikó Valkai
- Biological Research Centre, Institute of Plant Biology, 6726, Szeged, Hungary
| | - Dóra Faragó
- Biological Research Centre, Institute of Plant Biology, 6726, Szeged, Hungary
| | - Edina Kiss
- Biological Research Centre, Institute of Plant Biology, 6726, Szeged, Hungary
| | | | | | | | - László Szabados
- Biological Research Centre, Institute of Plant Biology, 6726, Szeged, Hungary
| |
Collapse
|
22
|
HanumanthaRao B, Nair RM, Nayyar H. Salinity and High Temperature Tolerance in Mungbean [Vigna radiata (L.) Wilczek] from a Physiological Perspective. FRONTIERS IN PLANT SCIENCE 2016; 7:957. [PMID: 27446183 PMCID: PMC4925713 DOI: 10.3389/fpls.2016.00957] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2016] [Accepted: 06/15/2016] [Indexed: 05/03/2023]
Abstract
Biotic and abiotic constraints seriously affect the productivity of agriculture worldwide. The broadly recognized benefits of legumes in cropping systems-biological nitrogen fixation, improving soil fertility and broadening cereal-based agro-ecologies, are desirable now more than ever. Legume production is affected by hostile environments, especially soil salinity and high temperatures (HTs). Among legumes, mungbean has acceptable intrinsic tolerance mechanisms, but many agro-physiological characteristics of the Vigna species remain to be explored. Mungbean has a distinct advantage of being short-duration and can grow in wide range of soils and environments (as mono or relay legume). This review focuses on salinity and HT stresses on mungbean grown as a fallow crop (mungbean-rice-wheat to replace fallow-rice-wheat) and/or a relay crop in cereal cropping systems. Salinity tolerance comprises multifaceted responses at the molecular, physiological and plant canopy levels. In HTs, adaptation of physiological and biochemical processes gradually may lead to improvement of heat tolerance in plants. At the field level, managing or manipulating cultural practices can mitigate adverse effects of salinity and HT. Greater understanding of physiological and biochemical mechanisms regulating these two stresses will contribute to an evolving profile of the genes, proteins, and metabolites responsible for mungbean survival. We focus on abiotic stresses in legumes in general and mungbean in particular, and highlight gaps that need to be bridged through future mungbean research. Recent findings largely from physiological and biochemical fronts are examined, along with a few agronomic and farm-based management strategies to mitigate stress under field conditions.
Collapse
Affiliation(s)
| | - Ramakrishnan M. Nair
- Vegetable Breeding – Legumes, World Vegetable Center, South AsiaHyderabad, India
| | - Harsh Nayyar
- Department of Botany, Panjab UniversityChandigarh, India
| |
Collapse
|
23
|
Takahashi Y, Somta P, Muto C, Iseki K, Naito K, Pandiyan M, Natesan S, Tomooka N. Novel Genetic Resources in the Genus Vigna Unveiled from Gene Bank Accessions. PLoS One 2016; 11:e0147568. [PMID: 26800459 PMCID: PMC4723357 DOI: 10.1371/journal.pone.0147568] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2015] [Accepted: 01/05/2016] [Indexed: 11/30/2022] Open
Abstract
The genus Vigna (Fabaceae) consists of five subgenera, and includes more than 100 wild species. In Vigna, 10 crops have been domesticated from three subgenera, Vigna, Plectrotropis, and Ceratotropis. The habitats of wild Vigna species are so diverse that their genomes could harbor various genes responsible for environmental stress adaptation, which could lead to innovations in agriculture. Since some of the gene bank Vigna accessions were unidentified and they seemed to be novel genetic resources, these accessions were identified based on morphological traits. The phylogenetic positions were estimated based on the DNA sequences of nuclear rDNA-ITS and chloroplast atpB-rbcL spacer regions. Based on the results, the potential usefulness of the recently described species V. indica and V. sahyadriana, and some wild Vigna species, i.e., V. aconitifolia, V. dalzelliana, V. khandalensis, V. marina var. oblonga, and V. vexillata, was discussed.
Collapse
Affiliation(s)
- Yu Takahashi
- Genetic Resources Center, National Institute of Agrobiological Sciences, Tsukuba, Ibaraki, Japan
| | - Prakit Somta
- Department of Agronomy, Faculty of Agriculture at Kamphaeng Saen, Kasetsart University, Kamphaeng Saen, Nakhon Pathom, Thailand
| | - Chiaki Muto
- Genetic Resources Center, National Institute of Agrobiological Sciences, Tsukuba, Ibaraki, Japan
| | - Kohtaro Iseki
- Genetic Resources Center, National Institute of Agrobiological Sciences, Tsukuba, Ibaraki, Japan
| | - Ken Naito
- Genetic Resources Center, National Institute of Agrobiological Sciences, Tsukuba, Ibaraki, Japan
| | | | | | - Norihiko Tomooka
- Genetic Resources Center, National Institute of Agrobiological Sciences, Tsukuba, Ibaraki, Japan
- * E-mail:
| |
Collapse
|
24
|
Sakai H, Naito K, Takahashi Y, Sato T, Yamamoto T, Muto I, Itoh T, Tomooka N. The Vigna Genome Server, 'VigGS': A Genomic Knowledge Base of the Genus Vigna Based on High-Quality, Annotated Genome Sequence of the Azuki Bean, Vigna angularis (Willd.) Ohwi & Ohashi. PLANT & CELL PHYSIOLOGY 2016; 57:e2. [PMID: 26644460 DOI: 10.1093/pcp/pcv189] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2015] [Accepted: 11/20/2015] [Indexed: 05/19/2023]
Abstract
The genus Vigna includes legume crops such as cowpea, mungbean and azuki bean, as well as >100 wild species. A number of the wild species are highly tolerant to severe environmental conditions including high-salinity, acid or alkaline soil; drought; flooding; and pests and diseases. These features of the genus Vigna make it a good target for investigation of genetic diversity in adaptation to stressful environments; however, a lack of genomic information has hindered such research in this genus. Here, we present a genome database of the genus Vigna, Vigna Genome Server ('VigGS', http://viggs.dna.affrc.go.jp), based on the recently sequenced azuki bean genome, which incorporates annotated exon-intron structures, along with evidence for transcripts and proteins, visualized in GBrowse. VigGS also facilitates user construction of multiple alignments between azuki bean genes and those of six related dicot species. In addition, the database displays sequence polymorphisms between azuki bean and its wild relatives and enables users to design primer sequences targeting any variant site. VigGS offers a simple keyword search in addition to sequence similarity searches using BLAST and BLAT. To incorporate up to date genomic information, VigGS automatically receives newly deposited mRNA sequences of pre-set species from the public database once a week. Users can refer to not only gene structures mapped on the azuki bean genome on GBrowse but also relevant literature of the genes. VigGS will contribute to genomic research into plant biotic and abiotic stresses and to the future development of new stress-tolerant crops.
Collapse
Affiliation(s)
- Hiroaki Sakai
- Agrogenomics Research Center, National Institute of Agrobiological Sciences, 2-1-2 Kannondai, Tsukuba, Ibaraki, 305-8602 Japan
| | - Ken Naito
- Genetic Resources Center, National Institute of Agrobiological Sciences, 2-1-2 Kannondai, Tsukuba, Ibaraki, 305-8602 Japan
| | - Yu Takahashi
- Genetic Resources Center, National Institute of Agrobiological Sciences, 2-1-2 Kannondai, Tsukuba, Ibaraki, 305-8602 Japan
| | - Toshiyuki Sato
- Mizuho Information & Research Institute, Inc., 2-3 Kanda-Nishikicho, Chiyoda-ku, Tokyo, 101-8443 Japan
| | - Toshiya Yamamoto
- BITS Co., Ltd., 5-201 Kandamatsunaga-cho, Chiyoda-ku, Tokyo, 101-0023 Japan
| | - Isamu Muto
- BITS Co., Ltd., 5-201 Kandamatsunaga-cho, Chiyoda-ku, Tokyo, 101-0023 Japan
| | - Takeshi Itoh
- Agrogenomics Research Center, National Institute of Agrobiological Sciences, 2-1-2 Kannondai, Tsukuba, Ibaraki, 305-8602 Japan
| | - Norihiko Tomooka
- Genetic Resources Center, National Institute of Agrobiological Sciences, 2-1-2 Kannondai, Tsukuba, Ibaraki, 305-8602 Japan
| |
Collapse
|
25
|
Takahashi Y, Iseki K, Kitazawa K, Muto C, Somta P, Irie K, Naito K, Tomooka N. A Homoploid Hybrid Between Wild Vigna Species Found in a Limestone Karst. FRONTIERS IN PLANT SCIENCE 2015; 6:1050. [PMID: 26648953 PMCID: PMC4664699 DOI: 10.3389/fpls.2015.01050] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/16/2015] [Accepted: 11/09/2015] [Indexed: 06/05/2023]
Abstract
Genus Vigna comprise several domesticated species including cowpea and mungbean, and diverse wild species. We found an introgressive hybrid population derived from two wild species, Vigna umbellata and Vigna exilis, in Ratchaburi district, Thailand. The hybrid was morphologically similar to V. umbellata but habituated in a limestone rock mountain, which is usually dominated by V. exilis. Analyzing simple sequence repeat loci indicated the hybrid has undergone at least one round of backcross by V. umbellata. We found the hybrid acquired vigorous growth from V. umbellata and drought tolerance plus early flowering from V. exilis, and thus has taken over some habitats of V. exilis in limestone karsts. Given the wide crossability of V. umbellata, the hybrid can be a valuable genetic resource to improve drought tolerance of some domesticated species.
Collapse
Affiliation(s)
- Yu Takahashi
- Genetic Resources Center, National Institute of Agrobiological SciencesTsukuba, Japan
| | - Kohtaro Iseki
- Genetic Resources Center, National Institute of Agrobiological SciencesTsukuba, Japan
| | - Kumiko Kitazawa
- Department of International Agricultural Development, Tokyo University of AgricultureTokyo, Japan
| | - Chiaki Muto
- Genetic Resources Center, National Institute of Agrobiological SciencesTsukuba, Japan
| | - Prakit Somta
- Department of Agronomy, Faculty of Agriculture at Kamphaeng Saen, Kasetsart UniversityNakhon Pathom, Thailand
| | - Kenji Irie
- Department of International Agricultural Development, Tokyo University of AgricultureTokyo, Japan
| | - Ken Naito
- Genetic Resources Center, National Institute of Agrobiological SciencesTsukuba, Japan
| | - Norihiko Tomooka
- Genetic Resources Center, National Institute of Agrobiological SciencesTsukuba, Japan
| |
Collapse
|
26
|
Construction of an SSR and RAD-Marker Based Molecular Linkage Map of Vigna vexillata (L.) A. Rich. PLoS One 2015; 10:e0138942. [PMID: 26398819 PMCID: PMC4580594 DOI: 10.1371/journal.pone.0138942] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2015] [Accepted: 09/04/2015] [Indexed: 11/19/2022] Open
Abstract
Vigna vexillata (L.) A. Rich. (tuber cowpea) is an underutilized crop for consuming its tuber and mature seeds. Wild form of V. vexillata is a pan-tropical perennial herbaceous plant which has been used by local people as a food. Wild V. vexillata has also been considered as useful gene(s) source for V. unguiculata (cowpea), since it was reported to have various resistance gene(s) for insects and diseases of cowpea. To exploit the potential of V. vexillata, an SSR-based linkage map of V. vexillata was developed. A total of 874 SSR markers successfully amplified single DNA fragment in V. vexillata among 1,336 SSR markers developed from Vigna angularis (azuki bean), V. unguiculata and Phaseolus vulgaris (common bean). An F2 population of 300 plants derived from a cross between salt resistant (V1) and susceptible (V5) accessions was used for mapping. A genetic linkage map was constructed using 82 polymorphic SSR markers loci, which could be assigned to 11 linkage groups spanning 511.5 cM in length with a mean distance of 7.2 cM between adjacent markers. To develop higher density molecular linkage map and to confirm SSR markers position in a linkage map, RAD markers were developed and a combined SSR and RAD markers linkage map of V. vexillata was constructed. A total of 559 (84 SSR and 475 RAD) markers loci could be assigned to 11 linkage groups spanning 973.9 cM in length with a mean distance of 1.8 cM between adjacent markers. Linkage and genetic position of all SSR markers in an SSR linkage map were confirmed. When an SSR genetic linkage map of V. vexillata was compared with those of V. radiata and V. unguiculata, it was suggested that the structure of V. vexillata chromosome was considerably differentiated. This map is the first SSR and RAD marker-based V. vexillata linkage map which can be used for the mapping of useful traits.
Collapse
|