1
|
Gahlot PS, Choudhury S, Bajiya N, Kumar N, Raghava GPS. Prediction of Plant Resistance Proteins Using Alignment-Based and Alignment-Free Approaches. Proteomics 2025; 25:e202400261. [PMID: 39580673 DOI: 10.1002/pmic.202400261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 10/21/2024] [Accepted: 11/11/2024] [Indexed: 11/26/2024]
Abstract
Plant disease resistance (PDR) proteins are critical in identifying plant pathogens. Predicting PDR protein is essential for understanding plant-pathogen interactions and developing strategies for crop protection. This study proposes a hybrid model for predicting and designing PDR proteins against plant-invading pathogens. Initially, we tried alignment-based approaches, such as Basic Local Alignment Search Tool (BLAST) for similarity search and MERCI for motif search. These alignment-based approaches exhibit very poor coverage or sensitivity. To overcome these limitations, we developed alignment-free or machine learning (ML)-based methods using compositional features of proteins. Our ML-based model, developed using compositional features of proteins, achieved a maximum performance area under the receiver operating characteristic curve (AUROC) of 0.91. The performance of our model improved significantly from AUROC of 0.91-0.95 when we used evolutionary information instead of protein sequence. Finally, we developed a hybrid or ensemble model that combined our best ML model with BLAST and obtained the highest AUROC of 0.98 on the validation dataset. We trained and tested our models on a training dataset and evaluated them on a validation dataset. None of the proteins in our validation dataset are more than 40% similar to proteins in the training dataset. One of the objectives of this study is to facilitate the scientific community working in plant biology. Thus, we developed an online platform for predicting and designing plant resistance proteins, "PlantDRPpred" (https://webs.iiitd.edu.in/raghava/plantdrppred).
Collapse
Affiliation(s)
- Pushpendra Singh Gahlot
- Department of Computational Biology, Indraprastha Institute of Information Technology, New Delhi, India
| | - Shubham Choudhury
- Department of Computational Biology, Indraprastha Institute of Information Technology, New Delhi, India
| | - Nisha Bajiya
- Department of Computational Biology, Indraprastha Institute of Information Technology, New Delhi, India
| | - Nishant Kumar
- Department of Computational Biology, Indraprastha Institute of Information Technology, New Delhi, India
| | - Gajendra P S Raghava
- Department of Computational Biology, Indraprastha Institute of Information Technology, New Delhi, India
| |
Collapse
|
2
|
Li H, Li K, Li H, Yang C, Perera G, Wang G, Lyu S, Hua L, Rehman SU, Zhang Y, Ayliffe M, Yu H, Chen S. Mapping and Candidate Gene Analysis of an All-Stage Stem Rust Resistance Gene in Durum Wheat Landrace PI 94701. PLANTS (BASEL, SWITZERLAND) 2024; 13:2197. [PMID: 39204633 PMCID: PMC11359134 DOI: 10.3390/plants13162197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 07/15/2024] [Accepted: 08/07/2024] [Indexed: 09/04/2024]
Abstract
Puccinia graminis f. sp. tritici (Pgt), the causal agent of wheat stem rust, poses a significant threat to global wheat production. Genetic resistance offers a cost-effective and sustainable solution. The durum wheat landrace PI 94701 was previously hypothesized to carry two stem rust resistance (Sr) genes, but their chromosomal locations were unknown. In this study, we mapped and characterized an all-stage Sr gene in PI 94701, temporarily designated as SrPI94701. In seedling tests, SrPI94701 was effective against all six Pgt races tested. Using a large segregating population, we mapped SrPI94701 on chromosome arm 5BL within a 0.17-cM region flanked by markers pku69124 and pku69228, corresponding to 1.04 and 2.15 Mb genomic regions in the Svevo and Chinese Spring reference genomes. Within the candidate region, eight genes exhibited differential expression between the Pgt-inoculated resistant and susceptible plants. Among them, two nucleotide-binding leucine-rich repeat (NLR) genes, TraesCS5B03G1334700 and TraesCS5B03G1335100, showed high polymorphism between the parental lines and were upregulated in Pgt-inoculated resistant plants. However, the flanking and completely linked markers developed in this study could not accurately predict the presence of SrPI94701 in a survey of 104 wheat accessions. SrPI94701 is a promising resource for enhancing stem rust resistance in wheat breeding programs.
Collapse
Affiliation(s)
- Hongyu Li
- National Key Laboratory of Wheat Improvement, School of Advanced Agricultural Sciences, Peking University, Beijing 100871, China;
- National Key Laboratory of Wheat Improvement, Peking University Institute of Advanced Agricultural Sciences, Shandong Laboratory of Advanced Agriculture Sciences in Weifang, Weifang 261325, China; (K.L.); (H.L.)
| | - Kairong Li
- National Key Laboratory of Wheat Improvement, Peking University Institute of Advanced Agricultural Sciences, Shandong Laboratory of Advanced Agriculture Sciences in Weifang, Weifang 261325, China; (K.L.); (H.L.)
- College of Agronomy, Shandong Agricultural University, Taian 271018, China
| | - Hongna Li
- National Key Laboratory of Wheat Improvement, Peking University Institute of Advanced Agricultural Sciences, Shandong Laboratory of Advanced Agriculture Sciences in Weifang, Weifang 261325, China; (K.L.); (H.L.)
| | - Chen Yang
- National Key Laboratory of Wheat Improvement, Peking University Institute of Advanced Agricultural Sciences, Shandong Laboratory of Advanced Agriculture Sciences in Weifang, Weifang 261325, China; (K.L.); (H.L.)
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu 611130, China
| | - Geetha Perera
- CSIRO Agriculture and Food, GPO Box 1700, Clunies Ross Street, Canberra, ACT 2601, Australia
| | - Guiping Wang
- National Key Laboratory of Wheat Improvement, Peking University Institute of Advanced Agricultural Sciences, Shandong Laboratory of Advanced Agriculture Sciences in Weifang, Weifang 261325, China; (K.L.); (H.L.)
| | - Shikai Lyu
- National Key Laboratory of Wheat Improvement, Peking University Institute of Advanced Agricultural Sciences, Shandong Laboratory of Advanced Agriculture Sciences in Weifang, Weifang 261325, China; (K.L.); (H.L.)
| | - Lei Hua
- National Key Laboratory of Wheat Improvement, Peking University Institute of Advanced Agricultural Sciences, Shandong Laboratory of Advanced Agriculture Sciences in Weifang, Weifang 261325, China; (K.L.); (H.L.)
| | - Shams ur Rehman
- National Key Laboratory of Wheat Improvement, Peking University Institute of Advanced Agricultural Sciences, Shandong Laboratory of Advanced Agriculture Sciences in Weifang, Weifang 261325, China; (K.L.); (H.L.)
| | - Yazhou Zhang
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu 611130, China
| | - Michael Ayliffe
- CSIRO Agriculture and Food, GPO Box 1700, Clunies Ross Street, Canberra, ACT 2601, Australia
| | - Haitao Yu
- Wheat Research Institute, Weifang Academy of Agricultural Sciences, Weifang 261071, China
| | - Shisheng Chen
- National Key Laboratory of Wheat Improvement, Peking University Institute of Advanced Agricultural Sciences, Shandong Laboratory of Advanced Agriculture Sciences in Weifang, Weifang 261325, China; (K.L.); (H.L.)
| |
Collapse
|
3
|
Khan H, Krishnappa G, Kumar S, Devate NB, Rathan ND, Kumar S, Mishra CN, Ram S, Tiwari R, Parkash O, Ahlawat OP, Mamrutha HM, Singh GP, Singh G. Genome-wide association study identifies novel loci and candidate genes for rust resistance in wheat (Triticum aestivum L.). BMC PLANT BIOLOGY 2024; 24:411. [PMID: 38760694 PMCID: PMC11100168 DOI: 10.1186/s12870-024-05124-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Accepted: 05/09/2024] [Indexed: 05/19/2024]
Abstract
BACKGROUND Wheat rusts are important biotic stresses, development of rust resistant cultivars through molecular approaches is both economical and sustainable. Extensive phenotyping of large mapping populations under diverse production conditions and high-density genotyping would be the ideal strategy to identify major genomic regions for rust resistance in wheat. The genome-wide association study (GWAS) population of 280 genotypes was genotyped using a 35 K Axiom single nucleotide polymorphism (SNP) array and phenotyped at eight, 10, and, 10 environments, respectively for stem/black rust (SR), stripe/yellow rust (YR), and leaf/brown rust (LR). RESULTS Forty-one Bonferroni corrected marker-trait associations (MTAs) were identified, including 17 for SR and 24 for YR. Ten stable MTAs and their best combinations were also identified. For YR, AX-94990952 on 1A + AX-95203560 on 4A + AX-94723806 on 3D + AX-95172478 on 1A showed the best combination with an average co-efficient of infection (ACI) score of 1.36. Similarly, for SR, AX-94883961 on 7B + AX-94843704 on 1B and AX-94883961 on 7B + AX-94580041 on 3D + AX-94843704 on 1B showed the best combination with an ACI score of around 9.0. The genotype PBW827 have the best MTA combinations for both YR and SR resistance. In silico study identifies key prospective candidate genes that are located within MTA regions. Further, the expression analysis revealed that 18 transcripts were upregulated to the tune of more than 1.5 folds including 19.36 folds (TraesCS3D02G519600) and 7.23 folds (TraesCS2D02G038900) under stress conditions compared to the control conditions. Furthermore, highly expressed genes in silico under stress conditions were analyzed to find out the potential links to the rust phenotype, and all four genes were found to be associated with the rust phenotype. CONCLUSION The identified novel MTAs, particularly stable and highly expressed MTAs are valuable for further validation and subsequent application in wheat rust resistance breeding. The genotypes with favorable MTA combinations can be used as prospective donors to develop elite cultivars with YR and SR resistance.
Collapse
Affiliation(s)
- Hanif Khan
- ICAR-Indian Institute of Wheat and Barley Research, Karnal, 132001, India
| | - Gopalareddy Krishnappa
- ICAR-Indian Institute of Wheat and Barley Research, Karnal, 132001, India.
- ICAR-Sugarcane Breeding Institute, Coimbatore, 641007, India.
| | - Sudheer Kumar
- ICAR-Indian Institute of Wheat and Barley Research, Karnal, 132001, India
| | - Narayana Bhat Devate
- International Centre for Agriculture Research in the Dry Area - Food Legume Research Platform, Amlaha, MP, 466113, India
| | | | - Satish Kumar
- ICAR-Indian Institute of Wheat and Barley Research, Karnal, 132001, India
| | | | - Sewa Ram
- ICAR-Indian Institute of Wheat and Barley Research, Karnal, 132001, India
| | - Ratan Tiwari
- ICAR-Indian Institute of Wheat and Barley Research, Karnal, 132001, India
| | - Om Parkash
- ICAR-Indian Institute of Wheat and Barley Research, Karnal, 132001, India
| | - Om Parkash Ahlawat
- ICAR-Indian Institute of Wheat and Barley Research, Karnal, 132001, India
| | | | - Gyanendra Pratap Singh
- ICAR-Indian Institute of Wheat and Barley Research, Karnal, 132001, India
- ICAR-National Bureau of Plant Genetic Resources, New Delhi, 110012, India
| | - Gyanendra Singh
- ICAR-Indian Institute of Wheat and Barley Research, Karnal, 132001, India
| |
Collapse
|
4
|
Jabran M, Ali MA, Zahoor A, Muhae-Ud-Din G, Liu T, Chen W, Gao L. Intelligent reprogramming of wheat for enhancement of fungal and nematode disease resistance using advanced molecular techniques. FRONTIERS IN PLANT SCIENCE 2023; 14:1132699. [PMID: 37235011 PMCID: PMC10206142 DOI: 10.3389/fpls.2023.1132699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Accepted: 04/19/2023] [Indexed: 05/28/2023]
Abstract
Wheat (Triticum aestivum L.) diseases are major factors responsible for substantial yield losses worldwide, which affect global food security. For a long time, plant breeders have been struggling to improve wheat resistance against major diseases by selection and conventional breeding techniques. Therefore, this review was conducted to shed light on various gaps in the available literature and to reveal the most promising criteria for disease resistance in wheat. However, novel techniques for molecular breeding in the past few decades have been very fruitful for developing broad-spectrum disease resistance and other important traits in wheat. Many types of molecular markers such as SCAR, RAPD, SSR, SSLP, RFLP, SNP, and DArT, etc., have been reported for resistance against wheat pathogens. This article summarizes various insightful molecular markers involved in wheat improvement for resistance to major diseases through diverse breeding programs. Moreover, this review highlights the applications of marker assisted selection (MAS), quantitative trait loci (QTL), genome wide association studies (GWAS) and the CRISPR/Cas-9 system for developing disease resistance against most important wheat diseases. We also reviewed all reported mapped QTLs for bunts, rusts, smuts, and nematode diseases of wheat. Furthermore, we have also proposed how the CRISPR/Cas-9 system and GWAS can assist breeders in the future for the genetic improvement of wheat. If these molecular approaches are used successfully in the future, they can be a significant step toward expanding food production in wheat crops.
Collapse
Affiliation(s)
- Muhammad Jabran
- State Key Laboratory for Biology of Plant Diseases, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Muhammad Amjad Ali
- Department of Plant Pathology, University of Agriculture, Faisalabad, Pakistan
| | - Adil Zahoor
- Department of Biotechnology, Chonnam National University, Yeosu, Republic of Korea
| | - Ghulam Muhae-Ud-Din
- State Key Laboratory for Biology of Plant Diseases, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Taiguo Liu
- State Key Laboratory for Biology of Plant Diseases, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Wanquan Chen
- State Key Laboratory for Biology of Plant Diseases, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Li Gao
- State Key Laboratory for Biology of Plant Diseases, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
5
|
Nsabiyera V, Qureshi N, Li J, Randhawa M, Zhang P, Forrest K, Bansal U, Bariana H. Relocation of Sr48 to Chromosome 2D Using an Alternative Mapping Population and Development of a Closely Linked Marker Using Diverse Molecular Technologies. PLANTS (BASEL, SWITZERLAND) 2023; 12:1601. [PMID: 37111824 PMCID: PMC10142899 DOI: 10.3390/plants12081601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Accepted: 03/14/2023] [Indexed: 06/19/2023]
Abstract
The Ug99-effective stem rust resistance gene Sr48 was mapped to chromosome 2A based on its repulsion linkage with Yr1 in an Arina/Forno recombinant inbred line (RIL) population. Attempts to identify markers closely linked to Sr48 using available genomic resources were futile. This study used an Arina/Cezanne F5:7 RIL population to identify markers closely linked with Sr48. Using the Arina/Cezanne DArTseq map, Sr48 was mapped on the short arm of chromosome 2D and it co-segregated with 12 markers. These DArTseq marker sequences were used for BlastN search to identify corresponding wheat chromosome survey sequence (CSS) contigs, and PCR-based markers were developed. Two simple sequence repeat (SSR) markers, sun590 and sun592, and two Kompetitive Allele-Specific PCR (KASP) markers were derived from the contig 2DS_5324961 that mapped distal to Sr48. Molecular cytogenetic analysis using sequential fluorescent in situ hybridization (FISH) and genomic in situ hybridization (GISH) identified a terminal translocation of chromosome 2A in chromosome 2DL of Forno. This translocation would have led to the formation of a quadrivalent involving chromosomes 2A and 2D in the Arina/Forno population, which would have exhibited pseudo-linkage between Sr48 and Yr1 in chromosome 2AL. Polymorphism of the closet marker sunKASP_239 among a set of 178 wheat genotypes suggested that this marker can be used for marker-assisted selection of Sr48.
Collapse
Affiliation(s)
- Vallence Nsabiyera
- School of Life and Environmental Sciences, Faculty of Science, The University of Sydney Plant Breeding Institute, 107 Cobbitty Road, Cobbitty, NSW 2570, Australia
- Nabuin Zonal Agricultural Research and Development Institute, National Agricultural Research Organization, Moroto P.O. Box 132, Uganda
| | - Naeela Qureshi
- School of Life and Environmental Sciences, Faculty of Science, The University of Sydney Plant Breeding Institute, 107 Cobbitty Road, Cobbitty, NSW 2570, Australia
- International Maize and Wheat Improvement Center (CIMMYT), Carretera Mexico-Veracruz Km. 45, El Batan, Texcoco C.P. 56237, Mexico
| | - Jianbo Li
- School of Life and Environmental Sciences, Faculty of Science, The University of Sydney Plant Breeding Institute, 107 Cobbitty Road, Cobbitty, NSW 2570, Australia
| | - Mandeep Randhawa
- School of Life and Environmental Sciences, Faculty of Science, The University of Sydney Plant Breeding Institute, 107 Cobbitty Road, Cobbitty, NSW 2570, Australia
- International Maize and Wheat Improvement Center (CIMMYT), World Agroforestry Centre (ICRAF Campus), UN Avenue, Gigiri, Nairobi P.O. Box 1041-00621, Kenya
| | - Peng Zhang
- School of Life and Environmental Sciences, Faculty of Science, The University of Sydney Plant Breeding Institute, 107 Cobbitty Road, Cobbitty, NSW 2570, Australia
| | - Kerrie Forrest
- Agriculture Victoria, AgriBio, Centre for AgriBioscience, 5 Ring Rd., Bundoora, VIC 3083, Australia
| | - Urmil Bansal
- School of Life and Environmental Sciences, Faculty of Science, The University of Sydney Plant Breeding Institute, 107 Cobbitty Road, Cobbitty, NSW 2570, Australia
| | - Harbans Bariana
- School of Life and Environmental Sciences, Faculty of Science, The University of Sydney Plant Breeding Institute, 107 Cobbitty Road, Cobbitty, NSW 2570, Australia
- School of Science, Faculty of Science, Hawkesbury Campus, Western Sydney University, Richmond, NSW 2753, Australia
| |
Collapse
|
6
|
Karelov A, Kozub N, Sozinova O, Pirko Y, Sozinov I, Yemets A, Blume Y. Wheat Genes Associated with Different Types of Resistance against Stem Rust ( Puccinia graminis Pers.). Pathogens 2022; 11:pathogens11101157. [PMID: 36297214 PMCID: PMC9608978 DOI: 10.3390/pathogens11101157] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 09/25/2022] [Accepted: 10/05/2022] [Indexed: 11/13/2022] Open
Abstract
Stem rust is one wheat's most dangerous fungal diseases. Yield losses caused by stem rust have been significant enough to cause famine in the past. Some races of stem rust are considered to be a threat to food security even nowadays. Resistance genes are considered to be the most rational environment-friendly and widely used way to control the spread of stem rust and prevent yield losses. More than 60 genes conferring resistance against stem rust have been discovered so far (so-called Sr genes). The majority of the Sr genes discovered have lost their effectiveness due to the emergence of new races of stem rust. There are some known resistance genes that have been used for over 50 years and are still effective against most known races of stem rust. The goal of this article is to outline the different types of resistance against stem rust as well as the effective and noneffective genes, conferring each type of resistance with a brief overview of their origin and usage.
Collapse
Affiliation(s)
- Anatolii Karelov
- Institute of Food Biotechnology and Genomics, National Academy of Sciences of Ukraine, 04123 Kyiv, Ukraine
- Institute of Plant Protection, National Academy of Agrarian Sciences of Ukraine, 03022 Kyiv, Ukraine
- Correspondence: (A.K.); (Y.B.)
| | - Natalia Kozub
- Institute of Food Biotechnology and Genomics, National Academy of Sciences of Ukraine, 04123 Kyiv, Ukraine
- Institute of Plant Protection, National Academy of Agrarian Sciences of Ukraine, 03022 Kyiv, Ukraine
| | - Oksana Sozinova
- Institute of Food Biotechnology and Genomics, National Academy of Sciences of Ukraine, 04123 Kyiv, Ukraine
- Institute of Plant Protection, National Academy of Agrarian Sciences of Ukraine, 03022 Kyiv, Ukraine
| | - Yaroslav Pirko
- Institute of Food Biotechnology and Genomics, National Academy of Sciences of Ukraine, 04123 Kyiv, Ukraine
| | - Igor Sozinov
- Institute of Plant Protection, National Academy of Agrarian Sciences of Ukraine, 03022 Kyiv, Ukraine
| | - Alla Yemets
- Institute of Food Biotechnology and Genomics, National Academy of Sciences of Ukraine, 04123 Kyiv, Ukraine
| | - Yaroslav Blume
- Institute of Food Biotechnology and Genomics, National Academy of Sciences of Ukraine, 04123 Kyiv, Ukraine
- Correspondence: (A.K.); (Y.B.)
| |
Collapse
|
7
|
Mago R, Chen C, Xia X, Whan A, Forrest K, Basnet BR, Perera G, Chandramohan S, Randhawa M, Hayden M, Bansal U, Huerta-Espino J, Singh RP, Bariana H, Lagudah E. Adult plant stem rust resistance in durum wheat Glossy Huguenot: mapping, marker development and validation. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2022; 135:1541-1550. [PMID: 35199199 DOI: 10.1007/s00122-022-04052-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2021] [Accepted: 01/28/2022] [Indexed: 05/12/2023]
Abstract
Adult plant stem rust resistance locus, QSrGH.cs-2AL, was identified in durum wheat Glossy Huguenot and mendelised as Sr63. Markers closely linked with Sr63 were developed. An F3 population from a Glossy Huguenot (GH)/Bansi cross used in a previous Australian study was advanced to F6 for molecular mapping of adult plant stem rust resistance. Maturity differences among F6 lines confounded assessments of stem rust response. GH was crossed with a stem rust susceptible F6 recombinant inbred line (RIL), GHB14 (M14), with similar maturity and an F6:7 population was developed through single seed descent method. F7 and F8 RILs were tested along with the parents at different locations. The F6 individual plants and both parents were genotyped using the 90 K single nucleotide polymorphism (SNP) wheat array. Stem rust resistance QTL on the long arms of chromosomes 1B (QSrGH.cs-1BL) and 2A (QSrGH.cs-2AL) were detected. QSrGH.cs-1BL and QSrGH.cs-2AL were both contributed by GH and explained 22% and 18% adult plant stem rust response variation, respectively, among GH/M14 RIL population. RILs carrying combinations of these QTL reduced more than 14% stem rust severity compared to those that possessed QSrGH.cs-1BL and QSrGH.cs-2AL individually. QSrGH.cs1BL was demonstrated to be the same as Sr58/Lr46/Yr29/Pm39 through marker genotyping. Lines lacking QSrGH.cs-1BL were used to Mendelise QSrGH.cs-2AL. Based on genomic locations of previously catalogued stem rust resistance genes and the QSrGH.cs-2AL map, it appeared to represent a new APR locus and was permanently named Sr63. SNP markers associated with Sr63 were converted to kompetetive allele-specific PCR (KASP) assays and were validated on a set of durum cultivars.
Collapse
Affiliation(s)
- Rohit Mago
- CSIRO Agriculture and Food, P.O. Box 1700, Canberra, ACT, 2601, Australia.
| | - Chunhong Chen
- CSIRO Agriculture and Food, P.O. Box 1700, Canberra, ACT, 2601, Australia
| | - Xiaodi Xia
- CSIRO Agriculture and Food, P.O. Box 1700, Canberra, ACT, 2601, Australia
| | - Alex Whan
- CSIRO Agriculture and Food, P.O. Box 1700, Canberra, ACT, 2601, Australia
| | - Kerrie Forrest
- Agriculture Victoria Research, Department of Jobs, Precincts and Regions, Agribio, 5 Ring Rd, Bundoora, VIC, 3083, Australia
| | - Bhoja R Basnet
- CIMMYT, Carretera Mexico-Veracruz Km 18, El Batan, Texcoco, Estado de México, Mexico
| | - Geetha Perera
- CSIRO Agriculture and Food, P.O. Box 1700, Canberra, ACT, 2601, Australia
| | - Sutha Chandramohan
- CSIRO Agriculture and Food, P.O. Box 1700, Canberra, ACT, 2601, Australia
| | - Mandeep Randhawa
- ICRAF House, CIMMYT Kenya, United Nations Avenue, Gigiri, Village Market, P.O. Box 1041, 00621, Nairobi, Kenya
| | - Matthew Hayden
- Agriculture Victoria Research, Department of Jobs, Precincts and Regions, Agribio, 5 Ring Rd, Bundoora, VIC, 3083, Australia
| | - Urmil Bansal
- Faculty of Science, School of Life and Environmental Sciences, The University of Sydney Plant Breeding Institute, 107 Cobbitty Road, Cobbitty, NSW, 2570, Australia
| | - Julio Huerta-Espino
- Campo Experimental Valle de México, INIFAP, Chapingo, Estado de México, Mexico
| | - Ravi P Singh
- CIMMYT, Carretera Mexico-Veracruz Km 18, El Batan, Texcoco, Estado de México, Mexico
| | - Harbans Bariana
- Faculty of Science, School of Life and Environmental Sciences, The University of Sydney Plant Breeding Institute, 107 Cobbitty Road, Cobbitty, NSW, 2570, Australia.
| | - Evans Lagudah
- CSIRO Agriculture and Food, P.O. Box 1700, Canberra, ACT, 2601, Australia.
| |
Collapse
|
8
|
Gordon T, Jin Y, Gale S, Rouse M, Stoxen S, Wanyera R, Macharia G, Randhawa M, Bhavani S, Brown-Guedira G, Marshall D, Babiker E, Bockelman H, Bonman JM. Identification of Winter Habit Bread Wheat Landraces in the National Small Grains Collection with Resistance to Emerging Stem Rust Pathogen Variants. PLANT DISEASE 2021; 105:3998-4005. [PMID: 34232053 DOI: 10.1094/pdis-04-21-0743-re] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Wheat stem rust caused by Puccinia graminis f. sp. tritici is a widespread and recurring threat to wheat production. Emerging P. graminis f. sp. tritici variants are rapidly overcoming major gene resistance deployed in wheat cultivars and new sources of race-nonspecific resistance are urgently needed. The National Small Grains Collection (NSGC) contains thousands of wheat landrace accessions that may harbor unique and broadly effective sources of resistance to emerging P. graminis f. sp. tritici variants. All NSGC available facultative and winter-habit bread wheat landraces were tested in a field nursery in St. Paul, Minnesota, against a bulk collection of six common U.S. P. graminis f. sp. tritici races. Infection response and severity data were collected on 9,192 landrace accessions at the soft-dough stage and resistant accessions were derived from single spikes. Derived accessions were tested in St. Paul a second time to confirm resistance and in a field nursery in Njoro, Kenya against emerging races of P. graminis f. sp. tritici with virulence to many known resistance genes including Sr24, Sr31, Sr38, and SrTmp. Accessions resistant in the St. Paul field were also tested at the seedling stage with up to 13 P. graminis f. sp. tritici races, including TTKSK and TKTTF, and with 19 molecular markers linked with known stem rust resistance genes or genes associated with modern breeding practices. Forty-five accessions were resistant in both U.S. and Kenya field nurseries and lacked alleles linked with known stem rust resistance genes. Accessions with either moderate or strong resistance in the U.S. and Kenya field nurseries and with novel seedling resistance will be prioritized for further study.
Collapse
Affiliation(s)
- Tyler Gordon
- U.S. Department of Agriculture, Agricultural Research Service, Small Grains and Potato Germplasm Research, Aberdeen, ID 83210, U.S.A
| | - Yue Jin
- U.S. Department of Agriculture, Agricultural Research Service, Cereal Disease Laboratory, St. Paul, MN 55108, U.S.A
| | - Samuel Gale
- U.S. Department of Agriculture, Agricultural Research Service, Cereal Disease Laboratory, St. Paul, MN 55108, U.S.A
| | - Matthew Rouse
- U.S. Department of Agriculture, Agricultural Research Service, Cereal Disease Laboratory, St. Paul, MN 55108, U.S.A
| | - Samuel Stoxen
- U.S. Department of Agriculture, Agricultural Research Service, Cereal Disease Laboratory, St. Paul, MN 55108, U.S.A
| | - Ruth Wanyera
- Kenya Agricultural and Livestock Research Organization, 20107 Njoro, Kenya
| | - Godwin Macharia
- Kenya Agricultural and Livestock Research Organization, 20107 Njoro, Kenya
| | - Mandeep Randhawa
- International Maize and Wheat Improvement Center-Kenya, 1041-00621 Nairobi, Kenya
| | - Sridhar Bhavani
- International Maize and Wheat Improvement Center, El Batán, Texcoco CP 56237, Edo. de México, Mexico
| | - Gina Brown-Guedira
- U.S. Department of Agriculture, Agricultural Research Service, Plant Science Research, Raleigh, NC 27695, U.S.A
| | - David Marshall
- U.S. Department of Agriculture, Agricultural Research Service, Plant Science Research, Raleigh, NC 27695, U.S.A
| | - Ebrahiem Babiker
- U.S. Department of Agriculture, Agricultural Research Service, Small Grains and Potato Germplasm Research, Aberdeen, ID 83210, U.S.A
- U.S. Department of Agriculture, Agricultural Research Service, Southern Horticultural Research Laboratory, Poplarville, MS 39470, U.S.A
| | - Harold Bockelman
- U.S. Department of Agriculture, Agricultural Research Service, Small Grains and Potato Germplasm Research, Aberdeen, ID 83210, U.S.A
| | - J Michael Bonman
- U.S. Department of Agriculture, Agricultural Research Service, Small Grains and Potato Germplasm Research, Aberdeen, ID 83210, U.S.A
| |
Collapse
|
9
|
Wang Y, Xu L, Zou Q, Lin C. prPred-DRLF: Plant R protein predictor using deep representation learning features. Proteomics 2021; 22:e2100161. [PMID: 34569713 DOI: 10.1002/pmic.202100161] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2021] [Revised: 08/30/2021] [Accepted: 09/21/2021] [Indexed: 12/17/2022]
Abstract
Plant resistance (R) proteins play a significant role in the detection of pathogen invasion. Accurately predicting plant R proteins is a key task in phytopathology. Most plant R protein predictors are dependent on traditional feature extraction methods. Recently, deep representation learning methods have been successfully applied in solving protein classification problems. Motivated by this, we propose a new computational approach, called prPred-DRLF, which uses deep representation learning feature models to encode the amino acids as numerical vectors. The results show that the fused features of bidirectional long short-term memory (BiLSTM) embedding and unified representation (UniRep) embedding have a better performance than other features for plant R protein identification using a light gradient boosting machine (LGBM) classifier. The model was evaluated using an independent test achieving an accuracy of 0.956, F1-score of 0.933, and area under the receiver operating characteristic (ROC) curve (AUC) of 0.997. Meanwhile, compared with the state-of-the-art prPred and HMMER method, prPred-DRLF shows an overall improvement in accuracy, F1-score, AUC, and recall. prPred-DRLF is a higher-performance plant R protein prediction tool based on two kinds of deep representation learning technologies and offers a user-friendly interface for inspecting possible plant R proteins. We hope that prPred-DRLF will become a useful tool for biological research. A user-friendly webserver for prPred-DRLF is freely accessible at http://lab.malab.cn/soft/prPred-DRLF. The Python script can be downloaded from https://github.com/Wangys-prog/prPred-DRLF.
Collapse
Affiliation(s)
- Yansu Wang
- School of Electronic and Communication Engineering, Shenzhen Polytechnic, Shenzhen, China.,Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, China
| | - Lei Xu
- School of Electronic and Communication Engineering, Shenzhen Polytechnic, Shenzhen, China
| | - Quan Zou
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, China.,Yangtze Delta Region Institute (Quzhou), University of Electronic Science and Technology of China, Quzhou, Zhejiang, China
| | - Chen Lin
- School of Informatics, Xiamen University, Xiamen, China
| |
Collapse
|
10
|
Kumar S, Bhardwaj SC, Gangwar OP, Sharma A, Qureshi N, Kumaran VV, Khan H, Prasad P, Miah H, Singh GP, Sharma K, Verma H, Forrest KL, Trethowan RM, Bariana HS, Bansal UK. Lr80: A new and widely effective source of leaf rust resistance of wheat for enhancing diversity of resistance among modern cultivars. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2021; 134:849-858. [PMID: 33388887 DOI: 10.1007/s00122-020-03735-5] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Accepted: 11/18/2020] [Indexed: 06/12/2023]
Abstract
A new leaf rust resistance gene Lr80 was identified and closely linked markers were developed for its successful pyramiding with other marker-tagged genes to achieve durable control of leaf rust. Common wheat landrace Hango-2, collected in 2006 from the Himalayan area of Hango, District Kinnaur, in Himachal Pradesh, exhibited a very low infection type (IT;) at the seedling stage to all Indian Puccinia triticina (Pt) pathotypes, except the pathotype 5R9-7 which produced IT 3+. Genetic analysis based on Agra Local/Hango-2-derived F3 families indicated monogenic control of leaf rust resistance, and the underlying locus was temporarily named LrH2. Bulked segregant analysis using 303 simple sequence repeat (SSR) markers located LrH2 in the short arm of chromosome 2D. An additional set of 10 chromosome 2DS-specific markers showed polymorphism between the parents and these were mapped on the entire Agra Local/Hango-2 F3 population. LrH2 was flanked by markers cau96 (distally) and barc124 (proximally). The 90 K Infinium SNP array was used to identify SNP markers linked with LrH2. Markers KASP_17425 and KASP_17148 showed association with LrH2. Comparison of seedling leaf rust response data and marker locations across different maps demonstrated the uniqueness of LrH2 and it was formally named Lr80. The Lr80-linked markers KASP_17425, KASP_17148 and barc124 amplified alleles/products different to Hango-2 in 82 Australian cultivars indicating their robustness for marker-assisted selection of this gene in wheat breeding programs.
Collapse
Affiliation(s)
- Subodh Kumar
- Indian Council of Agricultural Research (ICAR), Indian Institute of Wheat and Barley Research Regional Station, Flowerdale, Shimla, Himachal Pradesh, 171 002, India
| | - Subhash C Bhardwaj
- Indian Council of Agricultural Research (ICAR), Indian Institute of Wheat and Barley Research Regional Station, Flowerdale, Shimla, Himachal Pradesh, 171 002, India.
| | - Om P Gangwar
- Indian Council of Agricultural Research (ICAR), Indian Institute of Wheat and Barley Research Regional Station, Flowerdale, Shimla, Himachal Pradesh, 171 002, India
| | - Akanksha Sharma
- School of Life Sciences, Faculty of Science, The University of Sydney Plant Breeding Institute, 107 Cobbitty Road, Cobbitty, Sydney, NSW, 2570, Australia
| | - Naeela Qureshi
- Agriculture Victoria, AgriBio, Centre for AgriBioscience, 5 Ring Rd, Bundoora, Victoria, 3083, Australia
| | - Vikas V Kumaran
- Indian Council of Agricultural Research (ICAR), Indian Agricultural Research Institute Regional Station, Wellington, Nilgiris, Tamil Nadu, 643231, India
| | - Hanif Khan
- Indian Council of Agricultural Research (ICAR), Indian Institute of Wheat and Barley Research Regional Station, Flowerdale, Shimla, Himachal Pradesh, 171 002, India
| | - Pramod Prasad
- Indian Council of Agricultural Research (ICAR), Indian Institute of Wheat and Barley Research Regional Station, Flowerdale, Shimla, Himachal Pradesh, 171 002, India
| | - Hanif Miah
- School of Life Sciences, Faculty of Science, The University of Sydney Plant Breeding Institute, 107 Cobbitty Road, Cobbitty, Sydney, NSW, 2570, Australia
| | - Gyanendra P Singh
- Indian Council of Agricultural Research (ICAR), Indian Institute of Wheat and Barley Research, Karnal, Haryana, 132001, India
| | - Kiran Sharma
- Indian Council of Agricultural Research (ICAR), Indian Institute of Wheat and Barley Research Regional Station, Flowerdale, Shimla, Himachal Pradesh, 171 002, India
| | - Hemlata Verma
- Indian Council of Agricultural Research (ICAR), Indian Institute of Wheat and Barley Research Regional Station, Flowerdale, Shimla, Himachal Pradesh, 171 002, India
| | - Kerrie L Forrest
- Agriculture Victoria, AgriBio, Centre for AgriBioscience, 5 Ring Rd, Bundoora, Victoria, 3083, Australia
| | - Richard M Trethowan
- School of Life Sciences, Faculty of Science, The University of Sydney Plant Breeding Institute, 107 Cobbitty Road, Cobbitty, Sydney, NSW, 2570, Australia
| | - Harbans S Bariana
- School of Life Sciences, Faculty of Science, The University of Sydney Plant Breeding Institute, 107 Cobbitty Road, Cobbitty, Sydney, NSW, 2570, Australia.
| | - Urmil K Bansal
- School of Life Sciences, Faculty of Science, The University of Sydney Plant Breeding Institute, 107 Cobbitty Road, Cobbitty, Sydney, NSW, 2570, Australia.
| |
Collapse
|
11
|
Babu P, Baranwal DK, Harikrishna, Pal D, Bharti H, Joshi P, Thiyagarajan B, Gaikwad KB, Bhardwaj SC, Singh GP, Singh A. Application of Genomics Tools in Wheat Breeding to Attain Durable Rust Resistance. FRONTIERS IN PLANT SCIENCE 2020; 11:567147. [PMID: 33013989 PMCID: PMC7516254 DOI: 10.3389/fpls.2020.567147] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Accepted: 08/12/2020] [Indexed: 11/13/2023]
Abstract
Wheat is an important source of dietary protein and calories for the majority of the world's population. It is one of the largest grown cereal in the world occupying over 215 M ha. Wheat production globally is challenged by biotic stresses such as pests and diseases. Of the 50 diseases of wheat that are of economic importance, the three rust diseases are the most ubiquitous causing significant yield losses in the majority of wheat production environments. Under severe epidemics they can lead to food insecurity threats amid the continuous evolution of new races of the pathogens, shifts in population dynamics and their virulence patterns, thereby rendering several effective resistance genes deployed in wheat breeding programs vulnerable. This emphasizes the need to identify, characterize, and deploy effective rust-resistant genes from diverse sources into pre-breeding lines and future wheat varieties. The use of genetic resistance has been marked as eco-friendly and to curb the further evolution of rust pathogens. Deployment of multiple rust resistance genes including major and minor genes in wheat lines could enhance the durability of resistance thereby reducing pathogen evolution. Advances in next-generation sequencing (NGS) platforms and associated bioinformatics tools have revolutionized wheat genomics. The sequence alignment of the wheat genome is the most important landmark which will enable genomics to identify marker-trait associations, candidate genes and enhanced breeding values in genomic selection (GS) studies. High throughput genotyping platforms have demonstrated their role in the estimation of genetic diversity, construction of the high-density genetic maps, dissecting polygenic traits, and better understanding their interactions through GWAS (genome-wide association studies) and QTL mapping, and isolation of R genes. Application of breeder's friendly KASP assays in the wheat breeding program has expedited the identification and pyramiding of rust resistance alleles/genes in elite lines. The present review covers the evolutionary trends of the rust pathogen and contemporary wheat varieties, and how these research strategies galvanized to control the wheat killer genus Puccinia. It will also highlight the outcome and research impact of cost-effective NGS technologies and cloning of rust resistance genes amid the public availability of common and tetraploid wheat reference genomes.
Collapse
Affiliation(s)
- Prashanth Babu
- Indian Agricultural Research Institute (ICAR), New Delhi, India
| | | | - Harikrishna
- Indian Agricultural Research Institute (ICAR), New Delhi, India
| | - Dharam Pal
- Indian Agricultural Research Institute (ICAR), New Delhi, India
| | - Hemlata Bharti
- Directorate of Medicinal and Aromatic Plants Research (ICAR), Anand, India
| | - Priyanka Joshi
- Department of Plant Pathology, Washington State University, Pullman, WA, United States
| | | | | | | | | | - Anupam Singh
- DCM SHRIRAM-Bioseed Research India, ICRISAT, Hyderabad, India
| |
Collapse
|
12
|
Leonova IN, Skolotneva ES, Orlova EA, Orlovskaya OA, Salina EA. Detection of Genomic Regions Associated with Resistance to Stem Rust in Russian Spring Wheat Varieties and Breeding Germplasm. Int J Mol Sci 2020; 21:E4706. [PMID: 32630293 PMCID: PMC7369787 DOI: 10.3390/ijms21134706] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Revised: 06/28/2020] [Accepted: 06/28/2020] [Indexed: 11/20/2022] Open
Abstract
Stem rust caused by Puccinia graminis f. sp. tritici Eriks. is a dangerous disease of common wheat worldwide. Development and cultivation of the varieties with genetic resistance is one of the most effective and environmentally important ways for protection of wheat against fungal pathogens. Field phytopathological screening and genome-wide association study (GWAS) were used for assessment of the genetic diversity of a collection of spring wheat genotypes on stem rust resistance loci. The collection consisting of Russian varieties of spring wheat and introgression lines with alien genetic materials was evaluated over three seasons (2016, 2017 and 2018) for resistance to the native population of stem rust specific to the West Siberian region of Russia. The results indicate that most varieties displayed from moderate to high levels of susceptibility to P. graminis; 16% of genotypes had resistance or immune response. In total, 13,006 single-nucleotide polymorphism (SNP) markers obtained from the Infinium 15K array were used to perform genome-wide association analysis. GWAS detected 35 significant marker-trait associations (MTAs) with SNPs located on chromosomes 1A, 2A, 2B, 3B, 5A, 5B, 6A, 7A and 7B. The most significant associations were found on chromosomes 7A and 6A where known resistance genes Sr25 and Sr6Ai = 2 originated from Thinopyrum ssp. are located. Common wheat lines containing introgressed fragments from Triticum timopheevii and Triticum kiharae were found to carry Sr36 gene on 2B chromosome. It has been suggested that the quantitative trait loci (QTL) mapped to the chromosome 5BL may be new loci inherited from the T. timopheevii. It can be inferred that a number of Russian wheat varieties may contain the Sr17 gene, which does not currently provide effective protection against pathogen. This is the first report describing the results of analysis of the genetic factors conferring resistance of Russian spring wheat varieties to stem rust.
Collapse
Affiliation(s)
- Irina N. Leonova
- The Federal Research Center Institute of Cytology and Genetics SB RAS, 630090 Novosibirsk, Russia; (E.S.S.); (E.A.O.); (E.A.S.)
| | - Ekaterina S. Skolotneva
- The Federal Research Center Institute of Cytology and Genetics SB RAS, 630090 Novosibirsk, Russia; (E.S.S.); (E.A.O.); (E.A.S.)
| | - Elena A. Orlova
- The Federal Research Center Institute of Cytology and Genetics SB RAS, 630090 Novosibirsk, Russia; (E.S.S.); (E.A.O.); (E.A.S.)
| | - Olga A. Orlovskaya
- Institute of Genetics and Cytology of the National Academy of Sciences of Belarus, 220072 Minsk, Belarus;
| | - Elena A. Salina
- The Federal Research Center Institute of Cytology and Genetics SB RAS, 630090 Novosibirsk, Russia; (E.S.S.); (E.A.O.); (E.A.S.)
| |
Collapse
|
13
|
Megerssa SH, Ammar K, Acevedo M, Brown-Guedira G, Ward B, Degete AG, Randhawa MS, Sorrells ME. Multiple-Race Stem Rust Resistance Loci Identified in Durum Wheat Using Genome-Wide Association Mapping. FRONTIERS IN PLANT SCIENCE 2020; 11:598509. [PMID: 33391309 PMCID: PMC7773921 DOI: 10.3389/fpls.2020.598509] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Accepted: 11/13/2020] [Indexed: 05/22/2023]
Abstract
Stem rust of wheat caused by Puccinia graminis Pers. f.sp. trtici Eriks and E. Henn., is the most damaging fungal disease of both common (Triticum aestivum L.) and durum (Triticum turgidum L., ssp. Durum) wheat. Continuously emerging races virulent to many of the commercially deployed qualitative resistance genes have caused remarkable loss worldwide and threaten global wheat production. The objectives of this study were to evaluate the response of a panel of 283 durum wheat lines assembled by the International Maize and Wheat Improvement Center (CIMMYT) to multiple races of stem rust in East Africa at the adult plant stage and map loci associated with field resistance. The lines were evaluated in Debre Zeit, Ethiopia and Njoro, Kenya from 2018 to 2019 in five environments (year × season). The panel was genotyped using genotyping-by-sequencing. After filtering, 26,439 Single Nucleotide Polymorphism (SNP) markers and 280 lines and three checks were retained for analysis. Population structure was assessed using principal component analysis. Genome-wide association analysis (GWAS) was conducted using Genomic Association and Prediction Integrated Tool (GAPIT). The broad-sense heritability of the phenotype data revealed that 64-83% of the variation in stem rust response explained by the genotypes and lines with multiple race resistance were identified. GWAS analysis detected a total of 160 significant marker trait associations representing 42 quantitative trait loci. Of those, 21 were potentially novel and 21 were mapped to the same regions as previously reported loci. Known stem rust resistance genes/alleles were postulated including Sr8a, Sr8155B1, SrWeb/Sr9h, Sr11, Sr12, Sr13/Sr13 alleles, Sr17, Sr28/Sr16, Sr22, and Sr49. Lines resistant to multiple races in East Africa can be utilized as parents in durum wheat breeding programs. Further studies are needed to determine if there are new alleles at the Sr13 locus and potential markers for the known Sr13 alleles.
Collapse
Affiliation(s)
- Shitaye H. Megerssa
- Plant Breeding and Genetics Section, School of Integrative Plant Science, Cornell University, Ithaca, NY, United States
- *Correspondence: Shitaye H. Megerssa,
| | - Karim Ammar
- International Maize and Wheat Improvement Center (CIMMYT), Mexico D.F., Mexico
| | - Maricelis Acevedo
- Department of Global Development, Cornell University, Ithaca, NY, United States
| | | | - Brian Ward
- USDA-ARS Plant Science Unit, Raleigh, NC, United States
| | - Ashenafi G. Degete
- Debre Zeit Agricultural Research Center, Ethiopian Institute of Agricultural Research (EIAR), Debre Zeit, Ethiopia
| | | | - Mark E. Sorrells
- Plant Breeding and Genetics Section, School of Integrative Plant Science, Cornell University, Ithaca, NY, United States
- Mark E. Sorrells,
| |
Collapse
|
14
|
Kosgey ZC, Edae EA, Dill-Macky R, Jin Y, Bulbula WD, Gemechu A, Macharia G, Bhavani S, Randhawa MS, Rouse MN. Mapping and Validation of Stem Rust Resistance Loci in Spring Wheat Line CI 14275. FRONTIERS IN PLANT SCIENCE 2020; 11:609659. [PMID: 33510752 PMCID: PMC7835402 DOI: 10.3389/fpls.2020.609659] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Accepted: 12/08/2020] [Indexed: 05/22/2023]
Abstract
Stem rust caused by Puccinia graminis f. sp. tritici (Pgt) remains a constraint to wheat production in East Africa. In this study, we characterized the genetics of stem rust resistance, identified QTLs, and described markers associated with stem rust resistance in the spring wheat line CI 14275. The 113 recombinant inbred lines, together with their parents, were evaluated at the seedling stage against Pgt races TTKSK, TRTTF, TPMKC, TTTTF, and RTQQC. Screening for resistance to Pgt races in the field was undertaken in Kenya, Ethiopia, and the United States in 2016, 2017, and 2018. One gene conferred seedling resistance to race TTTTF, likely Sr7a. Three QTL were identified that conferred field resistance. QTL QSr.cdl-2BS.2, that conferred resistance in Kenya and Ethiopia, was validated, and the marker Excalibur_c7963_1722 was shown to have potential to select for this QTL in marker-assisted selection. The QTL QSr.cdl-3B.2 is likely Sr12, and QSr.cdl-6A appears to be a new QTL. This is the first study to both detect and validate an adult plant stem rust resistance QTL on chromosome arm 2BS. The combination of field QTL QSr.cdl-2BS.2, QSr.cdl-3B.2, and QSr.cdl-6A has the potential to be used in wheat breeding to improve stem rust resistance of wheat varieties.
Collapse
Affiliation(s)
- Zennah C. Kosgey
- Kenya Agricultural and Livestock Research Organization, Njoro, Kenya
- Department of Plant Pathology, University of Minnesota, Saint Paul, MN, United States
- *Correspondence: Zennah C. Kosgey,
| | - Erena A. Edae
- Department of Plant Pathology, University of Minnesota, Saint Paul, MN, United States
| | - Ruth Dill-Macky
- Department of Plant Pathology, University of Minnesota, Saint Paul, MN, United States
| | - Yue Jin
- Department of Plant Pathology, University of Minnesota, Saint Paul, MN, United States
- Cereal Disease Laboratory, United States Department of Agriculture-Agricultural Research Service, Saint Paul, MN, United States
| | - Worku Denbel Bulbula
- Department of Plant Pathology, University of Minnesota, Saint Paul, MN, United States
- Debre Zeit Agricultural Research Center, Ethiopian Institute of Agricultural Research, Bishoftu, Ethiopia
| | - Ashenafi Gemechu
- Debre Zeit Agricultural Research Center, Ethiopian Institute of Agricultural Research, Bishoftu, Ethiopia
| | - Godwin Macharia
- Kenya Agricultural and Livestock Research Organization, Njoro, Kenya
| | - Sridhar Bhavani
- International Maize and Wheat Improvement Center (CIMMYT), Texcoco, Mexico
| | | | - Matthew N. Rouse
- Department of Plant Pathology, University of Minnesota, Saint Paul, MN, United States
- Cereal Disease Laboratory, United States Department of Agriculture-Agricultural Research Service, Saint Paul, MN, United States
- Matthew N. Rouse,
| |
Collapse
|
15
|
Gessese M, Bariana H, Wong D, Hayden M, Bansal U. Molecular Mapping of Stripe Rust Resistance Gene Yr81 in a Common Wheat Landrace Aus27430. PLANT DISEASE 2019; 103:1166-1171. [PMID: 30998448 DOI: 10.1094/pdis-06-18-1055-re] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
The deployment of diverse sources of resistance in new cultivars underpins durable control of rust diseases. Aus27430 exhibited a moderate level of stripe rust resistance against Puccinia striiformis f. sp. tritici (Pst) pathotypes currently prevalent in Australia. Aus27430 was crossed with the susceptible parent Avocet S (AvS) and subsequent filial generations were raised. Monogenic segregation observed among Aus27430/AvS F3 families was confirmed through stripe rust screening of an F6 recombinant inbred line (RIL) population, and the resistance locus was temporarily named YrAW5. Selective genotyping using an Illumina iSelect 90K wheat SNP bead chip array located YrAW5 in chromosome 6A. Genetic mapping of the RIL population with linked 90K SNPs that were converted into PCR-based marker assays, as well as SSR markers previously mapped to chromosome 6A, confirmed the chromosomal assignment for YrAW5. Comparative analysis of other stripe rust resistance genes located in chromosome 6A led to the formal designation of YrAW5 as Yr81. Tests with a marker linked with Yr18 also demonstrated the presence of this gene in Aus27430. Yr18 interacted with Yr81 to produce stripe rust responses lower than those produced by RILs carrying these genes individually. Although gwm459 showed higher recombination with Yr81 compared with the other flanking marker KASP_3077, it amplified the AvS allele in 80 cultivars, whereas KASP_3077 amplified AvS allele in 67 cultivars. Both markers can be used in marker-assisted selection after confirming parental polymorphism.
Collapse
Affiliation(s)
- Mesfin Gessese
- 1 The University of Sydney Plant Breeding Institute, School of Life and Environment Sciences, Faculty of Science, Cobbitty, NSW 2570, Australia
| | - Harbans Bariana
- 1 The University of Sydney Plant Breeding Institute, School of Life and Environment Sciences, Faculty of Science, Cobbitty, NSW 2570, Australia
| | - Debbie Wong
- 2 Agriculture Victoria Research, Department of Economic Development, Jobs, Transport and Resources, AgriBio, Bundoora, VIC 3083, Australia; and
| | - Matthew Hayden
- 2 Agriculture Victoria Research, Department of Economic Development, Jobs, Transport and Resources, AgriBio, Bundoora, VIC 3083, Australia; and
- 3 School of Applied Systems Biology, La Trobe University, Bundoora, VIC 3083, Australia
| | - Urmil Bansal
- 1 The University of Sydney Plant Breeding Institute, School of Life and Environment Sciences, Faculty of Science, Cobbitty, NSW 2570, Australia
| |
Collapse
|
16
|
Nsabiyera V, Baranwal D, Qureshi N, Kay P, Forrest K, Valárik M, Doležel J, Hayden MJ, Bariana HS, Bansal UK. Fine Mapping of Lr49 Using 90K SNP Chip Array and Flow-Sorted Chromosome Sequencing in Wheat. FRONTIERS IN PLANT SCIENCE 2019; 10:1787. [PMID: 32117347 PMCID: PMC7010802 DOI: 10.3389/fpls.2019.01787] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Accepted: 12/20/2019] [Indexed: 05/18/2023]
Abstract
Leaf rust, caused by Puccinia triticina, threatens global wheat production due to the constant evolution of virulent pathotypes that defeat commercially deployed all stage-resistance (ASR) genes in modern cultivars. Hence, the deployment of combinations of adult plant resistance (APR) and ASR genes in new wheat cultivars is desirable. Adult plant resistance gene Lr49 was previously mapped on the long arm of chromosome 4B of cultivar VL404 and flanked by microsatellite markers barc163 (8.1 cM) and wmc349 (10.1 cM), neither of which was sufficiently closely linked for efficient marker assisted selection. This study used high-density SNP genotyping and flow sorted chromosome sequencing to fine-map the Lr49 locus as a starting point to develop a diagnostic marker for use in breeding and to clone this gene. Marker sunKASP_21 was mapped 0.4 cM proximal to Lr49, whereas a group of markers including sunKASP_24 were placed 0.6 cM distal to this gene. Testing of the linked markers on 75 Australian and 90 European cultivars with diverse genetic backgrounds showed that sunKASP_21 was most strongly associated with Lr49. Our results also show that the Lr49 genomic region contains structural variation relative to the reference stock Chinese Spring, possibly an inverted genomic duplication, which introduces a new set of challenges for the Lr49 cloning.
Collapse
Affiliation(s)
- Vallence Nsabiyera
- Faculty of Science, School of Life Sciences and Environment, The University of Sydney Plant Breeding Institute, Cobbitty, NSW, Australia
| | - Deepak Baranwal
- Faculty of Science, School of Life Sciences and Environment, The University of Sydney Plant Breeding Institute, Cobbitty, NSW, Australia
| | - Naeela Qureshi
- Faculty of Science, School of Life Sciences and Environment, The University of Sydney Plant Breeding Institute, Cobbitty, NSW, Australia
- Agriculture Victoria Research, AgriBio, Bundoora, VIC, Australia
| | - Pippa Kay
- Agriculture Victoria Research, AgriBio, Bundoora, VIC, Australia
| | - Kerrie Forrest
- Agriculture Victoria Research, AgriBio, Bundoora, VIC, Australia
| | - Miroslav Valárik
- Institute of Experimental Botany of the Czech Academy of Sciences, Centre of the Region Haná for Biotechnological and Agricultural Research, Olomouc, Czechia
| | - Jaroslav Doležel
- Institute of Experimental Botany of the Czech Academy of Sciences, Centre of the Region Haná for Biotechnological and Agricultural Research, Olomouc, Czechia
| | - Matthew J. Hayden
- Agriculture Victoria Research, AgriBio, Bundoora, VIC, Australia
- School of Applied Systems Biology, La Trobe University, Bundoora, VIC, Australia
- *Correspondence: Matthew J. Hayden, ; Urmil K. Bansal,
| | - Harbans S. Bariana
- Faculty of Science, School of Life Sciences and Environment, The University of Sydney Plant Breeding Institute, Cobbitty, NSW, Australia
| | - Urmil K. Bansal
- Faculty of Science, School of Life Sciences and Environment, The University of Sydney Plant Breeding Institute, Cobbitty, NSW, Australia
- *Correspondence: Matthew J. Hayden, ; Urmil K. Bansal,
| |
Collapse
|
17
|
Randhawa MS, Singh RP, Dreisigacker S, Bhavani S, Huerta-Espino J, Rouse MN, Nirmala J, Sandoval-Sanchez M. Identification and Validation of a Common Stem Rust Resistance Locus in Two Bi-parental Populations. FRONTIERS IN PLANT SCIENCE 2018; 9:1788. [PMID: 30555507 PMCID: PMC6283910 DOI: 10.3389/fpls.2018.01788] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2018] [Accepted: 11/16/2018] [Indexed: 05/28/2023]
Abstract
Races belonging to Ug99 lineage of stem rust fungus Puccinia graminis f. sp. tritici (Pgt) continue to pose a threat to wheat (Triticum aestivum L.) production in various African countries. Growing resistant varieties is the most economical and environmentally friendly control measure. Recombinant inbred line (RIL) populations from the crosses of susceptible parent 'Cacuke' with the resistant parents 'Huhwa' and 'Yaye' were phenotyped for resistance at the seedling stage to Pgt race TTKSK (Ug99) and in adult plants in field trials at Njoro, Kenya for two seasons in 2016. Using the Affymetrix Axiom breeders SNP array, two stem rust resistance genes, temporarily designated as SrH and SrY, were identified and mapped on chromosome arm 2BL through selective genotyping and bulked segregant analysis (BSA), respectively. Kompetitive allele specific polymorphism (KASP) markers and simple sequence repeat (SSR) markers were used to saturate chromosome arm 2BL in both RIL populations. SrH mapped between markers cim109 and cim114 at a distance of 0.9 cM proximal, and cim117 at 2.9 cM distal. SrY was flanked by markers cim109 and cim116 at 0.8 cM proximal, and IWB45932 at 1.9 cM distal. Two Ug99-effective stem rust resistance genes derived from bread wheat, Sr9h and Sr28, have been reported on chromosome arm 2BL. Infection types and map position in Huhwa and Yaye indicated that Sr28 was absent in both the parents. However, susceptible reactions produced by resistant lines from both populations against Sr9h-virulent race TTKSF+ confirmed the presence of a common resistance locus Sr9h in both lines. Test of allelism is required to establish genetic relationships between genes identified in present study and Sr9h. Marker cim117 linked to SrH was genotyped on set of wheat lines with Huhwa in the pedigree and is advised to be used for marker assisted selection for this gene, however, a combination of phenotypic and genotypic assays is desirable for both genes especially for selection of Sr9h in breeding programs.
Collapse
Affiliation(s)
| | - Ravi P. Singh
- International Maize and Wheat Improvement Center (CIMMYT), Mexico City, Mexico
| | | | - Sridhar Bhavani
- International Maize and Wheat Improvement Center (CIMMYT), Mexico City, Mexico
| | | | - Matthew N. Rouse
- Cereal Disease Laboratory, United States Department of Agriculture-Agricultural Research Service, St. Paul, MN, United States
| | - Jayaveeramuthu Nirmala
- Cereal Disease Laboratory, United States Department of Agriculture-Agricultural Research Service, St. Paul, MN, United States
| | - Maricarmen Sandoval-Sanchez
- International Maize and Wheat Improvement Center (CIMMYT), Mexico City, Mexico
- Colegio de Postgraduados, Texcoco, Mexico
| |
Collapse
|
18
|
Nsabiyera V, Bariana HS, Qureshi N, Wong D, Hayden MJ, Bansal UK. Characterisation and mapping of adult plant stripe rust resistance in wheat accession Aus27284. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2018; 131:1459-1467. [PMID: 29560515 DOI: 10.1007/s00122-018-3090-x] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2017] [Accepted: 03/16/2018] [Indexed: 05/26/2023]
Abstract
A new adult plant stripe rust resistance gene, Yr80, was identified in a common wheat landrace Aus27284. Linked markers were developed and validated for their utility in marker-assisted selection. Stripe rust, caused by Puccinia striiformis f. sp. tritici (Pst), is among the most important constraints to global wheat production. The identification and characterisation of new sources of host plant resistance enrich the gene pool and underpin deployment of resistance gene pyramids in new cultivars. Aus27284 exhibited resistance at the adult plant stage against predominant Pst pathotypes and was crossed with a susceptible genotype Avocet S. A recombinant inbred line (RIL) population comprising 121 lines was developed and tested in the field at three locations in 2016 and two in 2017 crop seasons. Monogenic segregation for adult plant stripe rust response was observed among the Aus27284/Avocet S RIL population and the underlying locus was temporarily designated YrAW11. Bulked-segregant analysis using the Infinium iSelect 90K SNP wheat array placed YrAW11 in chromosome 3B. Kompetitive allele specific PCR (KASP) primers were designed for the linked SNPs and YrAW11 was flanked by KASP_65624 and KASP_53292 (3 cM) proximally and KASP_53113 (4.9 cM) distally. A partial linkage map of the genomic region carrying YrAW11 comprised nine KASP and two SSR markers. The physical position of KASP markers in the pseudomolecule of chromosome 3B placed YrAW11 in the long arm and the location of markers gwm108 and gwm376 in the deletion bin 3BL2-0.22 supported this conclusion. As no other stripe rust resistance locus has been reported in chromosome 3BL, YrAW11 was formally designated Yr80. Marker KASP_ 53113 was polymorphic among 94% of 81 Australian wheat cultivars used for validation.
Collapse
Affiliation(s)
- Vallence Nsabiyera
- The University of Sydney Plant Breeding Institute, Cobbitty, NSW, 2570, Australia
| | - Harbans S Bariana
- The University of Sydney Plant Breeding Institute, Cobbitty, NSW, 2570, Australia
| | - Naeela Qureshi
- The University of Sydney Plant Breeding Institute, Cobbitty, NSW, 2570, Australia
| | - Debbie Wong
- Department of Economic Development, Jobs, Transport and Resources, La Trobe University AgriBio, Bundoora, VIC, 3083, Australia
| | - Matthew J Hayden
- Department of Economic Development, Jobs, Transport and Resources, La Trobe University AgriBio, Bundoora, VIC, 3083, Australia
| | - Urmil K Bansal
- The University of Sydney Plant Breeding Institute, Cobbitty, NSW, 2570, Australia.
| |
Collapse
|
19
|
Xu X, Yuan D, Li D, Gao Y, Wang Z, Liu Y, Wang S, Xuan Y, Zhao H, Li T, Wu Y. Identification of stem rust resistance genes in wheat cultivars in China using molecular markers. PeerJ 2018; 6:e4882. [PMID: 29844997 PMCID: PMC5971096 DOI: 10.7717/peerj.4882] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2018] [Accepted: 05/11/2018] [Indexed: 11/20/2022] Open
Abstract
Wheat stem rust caused by Puccinia graminis f. sp. tritici Eriks. & E. Henn. (Pgt), is a major disease that has been effectively controlled using resistance genes. The appearance and spread of Pgt races such as Ug99, TKTTF, and TTTTF, which are virulent to most stem rust-resistant genes currently deployed in wheat breeding programs, renewed the interest in breeding cultivars resistant to wheat stem rust. It is therefore important to investigate the levels of resistance or vulnerability of wheat cultivars to Pgt races. Resistance to Pgt races 21C3CTHQM, 34MKGQM, and 34C3RTGQM was evaluated in 136 Chinese wheat cultivars at the seedling stage. A total of 124 cultivars (91.2%) were resistant to the three races. Resistance genes Sr2, Sr24, Sr25, Sr26, Sr31, and Sr38 were analyzed using molecular markers closely linked to them, and 63 of the 136 wheat cultivars carried at least one of these genes: 21, 25, and 28 wheat cultivars likely carried Sr2, Sr31, and Sr38, respectively. Cultivars "Kehan 3" and "Jimai 22" likely carried Sr25. None of the cultivars carried Sr24 or Sr26. These cultivars with known stem rust resistance genes provide valuable genetic material for breeding resistant wheat cultivars.
Collapse
Affiliation(s)
- Xiaofeng Xu
- College of Plant Protection, Shenyang Agricultural University, Shenyang, China
| | - Depeng Yuan
- College of Plant Protection, Shenyang Agricultural University, Shenyang, China
| | - Dandan Li
- College of Plant Protection, Shenyang Agricultural University, Shenyang, China
| | - Yue Gao
- College of Plant Protection, Shenyang Agricultural University, Shenyang, China
| | - Ziyuan Wang
- College of Plant Protection, Shenyang Agricultural University, Shenyang, China
| | - Yang Liu
- College of Plant Protection, Shenyang Agricultural University, Shenyang, China
| | - Siting Wang
- College of Plant Protection, Shenyang Agricultural University, Shenyang, China
| | - Yuanhu Xuan
- College of Plant Protection, Shenyang Agricultural University, Shenyang, China
| | - Hui Zhao
- Henan Academy of Agricultural Science, Institute of Plant Protection, Henan, China
| | - Tianya Li
- College of Plant Protection, Shenyang Agricultural University, Shenyang, China
| | - Yuanhua Wu
- College of Plant Protection, Shenyang Agricultural University, Shenyang, China
| |
Collapse
|
20
|
Qureshi N, Bariana H, Kumran VV, Muruga S, Forrest KL, Hayden MJ, Bansal U. A new leaf rust resistance gene Lr79 mapped in chromosome 3BL from the durum wheat landrace Aus26582. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2018; 131:1091-1098. [PMID: 29396589 DOI: 10.1007/s00122-018-3060-3] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2017] [Accepted: 01/19/2018] [Indexed: 05/25/2023]
Abstract
A new leaf rust resistance gene Lr79 has been mapped in the long arm of chromosome 3B and a linked marker was identified for marker-assisted selection. Aus26582, a durum wheat landrace from the A. E. Watkins Collection, showed seedling resistance against durum-specific and common wheat-specific Puccinia triticina (Pt) pathotypes. Genetic analysis using a recombinant inbred line (RIL) population developed from a cross between Aus26582 and the susceptible parent Bansi with Australian Pt pathotype showed digenic inheritance and the underlying loci were temporarily named LrAW2 and LrAW3. LrAW2 was located in chromosome 6BS and this study focused on characterisation of LrAW3 using RILs lacking LrAW2. LrAW3 was incorporated into the DArTseq map of Aus26582/Bansi and was located in chromosome 3BL. Markers linked with LrAW3 were developed from the chromosome survey sequence contig 3B_10474240 in which closely-linked DArTseq markers 1128708 and 3948563 were located. Although bulk segregant analysis (BSA) with the 90 K Infinium array identified 51 SNPs associated with LrAW3, only one SNP-derived KASP marker mapped close to the locus. Deletion bin mapping of LrAW3-linked markers located LrAW3 between bins 3BL11-0.85-0.90 and 3BL7-0.63. Since no other all stage leaf rust resistance gene is located in chromosome 3BL, LrAW3 represented a new locus and was designated Lr79. Marker sun786 mapped 1.8 cM distal to Lr79 and Aus26582 was null for this locus. However, the marker can be reliably scored as it also amplifies a monomorphic fragment that serves as an internal control to differentiate the null status of Aus26582 from reaction failure. This marker was validated among a set of durum and common wheat cultivars and was shown to be useful for marker-assisted selection of Lr79 at both ploidy levels.
Collapse
Affiliation(s)
- Naeela Qureshi
- The University of Sydney Plant Breeding Institute, School of Life and Environmental Sciences, 107 Cobbitty Road, Cobbitty, NSW, 2570, Australia
| | - Harbans Bariana
- The University of Sydney Plant Breeding Institute, School of Life and Environmental Sciences, 107 Cobbitty Road, Cobbitty, NSW, 2570, Australia
| | - Vikas Venu Kumran
- ICAR-Indian Agricultural Research Institute Regional Station, Wellington, India
| | - Sivasamy Muruga
- ICAR-Indian Agricultural Research Institute Regional Station, Wellington, India
| | - Kerrie L Forrest
- Agriculture, Energy & Resources, Department of Economic Development, Jobs, Transport and Resources, AgriBio, Bundoora, Australia
| | - Mathew J Hayden
- Agriculture, Energy & Resources, Department of Economic Development, Jobs, Transport and Resources, AgriBio, Bundoora, Australia
| | - Urmil Bansal
- The University of Sydney Plant Breeding Institute, School of Life and Environmental Sciences, 107 Cobbitty Road, Cobbitty, NSW, 2570, Australia.
| |
Collapse
|
21
|
Qureshi N, Bariana HS, Zhang P, McIntosh R, Bansal UK, Wong D, Hayden MJ, Dubcovsky J, Shankar M. Genetic Relationship of Stripe Rust Resistance Genes Yr34 and Yr48 in Wheat and Identification of Linked KASP Markers. PLANT DISEASE 2018; 102:413-420. [PMID: 30673523 DOI: 10.1094/pdis-08-17-1144-re] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
The Australian continent was free from wheat stripe rust caused by Puccinia striiformis f. sp. tritici until exotic incursions occurred in 1979 and 2002. The 2002 incursion enabled the identification of a new stripe rust resistance gene (Yr34) in the advanced breeding line WAWHT2046. In this study, we developed and validated markers closely linked with Yr34, which is located in the distal region in the long arm of chromosome 5A. Four kompetitive allele-specific polymerase chain reaction (KASP) and three sequence-tagged site (STS) markers derived from the International Wheat Genome Sequencing Consortium RefSeq v1.0 scaffold-77836 cosegregated with Yr34. Markers sun711, sun712, sun725, sunKASP_109, and sunKASP_112 were shown to be suitable for marker-assisted selection in a validation panel of 71 Australian spring wheat genotypes, with the exception of cultivar Orion that carried the Yr34-linked alleles for sunKASP_109 and sunKASP_112. Markers previously reported to be linked with adult plant stripe rust resistance gene Yr48 also cosegregated with Yr34. Wheat genotypes carrying Yr34 and Yr48 produced identical haplotypes for the Yr34-linked markers identified in this study and those previously reported to be linked with Yr48. Phenotypic testing of genotypes carrying Yr34 and Yr48 showed that both genes conferred similar seedling responses to pre-2002 and post-2002 P. striiformis f. sp. tritici pathotypes. Further testing of 600 F2 plants from a cross between WAWHT2046 and RIL143 (Yr48) with P. striiformis f. sp. tritici pathotype 134 E16A+Yr17+Yr27+ failed to reveal any susceptible segregants. Our results strongly suggest that Yr34 and Yr48 are the same gene, and that Yr48 should be considered a synonym of Yr34.
Collapse
Affiliation(s)
- N Qureshi
- The University of Sydney Plant Breeding Institute, Faculty of Science, Cobbitty, NSW 2570, Australia
| | - H S Bariana
- The University of Sydney Plant Breeding Institute, Faculty of Science, Cobbitty, NSW 2570, Australia
| | - P Zhang
- The University of Sydney Plant Breeding Institute, Faculty of Science, Cobbitty, NSW 2570, Australia
| | - R McIntosh
- The University of Sydney Plant Breeding Institute, Faculty of Science, Cobbitty, NSW 2570, Australia
| | - U K Bansal
- The University of Sydney Plant Breeding Institute, Faculty of Science, Cobbitty, NSW 2570, Australia
| | - D Wong
- Department of Economic Development, Jobs, Transport and Resources, AgriBio Centre, La Trobe Research and Development Park, Bundoora, VIC 3083, Australia
| | - M J Hayden
- Department of Economic Development, Jobs, Transport and Resources, AgriBio Centre, La Trobe Research and Development Park, Bundoora, VIC 3083, Australia
| | - J Dubcovsky
- Department of Plant Sciences, University of California, Davis 95616
| | - M Shankar
- Agriculture and Food, Department of Primary Industries and Regional Development, South Perth, WA 6151, Australia; and School of Agriculture and Environment, University of Western Australia, Crawley WA 6009, Australia
| |
Collapse
|
22
|
Qureshi N, Bariana H, Kolmer JA, Miah H, Bansal U. Genetic and Molecular Characterization of Leaf Rust Resistance in Two Durum Wheat Landraces. PHYTOPATHOLOGY 2017; 107:1381-1387. [PMID: 28812937 DOI: 10.1094/phyto-01-17-0005-r] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Leaf rust, caused by Puccinia triticina, is a constraint to durum wheat (Triticum turgidum subsp. durum) production, and landraces are reported to be an important source of resistance. Two Portuguese landraces (Aus26582 and Aus26579) showed resistance against durum-specific P. triticina races and were crossed with a susceptible landrace (Bansi) to develop recombinant inbred line (RIL) populations. Monogenic segregation for leaf rust resistance was observed among both RIL populations. The underlying locus, temporarily named LrAW2, was mapped to the short arm of chromosome 6B in the Aus26582/Bansi population and five DArTseq markers cosegregated with LrAW2. Simple sequence repeat markers sun683 and sun684, developed from the chromosome survey sequence (CSS) contig 6BS_2963854, identified through BlastN search of cosegregating DArTseq markers in the International Wheat Genome Sequencing Consortium database, cosegregated with LrAW2. Comparison of the CSS contig 6BS_2963854-based sequences amplified from parental genotypes led to the development of marker sunKASP_60, which also showed close linkage with LrAW2. Markers sun684 and sunKASP_60 showed close association with LrAW2 in both RIL populations. The amplification of LrAW2-specific products by linked markers in Aus26582, Aus26579, and Guayacan (Lr61) indicated that LrAW2 may be Lr61. The alternate amplicon or haplotype produced with LrAW2-linked markers in Australian durum cultivars demonstrated their effectiveness in marker-assisted selection.
Collapse
Affiliation(s)
- Naeela Qureshi
- First, second, fourth, and fifth authors: The University of Sydney Plant Breeding Institute, Private Bag 4011, Narellan, NSW 2567, Australia; and third author: United States Department of Agriculture-Agricultural Research Service Cereal Disease Laboratory, St. Paul, MN, 55108
| | - Harbans Bariana
- First, second, fourth, and fifth authors: The University of Sydney Plant Breeding Institute, Private Bag 4011, Narellan, NSW 2567, Australia; and third author: United States Department of Agriculture-Agricultural Research Service Cereal Disease Laboratory, St. Paul, MN, 55108
| | - James A Kolmer
- First, second, fourth, and fifth authors: The University of Sydney Plant Breeding Institute, Private Bag 4011, Narellan, NSW 2567, Australia; and third author: United States Department of Agriculture-Agricultural Research Service Cereal Disease Laboratory, St. Paul, MN, 55108
| | - Hanif Miah
- First, second, fourth, and fifth authors: The University of Sydney Plant Breeding Institute, Private Bag 4011, Narellan, NSW 2567, Australia; and third author: United States Department of Agriculture-Agricultural Research Service Cereal Disease Laboratory, St. Paul, MN, 55108
| | - Urmil Bansal
- First, second, fourth, and fifth authors: The University of Sydney Plant Breeding Institute, Private Bag 4011, Narellan, NSW 2567, Australia; and third author: United States Department of Agriculture-Agricultural Research Service Cereal Disease Laboratory, St. Paul, MN, 55108
| |
Collapse
|
23
|
Babiker EM, Gordon TC, Bonman JM, Chao S, Rouse MN, Jin Y, Newcomb M, Wanyera R, Bhavani S. Genetic Loci Conditioning Adult Plant Resistance to the Ug99 Race Group and Seedling Resistance to Races TRTTF and TTTTF of the Stem Rust Pathogen in Wheat Landrace CItr 15026. PLANT DISEASE 2017; 101:496-501. [PMID: 30677344 DOI: 10.1094/pdis-10-16-1447-re] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Wheat landrace CItr 15026 previously showed adult plant resistance (APR) to the Ug99 stem rust race group in Kenya and seedling resistance to Puccinia graminis f. sp. tritici races QFCSC, TTTTF, and TRTTF. CItr 15026 was crossed to susceptible accessions LMPG-6 and Red Bobs, and 180 double haploid (DH) lines and 140 recombinant inbred lines (RIL), respectively, were developed. The 90K wheat iSelect single-nucleotide polymorphism platform was used to genotype the parents and populations. Parents and 180 DH lines were evaluated in the field in Kenya for three seasons. A major quantitative trait locus (QTL) for APR was consistently detected on chromosome arm 6AS. This QTL was further detected in the RIL population screened in Kenya for one season. Parents, F1, and the two populations were tested as seedlings against races TRTTF and TTTTF. In addition, the DH population was tested against race QFCSC. Goodness-of-fit tests indicated that the TRTTF resistance in CItr 15026 was controlled by two complementary genes whereas the TTTTF and QFCSC resistance was conditioned by one dominant gene. The TRTTF resistance loci mapped to chromosome arms 6AS and 6DS, whereas the TTTTF and QFCSC resistance locus mapped to the same region on 6DS as the TRTTF resistance. The APR identified in CItr 15026 should be useful in developing cultivars with durable stem rust resistance.
Collapse
Affiliation(s)
- E M Babiker
- United States Department of Agriculture-Agricultural Research Service (USDA-ARS), Small Grains and Potato Germplasm Research Unit, Aberdeen, ID 83210
| | - T C Gordon
- United States Department of Agriculture-Agricultural Research Service (USDA-ARS), Small Grains and Potato Germplasm Research Unit, Aberdeen, ID 83210
| | - J M Bonman
- United States Department of Agriculture-Agricultural Research Service (USDA-ARS), Small Grains and Potato Germplasm Research Unit, Aberdeen, ID 83210
| | - S Chao
- USDA-ARS, Cereal Crops Research, Fargo, ND 58102
| | - M N Rouse
- USDA-ARS, Cereal Disease Laboratory, St. Paul, MN 55108
| | - Y Jin
- USDA-ARS, Cereal Disease Laboratory, St. Paul, MN 55108
| | - M Newcomb
- School of Plant Sciences, University of Arizona, Maricopa
| | - R Wanyera
- Kenya Agricultural and Livestock Research Organization, Njoro 20107, Kenya
| | - S Bhavani
- International Maize and Wheat Improvement Center, Nairobi, Kenya
| |
Collapse
|
24
|
Qureshi N, Bariana H, Forrest K, Hayden M, Keller B, Wicker T, Faris J, Salina E, Bansal U. Fine mapping of the chromosome 5B region carrying closely linked rust resistance genes Yr47 and Lr52 in wheat. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2017; 130:495-504. [PMID: 27866228 DOI: 10.1007/s00122-016-2829-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2016] [Accepted: 11/12/2016] [Indexed: 05/26/2023]
Abstract
Fine mapping of Yr47 and Lr52 in chromosome arm 5BS of wheat identified close linkage of the marker sun180 to both genes and its robustness for marker-assisted selection was demonstrated. The widely effective and genetically linked rust resistance genes Yr47 and Lr52 have previously been mapped in the short arm of chromosome 5B in two F3 populations (Aus28183/Aus27229 and Aus28187/Aus27229). The Aus28183/Aus27229 F3 population was advanced to generate an F6 recombinant inbred line (RIL) population to identify markers closely linked with Yr47 and Lr52. Diverse genomic resources including flow-sorted chromosome survey sequence contigs representing the orthologous region in Brachypodium distachyon, the physical map of chromosome arm 5BS, expressed sequence tags (ESTs) located in the 5BS6-0.81-1.00 deletion bin and resistance gene analog contigs of chromosome arm 5BS were used to develop markers to saturate the target region. Selective genotyping was also performed using the iSelect 90 K Infinium wheat SNP assay. A set of SSR, STS, gene-based and SNP markers were developed and genotyped on the Aus28183/Aus27229 RIL population. Yr47 and Lr52 are genetically distinct genes that mapped 0.4 cM apart in the RIL population. The SSR marker sun180 co-segregated with Lr52 and mapped 0.4 cM distal to Yr47. In a high resolution mapping population of 600 F2 genotypes Yr47 and Lr52 mapped 0.2 cM apart and marker sun180 was placed 0.4 cM distal to Lr52. The amplification of a different sun180 amplicon (195 bp) than that linked with Yr47 and Lr52 (200 bp) in 204 diverse wheat genotypes demonstrated its robustness for marker-assisted selection of these genes.
Collapse
Affiliation(s)
- Naeela Qureshi
- Faculty of Agriculture, Food and Natural Resources, The University of Sydney Plant Breeding Institute, Private Bag 4011, Narellan, NSW, 2567, Australia
| | - Harbans Bariana
- Faculty of Agriculture, Food and Natural Resources, The University of Sydney Plant Breeding Institute, Private Bag 4011, Narellan, NSW, 2567, Australia
| | - Kerrie Forrest
- Department of Economic Development, Jobs, Transport and Resources, La Trobe University AgriBio, Bundoora, VIC, 3083, Australia
| | - Matthew Hayden
- Department of Economic Development, Jobs, Transport and Resources, La Trobe University AgriBio, Bundoora, VIC, 3083, Australia
| | - Beat Keller
- Department of Plant and Microbial Biology, University of Zurich, Zollikerstrasse 107, 8008, Zurich, Switzerland
| | - Thomas Wicker
- Department of Plant and Microbial Biology, University of Zurich, Zollikerstrasse 107, 8008, Zurich, Switzerland
| | - Justin Faris
- USDA-ARS Cereal Crops Research Unit, Red River Valley Agricultural Research Center, 1605 Albrecht BLVD, Fargo, ND, 58102-2765, USA
| | - Elena Salina
- Institute of Cytology and Genetics SB RAS, Novosibirsk, Russia
| | - Urmil Bansal
- Faculty of Agriculture, Food and Natural Resources, The University of Sydney Plant Breeding Institute, Private Bag 4011, Narellan, NSW, 2567, Australia.
| |
Collapse
|
25
|
Chemayek B, Bansal UK, Qureshi N, Zhang P, Wagoire WW, Bariana HS. Tight repulsion linkage between Sr36 and Sr39 was revealed by genetic, cytogenetic and molecular analyses. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2017; 130:587-595. [PMID: 27913833 DOI: 10.1007/s00122-016-2837-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2016] [Accepted: 11/26/2016] [Indexed: 05/13/2023]
Abstract
The shortening of Aegilops speltoides segment did not facilitate recombination between stem rust resistance genes Sr36 and Sr39 . Robustness of marker rwgs28 for marker-assisted selection of Sr39 was demonstrated. Stem rust resistance genes Sr39 and Sr36 were transferred from Aegilops speltoides and Triticum timopheevii, respectively, to chromosome 2B of wheat. Genetic stocks RL6082 and RWG1 carrying Sr39 on a large and a shortened Ae. speltoides segments, respectively, and the Sr36-carrying Australian wheat cultivar Cook were used in this study. This investigation was planned to determine the genetic relationship between these genes. Stem rust tests on F3 populations derived from RL6082/Cook and RWG1/Cook crosses showed tight repulsion linkage between Sr39 and Sr36. The genomic in situ hybridization analysis of heterozygous F3 family from the RWG1/Cook population showed that the translocated segments do not overlap. Meiotic analysis on the F1 plant from RWG1/Cook showed two univalents at the metaphase and anaphase stages in a majority of the cells indicating absence of pairing. Since meiotic pairing has been reported to initiate at the telomere, pairing and recombination may be inhibited due to very little wheat chromatin in the distal end of the chromosome arm 2BS in RWG1. The Sr39-carrying large Ae. speltoides segment transmitted preferentially in the RL6082/Cook F3 population, whereas the Sr36-carrying T. timopheevii segment over-transmitted in the RWG1/Cook cross. Genotyping with the co-dominant Sr39- and Sr36-linked markers rwgs28 and stm773-2, respectively, matched the phenotypic classification of F3 families. The RWG1 allele amplified by rwgs28 was diagnostic for the shortened Ae. speltoides segment and alternate alleles were amplified in 29 Australian cultivars. Marker rwgs28 will be useful in marker-assisted pyramiding of Sr39 with other genes.
Collapse
Affiliation(s)
- Bosco Chemayek
- The University of Sydney Plant Breeding Institute-Cobbitty, PMB 4011, Narellan, NSW 2567, Australia
- National Agricultural Research Organisation (NARO), 1356, Mbale, Uganda
| | - Urmil K Bansal
- The University of Sydney Plant Breeding Institute-Cobbitty, PMB 4011, Narellan, NSW 2567, Australia
| | - Naeela Qureshi
- The University of Sydney Plant Breeding Institute-Cobbitty, PMB 4011, Narellan, NSW 2567, Australia
| | - Peng Zhang
- The University of Sydney Plant Breeding Institute-Cobbitty, PMB 4011, Narellan, NSW 2567, Australia
| | - William W Wagoire
- National Agricultural Research Organisation (NARO), 1356, Mbale, Uganda
| | - Harbans S Bariana
- The University of Sydney Plant Breeding Institute-Cobbitty, PMB 4011, Narellan, NSW 2567, Australia.
| |
Collapse
|
26
|
Chhetri M, Bariana H, Kandiah P, Bansal U. Yr58: A New Stripe Rust Resistance Gene and Its Interaction with Yr46 for Enhanced Resistance. PHYTOPATHOLOGY 2016; 106:1530-1534. [PMID: 27673348 DOI: 10.1094/phyto-04-16-0182-r] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
The quantitative trait loci QYr.sun-3BS and QYr.sun-4DL were identified in the W195/BTSS recombinant inbred line (RIL) population in a previous study. QYr.sun-3BS explained 34 to 59% phenotypic variation in stripe rust response. We evaluated parental genotypes at different growth stages and temperature regimes to detect the critical stage for expression of QYr.sun-3BS. W195 expressed low infection type (IT) ;1C at the fourth leaf stage, when incubated at 21 ± 2°C and the alternate parent BTSS was susceptible (IT 3+). Monogenic segregation for stripe rust response was observed among the RIL population at the fourth leaf stage and the underlying locus was temporarily named YrW195. YrW195 corresponded to QYr.sun-3BS. Since no previously designated stripe rust resistance genes that expresses at and after the fourth leaf stage was mapped in this region, YrW195 was formally named Yr58. Genotyping with Yr46-linked markers indicated the presence of Yr46 in W195, which corresponded to QYr.sun-4DL. The RILs carrying Yr58 and Yr46 singly produced IT 23C and IT 3+, respectively, and those carrying both genes produced IT ;1C indicating the enhancement of Yr58 expression by Yr46. The absence of Yr58-linked alleles of markers sun533 and sun476 in 74 of the 76 wheat cultivars demonstrated their usefulness for marker-assisted selection.
Collapse
Affiliation(s)
- Mumta Chhetri
- All authors: University of Sydney Plant Breeding Institute-Cobbitty, Faculty of Agriculture and Environment, PMB 4011, Narellan, NSW2567, Australia
| | - Harbans Bariana
- All authors: University of Sydney Plant Breeding Institute-Cobbitty, Faculty of Agriculture and Environment, PMB 4011, Narellan, NSW2567, Australia
| | - Pakeerathan Kandiah
- All authors: University of Sydney Plant Breeding Institute-Cobbitty, Faculty of Agriculture and Environment, PMB 4011, Narellan, NSW2567, Australia
| | - Urmil Bansal
- All authors: University of Sydney Plant Breeding Institute-Cobbitty, Faculty of Agriculture and Environment, PMB 4011, Narellan, NSW2567, Australia
| |
Collapse
|
27
|
Rahmatov M, Rouse MN, Steffenson BJ, Andersson SC, Wanyera R, Pretorius ZA, Houben A, Kumarse N, Bhavani S, Johansson E. Sources of Stem Rust Resistance in Wheat-Alien Introgression Lines. PLANT DISEASE 2016; 100:1101-1109. [PMID: 30682285 DOI: 10.1094/pdis-12-15-1448-re] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
Stem rust is one of the most devastating diseases of wheat. Widely virulent races of the pathogen in the Ug99 lineage (e.g., TTKSK) are threatening wheat production worldwide; therefore, there is an urgent need to enhance the diversity of resistance genes in the crop. The objectives of this study were to identify new sources of resistance in wheat-alien introgression derivatives from Secale cereale, Leymus mollis, L. racemosus, and Thinopyrum junceiforme, postulate genes conferring the resistance, and verify the postulated genes by use of molecular markers. From seedling tests conducted in the greenhouse, the presence of seven known stem rust resistance genes (Sr7b, Sr8a, Sr9d, Sr10, Sr31, Sr36, and SrSatu) was postulated in the wheat-alien introgression lines. More lines possessed a high level of resistance in the field compared with the number of lines that were resistant at the seedling stage. Three 2R (2D) wheat-rye substitution lines (SLU210, SLU238, and SLU239) seemed likely to possess new genes for resistance to stem rust based on their resistance pattern to 13 different stem rust races but the genes responsible could not be identified. Wheat-rye, wheat-L. racemosus, and wheat-L. mollis substitutions or translocations with single and multiple interchanges of chromosomes, in particular of the B and D chromosomes of wheat, were verified by a combination of genomic in situ hybridization and molecular markers. Thus, the present study identified novel resistance genes originating from different alien introgressions into the wheat genome of the evaluated lines. Such genes may prove useful in enhancing the diversity of stem rust resistance in wheat against widely virulent pathogen races such as those in the Ug99 lineage.
Collapse
Affiliation(s)
- Mahbubjon Rahmatov
- Department of Plant Breeding, Swedish University of Agricultural Sciences, SE-23053 Alnarp, Sweden; Department of Plant Pathology, University of Minnesota, St. Paul 55108; and Tajik Agrarian University, Dushanbe, 734017, Tajikistan
| | - Matthew N Rouse
- United States Department of Agriculture-Agricultural Research Service, Cereal Disease Laboratory, St. Paul, MN 55108; and Department of Plant Pathology, University of Minnesota
| | | | | | - Ruth Wanyera
- Kenyan Agricultural and Livestock Research Organization Food Crops Research Center, Njoro, Kenya
| | - Zacharias A Pretorius
- Department of Plant Sciences, University of Free State, Bloemfontein 9300, South Africa
| | - Andreas Houben
- Leibniz Institute of Plant Genetics and Crop Plant Research, Gatersleben, 06466 Stadt Seeland, Germany
| | - Nazari Kumarse
- Regional Cereal Rust Research Center, Aegean Agricultural Research Institute, Menemen, Izmir, Turkey
| | - Sridhar Bhavani
- International Maize and Wheat Improvement Center, ICRAF House, Nairobi, Kenya
| | - Eva Johansson
- Department of Plant Breeding, Swedish University of Agricultural Sciences
| |
Collapse
|
28
|
Bajgain P, Rouse MN, Tsilo TJ, Macharia GK, Bhavani S, Jin Y, Anderson JA. Nested Association Mapping of Stem Rust Resistance in Wheat Using Genotyping by Sequencing. PLoS One 2016; 11:e0155760. [PMID: 27186883 PMCID: PMC4870046 DOI: 10.1371/journal.pone.0155760] [Citation(s) in RCA: 59] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2015] [Accepted: 05/04/2016] [Indexed: 11/19/2022] Open
Abstract
We combined the recently developed genotyping by sequencing (GBS) method with joint mapping (also known as nested association mapping) to dissect and understand the genetic architecture controlling stem rust resistance in wheat (Triticum aestivum). Ten stem rust resistant wheat varieties were crossed to the susceptible line LMPG-6 to generate F6 recombinant inbred lines. The recombinant inbred line populations were phenotyped in Kenya, South Africa, and St. Paul, Minnesota, USA. By joint mapping of the 10 populations, we identified 59 minor and medium-effect QTL (explained phenotypic variance range of 1% - 20%) on 20 chromosomes that contributed towards adult plant resistance to North American Pgt races as well as the highly virulent Ug99 race group. Fifteen of the 59 QTL were detected in multiple environments. No epistatic relationship was detected among the QTL. While these numerous small- to medium-effect QTL are shared among the families, the founder parents were found to have different allelic effects for the QTL. Fourteen QTL identified by joint mapping were also detected in single-population mapping. As these QTL were mapped using SNP markers with known locations on the physical chromosomes, the genomic regions identified with QTL could be explored more in depth to discover candidate genes for stem rust resistance. The use of GBS-derived de novo SNPs in mapping resistance to stem rust shown in this study could be used as a model to conduct similar marker-trait association studies in other plant species.
Collapse
Affiliation(s)
- Prabin Bajgain
- Department of Agronomy, Purdue University, 915 West State Street, West Lafayette, IN 47907, United States of America
- Department of Agronomy and Plant Genetics, University of Minnesota, St Paul, MN 55108, United States of America
| | - Matthew N. Rouse
- United States Department of Agriculture-Agricultural Research Service (USDA-ARS), Cereal Disease Laboratory, St. Paul, MN 55108, United States of America
- Department of Plant Pathology, University of Minnesota, St. Paul, MN 55108, United States of America
| | - Toi J. Tsilo
- Agricultural Research Council – Small Grain Institute, Bethlehem, 9700, Free State, South Africa
| | - Godwin K. Macharia
- Kenya Agricultural and Livestock Research Organization (KALRO), Njoro, Kenya
| | - Sridhar Bhavani
- International Maize and Wheat Improvement Center (CIMMYT), ICRAF House, United Nations Avenue, Gigiri, Nairobi, Kenya
| | - Yue Jin
- United States Department of Agriculture-Agricultural Research Service (USDA-ARS), Cereal Disease Laboratory, St. Paul, MN 55108, United States of America
| | - James A. Anderson
- Department of Agronomy and Plant Genetics, University of Minnesota, St Paul, MN 55108, United States of America
| |
Collapse
|
29
|
Postulation of rust resistance genes in Nordic spring wheat genotypes and identification of widely effective sources of resistance against the Australian rust flora. J Appl Genet 2016; 57:453-465. [PMID: 27091460 DOI: 10.1007/s13353-016-0345-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2016] [Revised: 03/15/2016] [Accepted: 03/18/2016] [Indexed: 12/30/2022]
Abstract
Wild relatives, landraces and cultivars from different geographical regions have been demonstrated as the sources of genetic variation for resistance to rust diseases. This study involved assessment of diversity for resistance to three rust diseases among a set of Nordic spring wheat cultivars. These cultivars were tested at the seedling stage against several pathotypes of three rust pathogens in the greenhouse. All stage stem rust resistance genes Sr7b, Sr8a, Sr12, Sr15, Sr17, Sr23 and Sr30, and leaf rust resistance genes Lr1, Lr3a, Lr13, Lr14a, Lr16 and Lr20 were postulated either singly or in different combinations among these cultivars. A high proportion of cultivars were identified to carry linked rust resistance genes Sr15 and Lr20. Although 51 cultivars showed variation against Puccinia striiformis f. sp. tritici (Pst) pathotypes used in this study, results were not clearly contrasting to enable postulation of stripe rust resistance genes in these genotypes. Stripe rust resistance gene Yr27 was postulated in four cultivars and Yr1 was present in cultivar Zebra. Cultivar Tjalve produced low stripe rust response against all Pst pathotypes indicating the presence either of a widely effective resistance gene or combination of genes with compensating pathogenic specificities. Several cultivars carried moderate to high level of APR to leaf rust and stripe rust. Seedling stem rust susceptible cultivar Aston exhibited moderately resistant to moderately susceptible response, whereas other cultivars belonging to this class were rated moderately susceptible or higher. Molecular markers linked with APR genes Yr48, Lr34/Yr18/Sr57, Lr68 and Sr2 detected the presence of these genes in some genotypes.
Collapse
|
30
|
Zhang H, Zhang L, Wang C, Wang Y, Zhou X, Lv S, Liu X, Kang Z, Ji W. Molecular mapping and marker development for the Triticum dicoccoides-derived stripe rust resistance gene YrSM139-1B in bread wheat cv. Shaanmai 139. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2016; 129:369-376. [PMID: 26649867 DOI: 10.1007/s00122-015-2633-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2015] [Accepted: 11/04/2015] [Indexed: 06/05/2023]
Abstract
KEY MESSAGE YrSM139-1B maybe a new gene for effective resistance to stripe rust and useful flanking markers for marker-assisted selection were developed. ABSTRACT Stripe rust, caused by Puccinia striiformis f. sp. tritici, is an important foliar disease of wheat. Two dominant stripe rust resistant genes YrSM139-1B and YrSM139-2D were pyramided in bread wheat cultivar Shaanmai 139; one from wild emmer and the other from Thinopyrum intermedium. Three near-isogenic F7:8 line pairs (contrasting RILs), N122-1013R/S, N122-185R/S, and N122-1812R/S, independently derived from different F2 plants and differing at the YrSM139-1B locus were generated from the cross Shaanmai 139 × Hu 901-19 through marker-assisted selection. A large F2:3 population from cross N122-1013R × N122-1013S tested for stripe rust response and subjected to analysis with markers in the 1BS10-0.5 bin region using SSR expressed sequence tags (EST) and site-specific sequence markers developed from the 90 K Illumina iSelect SNP array. Five EST-STS markers and four allele-specific PCR markers were mapped to the YrSM139-1B region. The 30.5 cM genetic map for YrSM139-1B consisted of nine markers, two of which were closer to YrSM139-1B than Xgwm273, which was used in producing the contrasting RIL pairs. Race response data and allelism tests showed that YrSM139-1B is different from Yr10, Yr15, and Yr24/26/CH42.
Collapse
Affiliation(s)
- Hong Zhang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy (Northwest A&F University), Yangling, 712100, Shaanxi, China.
- College of Plant Protection, Northwest A&F University, Yangling, 712100, Shaanxi, China.
| | - Lu Zhang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy (Northwest A&F University), Yangling, 712100, Shaanxi, China
| | - Changyou Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy (Northwest A&F University), Yangling, 712100, Shaanxi, China
| | - Yajuan Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy (Northwest A&F University), Yangling, 712100, Shaanxi, China
| | - Xinli Zhou
- College of Plant Protection, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Shikai Lv
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy (Northwest A&F University), Yangling, 712100, Shaanxi, China
| | - Xinlun Liu
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy (Northwest A&F University), Yangling, 712100, Shaanxi, China
| | - Zhensheng Kang
- College of Plant Protection, Northwest A&F University, Yangling, 712100, Shaanxi, China.
| | - Wanquan Ji
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy (Northwest A&F University), Yangling, 712100, Shaanxi, China.
| |
Collapse
|
31
|
Yu G, Klindworth DL, Friesen TL, Faris JD, Zhong S, Rasmussen JB, Xu SS. Development of a diagnostic co-dominant marker for stem rust resistance gene Sr47 introgressed from Aegilops speltoides into durum wheat. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2015; 128:2367-2374. [PMID: 26260850 DOI: 10.1007/s00122-015-2590-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2015] [Accepted: 07/23/2015] [Indexed: 06/04/2023]
Abstract
A robust and diagnostic STS marker for stem rust resistance gene Sr47 was developed and validated for marker-assisted selection. Stem rust (caused by Puccinia graminis f. sp. tritici, Pgt) resistance gene Sr47, originally transferred from Aegilops speltoides to durum wheat (Triticum turgidum subsp. durum) line DAS15, confers a high level of resistance to Pgt race TTKSK (Ug99). Recently, the durum Rusty 5D(5B) substitution line was used to reduce the Ae. speltoides segment, and the resulting lines had Sr47 on small Ae. speltoides segments on wheat chromosome arm 2BL. The objective of this study was to develop a robust marker for marker-assisted selection of Sr47. A 200-kb segment of the Brachypodium distachyon genome syntenic with the Sr47 region was used to identify wheat expressed sequence tags (ESTs) homologous to the B. distachyon genes. The wheat EST sequences were then used to develop sequence-tagged site (STS) markers. By analyzing the markers for polymorphism between Rusty and DAS15, we identified a co-dominant STS marker, designated as Xrwgs38, which amplified 175 and 187 bp fragments from wheat chromosome 2B and Ae. speltoides chromosome 2S segments, respectively. The marker co-segregated with the Ae. speltoides segments carrying Sr47 in the families from four BC2F1 plants, including the parent plants for durum lines RWG35 and RWG36 with the pedigree of Rusty/3/Rusty 5D(5B)/DAS15//47-1 5D(5B). Analysis of 62 durum and common wheat cultivars/lines lacking the Sr47 segment indicated that they all possessed the 175-bp allele of Xrwgs38, indicating that it was diagnostic for the small Ae. speltoides segment carrying Sr47. This study demonstrated that Xrwgs38 will facilitate the selection of Sr47 in durum and common wheat breeding.
Collapse
Affiliation(s)
- Guotai Yu
- Department of Plant Pathology, North Dakota State University, Fargo, ND, 58108, USA
| | - Daryl L Klindworth
- Cereal Crops Research Unit, Red River Valley Agricultural Research Center, USDA-ARS, 1605 Albrecht Blvd. North, Fargo, ND, 58102-2765, USA
| | - Timothy L Friesen
- Cereal Crops Research Unit, Red River Valley Agricultural Research Center, USDA-ARS, 1605 Albrecht Blvd. North, Fargo, ND, 58102-2765, USA
| | - Justin D Faris
- Cereal Crops Research Unit, Red River Valley Agricultural Research Center, USDA-ARS, 1605 Albrecht Blvd. North, Fargo, ND, 58102-2765, USA
| | - Shaobin Zhong
- Department of Plant Pathology, North Dakota State University, Fargo, ND, 58108, USA
| | - Jack B Rasmussen
- Department of Plant Pathology, North Dakota State University, Fargo, ND, 58108, USA
| | - Steven S Xu
- Cereal Crops Research Unit, Red River Valley Agricultural Research Center, USDA-ARS, 1605 Albrecht Blvd. North, Fargo, ND, 58102-2765, USA.
| |
Collapse
|
32
|
Bajgain P, Rouse MN, Bulli P, Bhavani S, Gordon T, Wanyera R, Njau PN, Legesse W, Anderson JA, Pumphrey MO. Association mapping of North American spring wheat breeding germplasm reveals loci conferring resistance to Ug99 and other African stem rust races. BMC PLANT BIOLOGY 2015; 15:249. [PMID: 26467989 PMCID: PMC4606553 DOI: 10.1186/s12870-015-0628-9] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2014] [Accepted: 09/28/2015] [Indexed: 05/03/2023]
Abstract
BACKGROUND The recently identified Puccinia graminis f. sp. tritici (Pgt) race TTKSK (Ug99) poses a severe threat to global wheat production because of its broad virulence on several widely deployed resistance genes. Additional virulences have been detected in the Ug99 group of races, and the spread of this race group has been documented across wheat growing regions in Africa, the Middle East (Yemen), and West Asia (Iran). Other broadly virulent Pgt races, such as TRTTF and TKTTF, present further difficulties in maintaining abundant genetic resistance for their effective use in wheat breeding against this destructive fungal disease of wheat. In an effort to identify loci conferring resistance to these races, a genome-wide association study was carried out on a panel of 250 spring wheat breeding lines from the International Maize and Wheat Improvement Center (CIMMYT), six wheat breeding programs in the United States and three wheat breeding programs in Canada. RESULTS The lines included in this study were grouped into two major clusters, based on the results of principal component analysis using 23,976 SNP markers. Upon screening for adult plant resistance (APR) to Ug99 during 2013 and 2014 in artificial stem rust screening nurseries at Njoro, Kenya and at Debre Zeit, Ethiopia, several wheat lines were found to exhibit APR. The lines were also screened for resistance at the seedling stage against races TTKSK, TRTTF, and TKTTF at USDA-ARS Cereal Disease Laboratory in St. Paul, Minnesota; and only 9 of the 250 lines displayed seedling resistance to all the races. Using a mixed linear model, 27 SNP markers associated with APR against Ug99 were detected, including markers linked with the known APR gene Sr2. Using the same model, 23, 86, and 111 SNP markers associated with seedling resistance against races TTKSK, TRTTF, and TKTTF were identified, respectively. These included markers linked to the genes Sr8a and Sr11 providing seedling resistance to races TRTTF and TKTTF, respectively. We also identified putatively novel Sr resistance genes on chromosomes 3B, 4D, 5A, 5B, 6A, 7A, and 7B. CONCLUSION Our results demonstrate that the North American wheat breeding lines have several resistance loci that provide APR and seedling resistance to highly virulent Pgt races. Using the resistant lines and the SNP markers identified in this study, marker-assisted resistance breeding can assist in development of varieties with elevated levels of resistance to virulent stem rust races including TTKSK.
Collapse
Affiliation(s)
- P Bajgain
- Department of Agronomy, Purdue University, 915 West State Street, West Lafayette, IN, 47907, USA.
- Department of Agronomy and Plant Genetics, University of Minnesota, St. Paul, MN, 55108, USA.
| | - M N Rouse
- United States Department of Agriculture-Agricultural Research Service (USDA-ARS), Cereal Disease Laboratory, St. Paul, MN, 55108, USA.
- Department of Plant Pathology, University of Minnesota, St. Paul, MN, 55108, USA.
| | - P Bulli
- Department of Crop and Soil Sciences, Washington State University, Pullman, WA, 99164, USA.
| | - S Bhavani
- International Maize and Wheat Improvement Center (CIMMYT), ICRAF House, United Nations Avenue, Gigiri, Nairobi, Kenya.
| | - T Gordon
- United States Department of Agriculture-Agricultural Research Service (USDA-ARS), Aberdeen, ID, 83210, USA.
| | - R Wanyera
- Kenya Agricultural and Livestock Research Organization (KALRO), Njoro, Kenya.
| | - P N Njau
- Kenya Agricultural and Livestock Research Organization (KALRO), Njoro, Kenya.
| | - W Legesse
- Ethiopian Institute of Agricultural Research (EIAR), Pawe, Ethiopia.
| | - J A Anderson
- Department of Agronomy and Plant Genetics, University of Minnesota, St. Paul, MN, 55108, USA.
| | - M O Pumphrey
- Department of Crop and Soil Sciences, Washington State University, Pullman, WA, 99164, USA.
| |
Collapse
|
33
|
Bansal UK, Muhammad S, Forrest KL, Hayden MJ, Bariana HS. Mapping of a new stem rust resistance gene Sr49 in chromosome 5B of wheat. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2015; 128:2113-9. [PMID: 26163768 DOI: 10.1007/s00122-015-2571-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2015] [Accepted: 06/23/2015] [Indexed: 05/26/2023]
Abstract
A new stem rust resistance gene Sr49 was mapped to chromosome 5BL of wheat. Usefulness of the closely linked markers sun209 and sun479 for marker-assisted selection of Sr49 was demonstrated. Landrace AUS28011 (Mahmoudi), collected from Ghardimaou, Tunisia, produced low stem rust response against Australian pathotypes of Puccinia graminis f. sp. tritici (Pgt) carrying virulence for several stem rust resistance genes deployed in modern wheat cultivars. Genetic analysis based on a Mahmoudi/Yitpi F3 population indicated the involvement of a single all-stage stem rust resistance gene and it was temporarily named SrM. Bulked segregant analysis using multiplex-ready SSR technology located SrM on the long arm of chromosome 5B. Since there is no other all-stage stem rust resistance gene located in chromosome 5BL, SrM was permanently designated Sr49. The Mahmoudi/Yitpi F3 population was enhanced to generate F6 recombinant inbred line (RIL) population for detailed mapping of Sr49 using publicly available genomic resources. Markers sun209 and sun479 flanked Sr49 at 1.5 and 0.9 cM distally and proximally, respectively. Markers sun209 and sun479 amplified PCR products different than the Sr49-linked alleles in 146 and 145 common wheat cultivars, respectively. Six and seven cultivars, respectively, carried the resistance-linked marker alleles sun209 148bp and sun479 200bp ; however, none of the cultivars carried both resistance-linked alleles. These results demonstrated the usefulness of these markers for marker-assisted selection of Sr49 in breeding programs.
Collapse
Affiliation(s)
- Urmil K Bansal
- Faculty of Agriculture, Food and Natural Resources, The University of Sydney PBI-Cobbitty, Private Bag 4011, Narellan, NSW, 2567, Australia
| | - Sher Muhammad
- Faculty of Agriculture, Food and Natural Resources, The University of Sydney PBI-Cobbitty, Private Bag 4011, Narellan, NSW, 2567, Australia
| | - Kerrie L Forrest
- Department of Environment and Primary Industries, AgriBioCentre, La Trobe Research and Development Park, Bundoora, VIC, 3082, Australia
| | - Matthew J Hayden
- Department of Environment and Primary Industries, AgriBioCentre, La Trobe Research and Development Park, Bundoora, VIC, 3082, Australia
| | - Harbans S Bariana
- Faculty of Agriculture, Food and Natural Resources, The University of Sydney PBI-Cobbitty, Private Bag 4011, Narellan, NSW, 2567, Australia.
| |
Collapse
|
34
|
Goutam U, Kukreja S, Yadav R, Salaria N, Thakur K, Goyal AK. Recent trends and perspectives of molecular markers against fungal diseases in wheat. Front Microbiol 2015; 6:861. [PMID: 26379639 PMCID: PMC4548237 DOI: 10.3389/fmicb.2015.00861] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2015] [Accepted: 08/06/2015] [Indexed: 01/24/2023] Open
Abstract
Wheat accounts for 19% of the total production of major cereal crops in the world. In view of ever increasing population and demand for global food production, there is an imperative need of 40-60% increase in wheat production to meet the requirement of developing world in coming 40 years. However, both biotic and abiotic stresses are major hurdles for attaining the goal. Among the most important diseases in wheat, fungal diseases pose serious threat for widening the gap between actual and attainable yield. Fungal disease management, mainly, depends on the pathogen detection, genetic and pathological variability in population, development of resistant cultivars and deployment of effective resistant genes in different epidemiological regions. Wheat protection and breeding of resistant cultivars using conventional methods are time-consuming, intricate and slow processes. Molecular markers offer an excellent alternative in development of improved disease resistant cultivars that would lead to increase in crop yield. They are employed for tagging the important disease resistance genes and provide valuable assistance in increasing selection efficiency for valuable traits via marker assisted selection (MAS). Plant breeding strategies with known molecular markers for resistance and functional genomics enable a breeder for developing resistant cultivars of wheat against different fungal diseases.
Collapse
Affiliation(s)
- Umesh Goutam
- Department of Biotechnology, Lovely Professional University, PhagwaraPunjab, India
| | - Sarvjeet Kukreja
- Department of Biotechnology, Lovely Professional University, PhagwaraPunjab, India
| | - Rakesh Yadav
- Department of Bio and Nano technology, Guru Jambheshwar University of Science and TechnologyHisar, India
| | - Neha Salaria
- Department of Biotechnology, Lovely Professional University, PhagwaraPunjab, India
| | - Kajal Thakur
- Department of Biotechnology, Lovely Professional University, PhagwaraPunjab, India
| | - Aakash K. Goyal
- International Center for Agriculture Research in the Dry Areas (ICARDA)Morocco
| |
Collapse
|
35
|
Singh RP, Hodson DP, Jin Y, Lagudah ES, Ayliffe MA, Bhavani S, Rouse MN, Pretorius ZA, Szabo LJ, Huerta-Espino J, Basnet BR, Lan C, Hovmøller MS. Emergence and Spread of New Races of Wheat Stem Rust Fungus: Continued Threat to Food Security and Prospects of Genetic Control. PHYTOPATHOLOGY 2015; 105:872-84. [PMID: 26120730 DOI: 10.1094/phyto-01-15-0030-fi] [Citation(s) in RCA: 200] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Race Ug99 (TTKSK) of Puccinia graminis f. sp. tritici, detected in Uganda in 1998, has been recognized as a serious threat to food security because it possesses combined virulence to a large number of resistance genes found in current widely grown wheat (Triticum aestivum) varieties and germplasm, leading to its potential for rapid spread and evolution. Since its initial detection, variants of the Ug99 lineage of stem rust have been discovered in Eastern and Southern African countries, Yemen, Iran, and Egypt. To date, eight races belonging to the Ug99 lineage are known. Increased pathogen monitoring activities have led to the identification of other races in Africa and Asia with additional virulence to commercially important resistance genes. This has led to localized but severe stem rust epidemics becoming common once again in East Africa due to the breakdown of race-specific resistance gene SrTmp, which was deployed recently in the 'Digalu' and 'Robin' varieties in Ethiopia and Kenya, respectively. Enhanced research in the last decade under the umbrella of the Borlaug Global Rust Initiative has identified various race-specific resistance genes that can be utilized, preferably in combinations, to develop resistant varieties. Research and development of improved wheat germplasm with complex adult plant resistance (APR) based on multiple slow-rusting genes has also progressed. Once only the Sr2 gene was known to confer slow rusting APR; now, four more genes-Sr55, Sr56, Sr57, and Sr58-have been characterized and additional quantitative trait loci identified. Cloning of some rust resistance genes opens new perspectives on rust control in the future through the development of multiple resistance gene cassettes. However, at present, disease-surveillance-based chemical control, large-scale deployment of new varieties with multiple race-specific genes or adequate levels of APR, and reducing the cultivation of susceptible varieties in rust hot-spot areas remains the best stem rust management strategy.
Collapse
Affiliation(s)
- Ravi P Singh
- First, eleventh, and twelfth authors: International Maize and Wheat Improvement Center (CIMMYT), Apdo. Postal, 6-641, 06600, Mexico, D.F.; second author: CIMMYT, Addis Ababa, Ethiopia; third, seventh, and ninth authors: United States Department of Agriculture-Agricultural Research Service, Cereal Disease Laboratory, University of Minnesota, St. Paul 55108; fourth and fifth authors: Commonwealth Scientific and Industrial Research Organisation (CSIRO) Plant Industry, Agriculture Flagship, GPO Box 1600, Canberra, ACT, 2601, Australia; sixth author: CIMMYT, ICRAF House, United Nations Avenue, Gigiri, Village Market-00621, Nairobi, Kenya; eighth author: University of the Free State, Bloemfontein 9300, South Africa; tenth author: Campo Experimental Valle de México INIFAP, Apdo. Postal 10, 56230, Chapingo, Edo de México, México; and thirteenth author: Department of Agroecology, Aarhus University, Forsøgsvej 1, DK-4200, Slagelse, Denmark
| | - David P Hodson
- First, eleventh, and twelfth authors: International Maize and Wheat Improvement Center (CIMMYT), Apdo. Postal, 6-641, 06600, Mexico, D.F.; second author: CIMMYT, Addis Ababa, Ethiopia; third, seventh, and ninth authors: United States Department of Agriculture-Agricultural Research Service, Cereal Disease Laboratory, University of Minnesota, St. Paul 55108; fourth and fifth authors: Commonwealth Scientific and Industrial Research Organisation (CSIRO) Plant Industry, Agriculture Flagship, GPO Box 1600, Canberra, ACT, 2601, Australia; sixth author: CIMMYT, ICRAF House, United Nations Avenue, Gigiri, Village Market-00621, Nairobi, Kenya; eighth author: University of the Free State, Bloemfontein 9300, South Africa; tenth author: Campo Experimental Valle de México INIFAP, Apdo. Postal 10, 56230, Chapingo, Edo de México, México; and thirteenth author: Department of Agroecology, Aarhus University, Forsøgsvej 1, DK-4200, Slagelse, Denmark
| | - Yue Jin
- First, eleventh, and twelfth authors: International Maize and Wheat Improvement Center (CIMMYT), Apdo. Postal, 6-641, 06600, Mexico, D.F.; second author: CIMMYT, Addis Ababa, Ethiopia; third, seventh, and ninth authors: United States Department of Agriculture-Agricultural Research Service, Cereal Disease Laboratory, University of Minnesota, St. Paul 55108; fourth and fifth authors: Commonwealth Scientific and Industrial Research Organisation (CSIRO) Plant Industry, Agriculture Flagship, GPO Box 1600, Canberra, ACT, 2601, Australia; sixth author: CIMMYT, ICRAF House, United Nations Avenue, Gigiri, Village Market-00621, Nairobi, Kenya; eighth author: University of the Free State, Bloemfontein 9300, South Africa; tenth author: Campo Experimental Valle de México INIFAP, Apdo. Postal 10, 56230, Chapingo, Edo de México, México; and thirteenth author: Department of Agroecology, Aarhus University, Forsøgsvej 1, DK-4200, Slagelse, Denmark
| | - Evans S Lagudah
- First, eleventh, and twelfth authors: International Maize and Wheat Improvement Center (CIMMYT), Apdo. Postal, 6-641, 06600, Mexico, D.F.; second author: CIMMYT, Addis Ababa, Ethiopia; third, seventh, and ninth authors: United States Department of Agriculture-Agricultural Research Service, Cereal Disease Laboratory, University of Minnesota, St. Paul 55108; fourth and fifth authors: Commonwealth Scientific and Industrial Research Organisation (CSIRO) Plant Industry, Agriculture Flagship, GPO Box 1600, Canberra, ACT, 2601, Australia; sixth author: CIMMYT, ICRAF House, United Nations Avenue, Gigiri, Village Market-00621, Nairobi, Kenya; eighth author: University of the Free State, Bloemfontein 9300, South Africa; tenth author: Campo Experimental Valle de México INIFAP, Apdo. Postal 10, 56230, Chapingo, Edo de México, México; and thirteenth author: Department of Agroecology, Aarhus University, Forsøgsvej 1, DK-4200, Slagelse, Denmark
| | - Michael A Ayliffe
- First, eleventh, and twelfth authors: International Maize and Wheat Improvement Center (CIMMYT), Apdo. Postal, 6-641, 06600, Mexico, D.F.; second author: CIMMYT, Addis Ababa, Ethiopia; third, seventh, and ninth authors: United States Department of Agriculture-Agricultural Research Service, Cereal Disease Laboratory, University of Minnesota, St. Paul 55108; fourth and fifth authors: Commonwealth Scientific and Industrial Research Organisation (CSIRO) Plant Industry, Agriculture Flagship, GPO Box 1600, Canberra, ACT, 2601, Australia; sixth author: CIMMYT, ICRAF House, United Nations Avenue, Gigiri, Village Market-00621, Nairobi, Kenya; eighth author: University of the Free State, Bloemfontein 9300, South Africa; tenth author: Campo Experimental Valle de México INIFAP, Apdo. Postal 10, 56230, Chapingo, Edo de México, México; and thirteenth author: Department of Agroecology, Aarhus University, Forsøgsvej 1, DK-4200, Slagelse, Denmark
| | - Sridhar Bhavani
- First, eleventh, and twelfth authors: International Maize and Wheat Improvement Center (CIMMYT), Apdo. Postal, 6-641, 06600, Mexico, D.F.; second author: CIMMYT, Addis Ababa, Ethiopia; third, seventh, and ninth authors: United States Department of Agriculture-Agricultural Research Service, Cereal Disease Laboratory, University of Minnesota, St. Paul 55108; fourth and fifth authors: Commonwealth Scientific and Industrial Research Organisation (CSIRO) Plant Industry, Agriculture Flagship, GPO Box 1600, Canberra, ACT, 2601, Australia; sixth author: CIMMYT, ICRAF House, United Nations Avenue, Gigiri, Village Market-00621, Nairobi, Kenya; eighth author: University of the Free State, Bloemfontein 9300, South Africa; tenth author: Campo Experimental Valle de México INIFAP, Apdo. Postal 10, 56230, Chapingo, Edo de México, México; and thirteenth author: Department of Agroecology, Aarhus University, Forsøgsvej 1, DK-4200, Slagelse, Denmark
| | - Matthew N Rouse
- First, eleventh, and twelfth authors: International Maize and Wheat Improvement Center (CIMMYT), Apdo. Postal, 6-641, 06600, Mexico, D.F.; second author: CIMMYT, Addis Ababa, Ethiopia; third, seventh, and ninth authors: United States Department of Agriculture-Agricultural Research Service, Cereal Disease Laboratory, University of Minnesota, St. Paul 55108; fourth and fifth authors: Commonwealth Scientific and Industrial Research Organisation (CSIRO) Plant Industry, Agriculture Flagship, GPO Box 1600, Canberra, ACT, 2601, Australia; sixth author: CIMMYT, ICRAF House, United Nations Avenue, Gigiri, Village Market-00621, Nairobi, Kenya; eighth author: University of the Free State, Bloemfontein 9300, South Africa; tenth author: Campo Experimental Valle de México INIFAP, Apdo. Postal 10, 56230, Chapingo, Edo de México, México; and thirteenth author: Department of Agroecology, Aarhus University, Forsøgsvej 1, DK-4200, Slagelse, Denmark
| | - Zacharias A Pretorius
- First, eleventh, and twelfth authors: International Maize and Wheat Improvement Center (CIMMYT), Apdo. Postal, 6-641, 06600, Mexico, D.F.; second author: CIMMYT, Addis Ababa, Ethiopia; third, seventh, and ninth authors: United States Department of Agriculture-Agricultural Research Service, Cereal Disease Laboratory, University of Minnesota, St. Paul 55108; fourth and fifth authors: Commonwealth Scientific and Industrial Research Organisation (CSIRO) Plant Industry, Agriculture Flagship, GPO Box 1600, Canberra, ACT, 2601, Australia; sixth author: CIMMYT, ICRAF House, United Nations Avenue, Gigiri, Village Market-00621, Nairobi, Kenya; eighth author: University of the Free State, Bloemfontein 9300, South Africa; tenth author: Campo Experimental Valle de México INIFAP, Apdo. Postal 10, 56230, Chapingo, Edo de México, México; and thirteenth author: Department of Agroecology, Aarhus University, Forsøgsvej 1, DK-4200, Slagelse, Denmark
| | - Les J Szabo
- First, eleventh, and twelfth authors: International Maize and Wheat Improvement Center (CIMMYT), Apdo. Postal, 6-641, 06600, Mexico, D.F.; second author: CIMMYT, Addis Ababa, Ethiopia; third, seventh, and ninth authors: United States Department of Agriculture-Agricultural Research Service, Cereal Disease Laboratory, University of Minnesota, St. Paul 55108; fourth and fifth authors: Commonwealth Scientific and Industrial Research Organisation (CSIRO) Plant Industry, Agriculture Flagship, GPO Box 1600, Canberra, ACT, 2601, Australia; sixth author: CIMMYT, ICRAF House, United Nations Avenue, Gigiri, Village Market-00621, Nairobi, Kenya; eighth author: University of the Free State, Bloemfontein 9300, South Africa; tenth author: Campo Experimental Valle de México INIFAP, Apdo. Postal 10, 56230, Chapingo, Edo de México, México; and thirteenth author: Department of Agroecology, Aarhus University, Forsøgsvej 1, DK-4200, Slagelse, Denmark
| | - Julio Huerta-Espino
- First, eleventh, and twelfth authors: International Maize and Wheat Improvement Center (CIMMYT), Apdo. Postal, 6-641, 06600, Mexico, D.F.; second author: CIMMYT, Addis Ababa, Ethiopia; third, seventh, and ninth authors: United States Department of Agriculture-Agricultural Research Service, Cereal Disease Laboratory, University of Minnesota, St. Paul 55108; fourth and fifth authors: Commonwealth Scientific and Industrial Research Organisation (CSIRO) Plant Industry, Agriculture Flagship, GPO Box 1600, Canberra, ACT, 2601, Australia; sixth author: CIMMYT, ICRAF House, United Nations Avenue, Gigiri, Village Market-00621, Nairobi, Kenya; eighth author: University of the Free State, Bloemfontein 9300, South Africa; tenth author: Campo Experimental Valle de México INIFAP, Apdo. Postal 10, 56230, Chapingo, Edo de México, México; and thirteenth author: Department of Agroecology, Aarhus University, Forsøgsvej 1, DK-4200, Slagelse, Denmark
| | - Bhoja R Basnet
- First, eleventh, and twelfth authors: International Maize and Wheat Improvement Center (CIMMYT), Apdo. Postal, 6-641, 06600, Mexico, D.F.; second author: CIMMYT, Addis Ababa, Ethiopia; third, seventh, and ninth authors: United States Department of Agriculture-Agricultural Research Service, Cereal Disease Laboratory, University of Minnesota, St. Paul 55108; fourth and fifth authors: Commonwealth Scientific and Industrial Research Organisation (CSIRO) Plant Industry, Agriculture Flagship, GPO Box 1600, Canberra, ACT, 2601, Australia; sixth author: CIMMYT, ICRAF House, United Nations Avenue, Gigiri, Village Market-00621, Nairobi, Kenya; eighth author: University of the Free State, Bloemfontein 9300, South Africa; tenth author: Campo Experimental Valle de México INIFAP, Apdo. Postal 10, 56230, Chapingo, Edo de México, México; and thirteenth author: Department of Agroecology, Aarhus University, Forsøgsvej 1, DK-4200, Slagelse, Denmark
| | - Caixia Lan
- First, eleventh, and twelfth authors: International Maize and Wheat Improvement Center (CIMMYT), Apdo. Postal, 6-641, 06600, Mexico, D.F.; second author: CIMMYT, Addis Ababa, Ethiopia; third, seventh, and ninth authors: United States Department of Agriculture-Agricultural Research Service, Cereal Disease Laboratory, University of Minnesota, St. Paul 55108; fourth and fifth authors: Commonwealth Scientific and Industrial Research Organisation (CSIRO) Plant Industry, Agriculture Flagship, GPO Box 1600, Canberra, ACT, 2601, Australia; sixth author: CIMMYT, ICRAF House, United Nations Avenue, Gigiri, Village Market-00621, Nairobi, Kenya; eighth author: University of the Free State, Bloemfontein 9300, South Africa; tenth author: Campo Experimental Valle de México INIFAP, Apdo. Postal 10, 56230, Chapingo, Edo de México, México; and thirteenth author: Department of Agroecology, Aarhus University, Forsøgsvej 1, DK-4200, Slagelse, Denmark
| | - Mogens S Hovmøller
- First, eleventh, and twelfth authors: International Maize and Wheat Improvement Center (CIMMYT), Apdo. Postal, 6-641, 06600, Mexico, D.F.; second author: CIMMYT, Addis Ababa, Ethiopia; third, seventh, and ninth authors: United States Department of Agriculture-Agricultural Research Service, Cereal Disease Laboratory, University of Minnesota, St. Paul 55108; fourth and fifth authors: Commonwealth Scientific and Industrial Research Organisation (CSIRO) Plant Industry, Agriculture Flagship, GPO Box 1600, Canberra, ACT, 2601, Australia; sixth author: CIMMYT, ICRAF House, United Nations Avenue, Gigiri, Village Market-00621, Nairobi, Kenya; eighth author: University of the Free State, Bloemfontein 9300, South Africa; tenth author: Campo Experimental Valle de México INIFAP, Apdo. Postal 10, 56230, Chapingo, Edo de México, México; and thirteenth author: Department of Agroecology, Aarhus University, Forsøgsvej 1, DK-4200, Slagelse, Denmark
| |
Collapse
|
36
|
He J, Li J, Huang Z, Zhao T, Xing G, Gai J, Guan R. Composite Interval Mapping Based on Lattice Design for Error Control May Increase Power of Quantitative Trait Locus Detection. PLoS One 2015; 10:e0130125. [PMID: 26076140 PMCID: PMC4468128 DOI: 10.1371/journal.pone.0130125] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2015] [Accepted: 05/18/2015] [Indexed: 01/13/2023] Open
Abstract
Experimental error control is very important in quantitative trait locus (QTL) mapping. Although numerous statistical methods have been developed for QTL mapping, a QTL detection model based on an appropriate experimental design that emphasizes error control has not been developed. Lattice design is very suitable for experiments with large sample sizes, which is usually required for accurate mapping of quantitative traits. However, the lack of a QTL mapping method based on lattice design dictates that the arithmetic mean or adjusted mean of each line of observations in the lattice design had to be used as a response variable, resulting in low QTL detection power. As an improvement, we developed a QTL mapping method termed composite interval mapping based on lattice design (CIMLD). In the lattice design, experimental errors are decomposed into random errors and block-within-replication errors. Four levels of block-within-replication errors were simulated to show the power of QTL detection under different error controls. The simulation results showed that the arithmetic mean method, which is equivalent to a method under random complete block design (RCBD), was very sensitive to the size of the block variance and with the increase of block variance, the power of QTL detection decreased from 51.3% to 9.4%. In contrast to the RCBD method, the power of CIMLD and the adjusted mean method did not change for different block variances. The CIMLD method showed 1.2- to 7.6-fold higher power of QTL detection than the arithmetic or adjusted mean methods. Our proposed method was applied to real soybean (Glycine max) data as an example and 10 QTLs for biomass were identified that explained 65.87% of the phenotypic variation, while only three and two QTLs were identified by arithmetic and adjusted mean methods, respectively.
Collapse
Affiliation(s)
- Jianbo He
- National Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, Nanjing, Jiangsu, China
- National Center for Soybean Improvement, Ministry of Agriculture, Nanjing, Jiangsu, China
- Key Laboratory of Biology and Genetic Improvement of Soybean, Ministry of Agriculture, Nanjing, Jiangsu, China
| | - Jijie Li
- National Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Zhongwen Huang
- Department of Agronomy, Henan Institute of Science and Technology, Collaborative Innovation Center of Modern Biological Breeding, Xinxiang, Henan, China
| | - Tuanjie Zhao
- National Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, Nanjing, Jiangsu, China
- National Center for Soybean Improvement, Ministry of Agriculture, Nanjing, Jiangsu, China
- Key Laboratory of Biology and Genetic Improvement of Soybean, Ministry of Agriculture, Nanjing, Jiangsu, China
| | - Guangnan Xing
- National Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, Nanjing, Jiangsu, China
- National Center for Soybean Improvement, Ministry of Agriculture, Nanjing, Jiangsu, China
- Key Laboratory of Biology and Genetic Improvement of Soybean, Ministry of Agriculture, Nanjing, Jiangsu, China
| | - Junyi Gai
- National Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, Nanjing, Jiangsu, China
- National Center for Soybean Improvement, Ministry of Agriculture, Nanjing, Jiangsu, China
- Key Laboratory of Biology and Genetic Improvement of Soybean, Ministry of Agriculture, Nanjing, Jiangsu, China
| | - Rongzhan Guan
- National Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, Nanjing, Jiangsu, China
- National Center for Soybean Improvement, Ministry of Agriculture, Nanjing, Jiangsu, China
- Key Laboratory of Biology and Genetic Improvement of Soybean, Ministry of Agriculture, Nanjing, Jiangsu, China
| |
Collapse
|
37
|
Yu G, Zhang Q, Friesen TL, Rouse MN, Jin Y, Zhong S, Rasmussen JB, Lagudah ES, Xu SS. Identification and mapping of Sr46 from Aegilops tauschii accession CIae 25 conferring resistance to race TTKSK (Ug99) of wheat stem rust pathogen. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2015; 128:431-43. [PMID: 25523501 DOI: 10.1007/s00122-014-2442-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2014] [Accepted: 12/06/2014] [Indexed: 05/28/2023]
Abstract
Mapping studies confirm that resistance to Ug99 race of stem rust pathogen in Aegilops tauschii accession Clae 25 is conditioned by Sr46 and markers linked to the gene were developed for marker-assisted selection. The race TTKSK (Ug99) of Puccinia graminis f. sp. tritici, the causal pathogen for wheat stem rust, is considered as a major threat to global wheat production. To address this threat, researchers across the world have been devoted to identifying TTKSK-resistant genes. Here, we report the identification and mapping of a stem rust resistance gene in Aegilops tauschii accession CIae 25 that confers resistance to TTKSK and the development of molecular markers for the gene. An F2 population of 710 plants from an Ae. tauschii cross CIae 25 × AL8/78 were first evaluated against race TPMKC. A set of 14 resistant and 116 susceptible F2:3 families from the F2 plants were then evaluated for their reactions to TTKSK. Based on the tests, 179 homozygous susceptible F2 plants were selected as the mapping population to identify the simple sequence repeat (SSR) and sequence tagged site (STS) markers linked to the gene by bulk segregant analysis. A dominant stem rust resistance gene was identified and mapped with 16 SSR and five new STS markers to the deletion bin 2DS5-0.47-1.00 of chromosome arm 2DS in which Sr46 was located. Molecular marker and stem rust tests on CIae 25 and two Ae. tauschii accessions carrying Sr46 confirmed that the gene in CIae 25 is Sr46. This study also demonstrated that Sr46 is temperature-sensitive being less effective at low temperatures. The marker validation indicated that two closely linked markers Xgwm210 and Xwmc111 can be used for marker-assisted selection of Sr46 in wheat breeding programs.
Collapse
Affiliation(s)
- Guotai Yu
- Department of Plant Pathology, North Dakota State University, Fargo, ND, 58108, USA
| | | | | | | | | | | | | | | | | |
Collapse
|