1
|
Abstract
Rice is a major crop in Bangladesh that supports both food security and livelihoods. However, a need remains for improved productivity and adaptation to the risks associated with climate change. To accomplish this, the increased adoption of climate-resilient and high-yielding rice varieties can be beneficial. Therefore, we conducted a study in Bangladesh over three consecutive years: 2016, 2017, and 2018. The scope of the study included the major cropping season (wet), Aman. The yield advantages of climate-resilient rice varieties were evaluated and compared with those of the varieties popular with farmers. We included new stress-tolerant varieties, such as submergence-tolerant rice (BRRI dhan51 and BRRI dhan52) and drought-tolerant rice (BRRI dhan56 and BRRI dhan71), along with farmer-chosen controls, in the study. We conducted the evaluation through on-farm trials to compare the varieties in both submergence- and drought-affected environments. The seasonal trials provided measured results of yield advantages. The participating farmers were also studied over the three-year-period to capture their varietal adoption rates. We calculated both the location estimated yield advantages (LEYA) and the location observed yield advantages (LOYA). The results revealed that, under non-stress conditions, the grain yields of climate-resilient varieties were either statistically similar to or higher than those of the farmer-chosen controls. Our study also revealed a year-to-year progressive adoption rate for the introduced varieties. The study suggests that the wide-scale introduction and popularization of climate-resilient varieties can ensure higher productivity and climate risk adaptation. The close similarity between LOYA and LEYA indicated that the observational and experiential conclusions of the host farmers were similar to the scientific performance of the varieties. We also found that comparison performed through on-farm trials was a critical method for enhancing experiential learning and obtaining an accurate estimation of yield advantages.
Collapse
|
2
|
Pan Y, Zhu J, Hong Y, Zhang M, Lv C, Guo B, Shen H, Xu X, Xu R. Screening of stable resistant accessions and identification of resistance loci to Barley yellow mosaic virus disease. PeerJ 2022; 10:e13128. [PMID: 35317071 PMCID: PMC8934529 DOI: 10.7717/peerj.13128] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Accepted: 02/25/2022] [Indexed: 01/12/2023] Open
Abstract
Background The disease caused by Barley yellow mosaic virus (BaYMV) infection is a serious threat to autumn-sown barley (Hordeum vulgare L.) production in Europe, East Asia and Iran. Due to the rapid diversification of BaYMV strains, it is urgent to discover novel germplasm and genes to assist breeding new varieties with resistance to different BaYMV strains, thus minimizing the effect of BaYMV disease on barley cropping. Methods A natural population consisting of 181 barley accessions with different levels of resistance to BaYMV disease was selected for field resistance identification in two separate locations (Yangzhou and Yancheng, Jiangsu Province, China). Additive main effects and multiplicative interaction (AMMI) analysis was used to identify accessions with stable resistance. Genome-wide association study (GWAS) of BaYMV disease resistance was broadly performed by combining both single nucleotide polymorphisms (SNPs) and specific molecular markers associated with the reported BaYMV disease resistance genes. Furthermore, the viral protein genome linked (VPg) sequences of the virus were amplified and analyzed to assess the differences between the BaYMV strains sourced from the different experimental sites. Results Seven barley accessions with lower standardized Area Under the Disease Progress Steps (sAUDPS) index in every environment were identified and shown to have stable resistance to BaYMV disease in each assessed location. Apart from the reported BaYMV disease resistance genes rym4 and rym5, one novel resistance locus explaining 24.21% of the phenotypic variation was identified at the Yangzhou testing site, while two other novel resistance loci that contributed 19.23% and 19.79% of the phenotypic variation were identified at the Yancheng testing site, respectively. Further analysis regarding the difference in the VPg sequence of the predominant strain of BaYMV collected from these two testing sites may explain the difference of resistance loci differentially identified under geographically distinct regions. Our research provides novel genetic resources and resistance loci for breeding barley varieties for BaMYV disease resistance.
Collapse
Affiliation(s)
- Yuhan Pan
- Yangzhou University, Key Laboratory of Plant Functional Genomics of the Ministry of Education/Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops/Institutes of Agricultural Science, Yangzhou, Jiangsu, China
| | - Juan Zhu
- Yangzhou University, Key Laboratory of Plant Functional Genomics of the Ministry of Education/Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops/Institutes of Agricultural Science, Yangzhou, Jiangsu, China
| | - Yi Hong
- Yangzhou University, Key Laboratory of Plant Functional Genomics of the Ministry of Education/Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops/Institutes of Agricultural Science, Yangzhou, Jiangsu, China
| | - Mengna Zhang
- Yangzhou University, Key Laboratory of Plant Functional Genomics of the Ministry of Education/Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops/Institutes of Agricultural Science, Yangzhou, Jiangsu, China
| | - Chao Lv
- Yangzhou University, Key Laboratory of Plant Functional Genomics of the Ministry of Education/Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops/Institutes of Agricultural Science, Yangzhou, Jiangsu, China
| | - Baojian Guo
- Yangzhou University, Key Laboratory of Plant Functional Genomics of the Ministry of Education/Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops/Institutes of Agricultural Science, Yangzhou, Jiangsu, China
| | - Huiquan Shen
- Jiangsu Institute for Seaside Agricultural Sciences and Yancheng Academy of Agricultural Science, Yancheng, Jiangsu, China
| | - Xiao Xu
- Jiangsu Institute for Seaside Agricultural Sciences and Yancheng Academy of Agricultural Science, Yancheng, Jiangsu, China
| | - Rugen Xu
- Yangzhou University, Key Laboratory of Plant Functional Genomics of the Ministry of Education/Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops/Institutes of Agricultural Science, Yangzhou, Jiangsu, China
| |
Collapse
|
3
|
Pan Y, Zhu J, Hong Y, Zhang M, Lv C, Guo B, Shen H, Xu X, Xu R. Identification of novel QTL contributing to barley yellow mosaic resistance in wild barley (Hordeum vulgare spp. spontaneum). BMC PLANT BIOLOGY 2021; 21:560. [PMID: 34823470 PMCID: PMC8613928 DOI: 10.1186/s12870-021-03321-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Accepted: 11/08/2021] [Indexed: 05/14/2023]
Abstract
BACKGROUND Barley yellow mosaic disease (BYMD) caused by Barley yellow mosaic virus (BaYMV) and Barley mild mosaic virus (BaMMV) seriously threatens the production of winter barley. Cultivating and promoting varieties that carry disease-resistant genes is one of the most powerful ways to minimize the disease's effect on yield. However, as the BYMD virus mutates rapidly, resistance conferred by the two cloned R genes to the virus had been overcome by new virus strains. There is an urgent need for novel resistance genes in barley that convey sustainable resistance to newly emerging virus strains causing BYMD. RESULTS A doubled haploid (DH) population derived from a cross of SRY01 (BYMD resistant wild barley) and Gairdner (BYMD susceptible barley cultivar) was used to explore for QTL of resistance to BYMD in barley. A total of six quantitative trait loci (qRYM-1H, qRYM-2Ha, qRYM-2Hb, qRYM-3H, qRYM-5H, and qRYM-7H) related to BYMD resistance were detected, which were located on chromosomes 1H, 2H, 3H, 5H, and 7H. Both qRYM-1H and qRYM-2Ha were detected in all environments. qRYM-1H was found to be overlapped with rym7, a known R gene to the disease, whereas qRYM-2Ha is a novel QTL on chromosome 2H originated from SRY01, explaining phenotypic variation from 9.8 to 17.8%. The closely linked InDel markers for qRYM-2Ha were developed which could be used for marker-assisted selection in barley breeding. qRYM-2Hb and qRYM-3H were stable QTL for specific resistance to Yancheng and Yangzhou virus strains, respectively. qRYM-5H and qRYM-7H identified in Yangzhou were originated from Gairdner. CONCLUSIONS Our work is focusing on a virus disease (barley yellow mosaic) of barley. It is the first report on BYMD-resistant QTL from wild barley accessions. One novel major QTL (qRYM-2Ha) for the resistance was detected. The consistently detected new genes will potentially serve as novel sources for achieving pre-breeding barley materials with resistance to BYMD.
Collapse
Affiliation(s)
- Yuhan Pan
- Key Laboratory of Plant Functional Genomics of the Ministry of Education / Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding / Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops / Institutes of Agricultural Science and Technology Development, Yangzhou University, Yangzhou, 225009, Jiangsu, China
| | - Juan Zhu
- Key Laboratory of Plant Functional Genomics of the Ministry of Education / Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding / Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops / Institutes of Agricultural Science and Technology Development, Yangzhou University, Yangzhou, 225009, Jiangsu, China
| | - Yi Hong
- Key Laboratory of Plant Functional Genomics of the Ministry of Education / Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding / Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops / Institutes of Agricultural Science and Technology Development, Yangzhou University, Yangzhou, 225009, Jiangsu, China
| | - Mengna Zhang
- Key Laboratory of Plant Functional Genomics of the Ministry of Education / Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding / Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops / Institutes of Agricultural Science and Technology Development, Yangzhou University, Yangzhou, 225009, Jiangsu, China
| | - Chao Lv
- Key Laboratory of Plant Functional Genomics of the Ministry of Education / Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding / Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops / Institutes of Agricultural Science and Technology Development, Yangzhou University, Yangzhou, 225009, Jiangsu, China
| | - Baojian Guo
- Key Laboratory of Plant Functional Genomics of the Ministry of Education / Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding / Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops / Institutes of Agricultural Science and Technology Development, Yangzhou University, Yangzhou, 225009, Jiangsu, China
| | - Huiquan Shen
- Jiangsu Institute for Seaside Agricultural Sciences and Yancheng Academy of Agricultural Science, Yancheng, 224002, Jiangsu, China
| | - Xiao Xu
- Jiangsu Institute for Seaside Agricultural Sciences and Yancheng Academy of Agricultural Science, Yancheng, 224002, Jiangsu, China
| | - Rugen Xu
- Key Laboratory of Plant Functional Genomics of the Ministry of Education / Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding / Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops / Institutes of Agricultural Science and Technology Development, Yangzhou University, Yangzhou, 225009, Jiangsu, China.
| |
Collapse
|
4
|
Dreiseitl A. Specific Resistance of Barley to Powdery Mildew, Its Use and Beyond. A Concise Critical Review. Genes (Basel) 2020; 11:E971. [PMID: 32825722 PMCID: PMC7565388 DOI: 10.3390/genes11090971] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 08/12/2020] [Accepted: 08/20/2020] [Indexed: 11/18/2022] Open
Abstract
Powdery mildew caused by the airborne ascomycete fungus Blumeria graminis f. sp. hordei (Bgh) is one of most common diseases of barley (Hordeum vulgare). This, as with many other plant pathogens, can be efficiently controlled by inexpensive and environmentally-friendly genetic resistance. General requirements for resistance to the pathogens are effectiveness and durability. Resistance of barley to Bgh has been studied intensively, and this review describes recent research and summarizes the specific resistance genes found in barley varieties since the last conspectus. Bgh is extraordinarily adaptable, and some commonly recommended strategies for using genetic resistance, including pyramiding of specific genes, may not be effective because they can only contribute to a limited extent to obtain sufficient resistance durability of widely-grown cultivars. In spring barley, breeding the nonspecific mlo gene is a valuable source of durable resistance. Pyramiding of nonspecific quantitative resistance genes or using introgressions derived from bulbous barley (Hordeum bulbosum) are promising ways for breeding future winter barley cultivars. The utilization of a wide spectrum of nonhost resistances can also be adopted once practical methods have been developed.
Collapse
Affiliation(s)
- Antonín Dreiseitl
- Department of Integrated Plant Protection, Agrotest Fyto Ltd., Havlíčkova 2787, CZ-767 01 Kroměříž, Czech Republic
| |
Collapse
|
5
|
Hoseinzadeh P, Ruge-Wehling B, Schweizer P, Stein N, Pidon H. High Resolution Mapping of a Hordeum bulbosum-Derived Powdery Mildew Resistance Locus in Barley Using Distinct Homologous Introgression Lines. FRONTIERS IN PLANT SCIENCE 2020; 11:225. [PMID: 32194602 PMCID: PMC7063055 DOI: 10.3389/fpls.2020.00225] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Accepted: 02/13/2020] [Indexed: 05/17/2023]
Abstract
Powdery mildew caused by Blumeria graminis f. sp. hordei (Bgh) is one of the main foliar diseases in barley (Hordeum vulgare L.; Hv). Naturally occurring resistance genes used in barley breeding are a cost effective and environmentally sustainable strategy to minimize the impact of pathogens, however, the primary gene pool of H. vulgare contains limited diversity owing to recent domestication bottlenecks. To ensure durable resistance against this pathogen, more genes are required that could be unraveled by investigation of secondary barley gene-pool. A large set of Hordeum bulbosum (Hb) introgression lines (ILs) harboring a diverse set of desirable resistance traits have been developed and are being routinely used as source of novel diversity in gene mapping studies. Nevertheless, this strategy is often compromised by a lack of recombination between the introgressed fragment and the orthologous chromosome of the barley genome. In this study, we fine-mapped a Hb gene conferring resistance to barley powdery mildew. The initial genotyping of two Hb ILs mapping populations with differently sized 2HS introgressions revealed severely reduced interspecific recombination in the region of the introgressed segment, preventing precise localization of the gene. To overcome this difficulty, we developed an alternative strategy, exploiting intraspecific recombination by crossing two Hv/Hb ILs with collinear Hb introgressions, one of which carries a powdery mildew resistance gene, while the other doesn't. The intraspecific recombination rate in the Hb-introgressed fragment of 2HS was approximately 20 times higher than it was in the initial simple ILs mapping populations. Using high-throughput genotyping-by-sequencing (GBS), we allocated the resistance gene to a 1.4 Mb interval, based on an estimate using the Hv genome as reference, in populations of only 103 and 146 individuals, respectively, similar to what is expected at this locus in barley. The most likely candidate resistance gene within this interval is part of the coiled-coil nucleotide-binding-site leucine-rich-repeat (CC-NBS-LLR) gene family, which is over-represented among genes conferring strong dominant resistance to pathogens. The reported strategy can be applied as a general strategic approach for identifying genes underlying traits of interest in crop wild relatives.
Collapse
Affiliation(s)
- Parastoo Hoseinzadeh
- Genomics of Genetic Resources, Department of Genebank, Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Gatersleben, Germany
| | - Brigitte Ruge-Wehling
- Institute for Breeding Research on Agricultural Crops, Julius Kühn Institute (JKI), Sanitz, Germany
| | - Patrick Schweizer
- Pathogen-Stress Genomics, Department of Breeding Research, Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Gatersleben, Germany
| | - Nils Stein
- Genomics of Genetic Resources, Department of Genebank, Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Gatersleben, Germany
- Department of Crop Sciences, Center for Integrated Breeding Research (CiBreed), Georg-August-University, Göttingen, Germany
| | - Hélène Pidon
- Genomics of Genetic Resources, Department of Genebank, Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Gatersleben, Germany
| |
Collapse
|
6
|
Wang H, Gao Y, Mao F, Xiong L, Mou T. Directional upgrading of brown planthopper resistance in an elite rice cultivar by precise introgression of two resistance genes using genomics-based breeding. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2019; 288:110211. [PMID: 31521227 DOI: 10.1016/j.plantsci.2019.110211] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Revised: 07/30/2019] [Accepted: 07/31/2019] [Indexed: 05/23/2023]
Abstract
Brown planthopper (BPH) is a devastating pest that threatens the food security of rice-producing countries. At present, most cultivars planted in farmers' paddies lack effective BPH resistance, which constitutes a potential threat to rice yield. Moreover, developing BPH-resistant rice varieties using traditional breeding approaches is time-consuming, labor-intensive, and unpredictable. In this study, we successfully enhanced BPH resistance of the elite rice cultivar Wushansimiao by introgressing the resistance genes BPH14 and BPH15 through positive selection, negative selection, and whole genome background selection. Through backcrossing, the introgression fragments were reduced to 428.3 kb for BPH14 and 413.1 kb for BPH15. Except for these two fragments, the residual genetic background of the selected near-isogenic lines (NILs) was nearly identical to that of the recurrent parent, with a genetic background recovery rate of 99.78%. As a result, the selected NILs exhibited much stronger BPH resistance at the seedling and adult stages compared to the recurrent parent. Moreover, field tests showed that grain yield, major agronomic traits, and grain quality of the five selected NILs were statistically indistinguishable from those of the recurrent parent. Our results provide an effective approach for directionally upgrading the target traits and will inform and facilitate rice breeding.
Collapse
Affiliation(s)
- Hongbo Wang
- National Key Laboratory of Crop Genetic Improvement and National Centre of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan 430070, China
| | - Yi Gao
- National Key Laboratory of Crop Genetic Improvement and National Centre of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan 430070, China
| | - Fangming Mao
- National Key Laboratory of Crop Genetic Improvement and National Centre of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan 430070, China
| | - Lizhong Xiong
- National Key Laboratory of Crop Genetic Improvement and National Centre of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan 430070, China
| | - Tongmin Mou
- National Key Laboratory of Crop Genetic Improvement and National Centre of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan 430070, China.
| |
Collapse
|
7
|
Yu X, Kong HY, Meiyalaghan V, Casonato S, Chng S, Jones EE, Butler RC, Pickering R, Johnston PA. Genetic mapping of a barley leaf rust resistance gene Rph26 introgressed from Hordeum bulbosum. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2018; 131:2567-2580. [PMID: 30178277 DOI: 10.1007/s00122-018-3173-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Accepted: 08/25/2018] [Indexed: 05/25/2023]
Abstract
The quantitative barley leaf rust resistance gene, Rph26, was fine mapped within a H. bulbosum introgression on barley chromosome 1HL. This provides the tools for pyramiding with other resistance genes. A novel quantitative resistance gene, Rph26, effective against barley leaf rust (Puccinia hordei) was introgressed from Hordeum bulbosum into the barley (Hordeum vulgare) cultivar 'Emir'. The effect of Rph26 was to reduce the observed symptoms of leaf rust infection (uredinium number and infection type). In addition, this resistance also increased the fungal latency period and reduced the fungal biomass within infected leaves. The resulting introgression line 200A12, containing Rph26, was backcrossed to its barley parental cultivar 'Emir' to create an F2 population focused on detecting interspecific recombination within the introgressed segment. A total of 1368 individuals from this F2 population were genotyped with flanking markers at either end of the 1HL introgression, resulting in the identification of 19 genotypes, which had undergone interspecific recombination within the original introgression. F3 seeds that were homozygous for the introgressions of reduced size were selected from each F2 recombinant and were used for subsequent genotyping and phenotyping. Rph26 was genetically mapped to the proximal end of the introgressed segment located at the distal end of chromosome 1HL. Molecular markers closely linked to Rph26 were identified and will enable this disease resistance gene to be combined with other sources of quantitative resistance to maximize the effectiveness and durability of leaf rust resistance in barley breeding. Heterozygous genotypes containing a single copy of Rph26 had an intermediate phenotype when compared with the homozygous resistant and susceptible genotypes, indicating an incompletely dominant inheritance.
Collapse
Affiliation(s)
- Xiaohui Yu
- Department of Pest-management and Conservation, Faculty of Agriculture and Life Sciences, Lincoln University, Lincoln, Canterbury, 7608, New Zealand
| | - Hoi Yee Kong
- The New Zealand Institute for Plant & Food Research Limited, Lincoln, Canterbury, 7608, New Zealand
- Department of Wine, Food and Molecular Biosciences, Faculty of Agriculture and Life Sciences, Lincoln University, Lincoln, Canterbury, 7608, New Zealand
| | - Vijitha Meiyalaghan
- The New Zealand Institute for Plant & Food Research Limited, Lincoln, Canterbury, 7608, New Zealand
| | - Seona Casonato
- Department of Pest-management and Conservation, Faculty of Agriculture and Life Sciences, Lincoln University, Lincoln, Canterbury, 7608, New Zealand
| | - Soonie Chng
- The New Zealand Institute for Plant & Food Research Limited, Lincoln, Canterbury, 7608, New Zealand
| | - E Eirian Jones
- Department of Pest-management and Conservation, Faculty of Agriculture and Life Sciences, Lincoln University, Lincoln, Canterbury, 7608, New Zealand
| | - Ruth C Butler
- The New Zealand Institute for Plant & Food Research Limited, Lincoln, Canterbury, 7608, New Zealand
| | - Richard Pickering
- The New Zealand Institute for Plant & Food Research Limited, Lincoln, Canterbury, 7608, New Zealand
| | - Paul A Johnston
- The New Zealand Institute for Plant & Food Research Limited, Lincoln, Canterbury, 7608, New Zealand.
| |
Collapse
|
8
|
Dar MH, Zaidi NW, Waza SA, Verulkar SB, Ahmed T, Singh PK, Roy SKB, Chaudhary B, Yadav R, Islam MM, Iftekharuddaula KM, Roy JK, Kathiresan RM, Singh BN, Singh US, Ismail AM. No yield penalty under favorable conditions paving the way for successful adoption of flood tolerant rice. Sci Rep 2018; 8:9245. [PMID: 29915310 PMCID: PMC6006260 DOI: 10.1038/s41598-018-27648-y] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2017] [Accepted: 05/30/2018] [Indexed: 01/25/2023] Open
Abstract
Flooding is one of the major constraints for rice production in rainfed lowlands, especially in years and areas of high rainfall. Incorporating the Sub1 (Submergence1) gene into high yielding popular varieties has proven to be the most feasible approach to sustain rice production in submergence-prone areas. Introgression of this QTL into popular varieties has resulted in considerable improvement in yield after flooding. However, its impact under non-flooded conditions or years have not been thoroughly evaluated which is important for the farmers to accept and adopt any new version of their popular varieties. The present study was carried out to evaluate the effect of Sub1 on grain yield of rice in different genetic backgrounds, under non-submergence conditions, over years and locations. The study was carried out using head to head trials in farmer’s fields, which enable the farmers to more accurately compare the performance of Sub1 varieties with their recurrent parents under own management. The data generated from different head to head trials revealed that the grain yield of Sub1 varieties was either statistically similar or higher than their non-Sub1 counterparts under non-submergence conditions. Thus, Sub1 rice varieties show no instance of yield penalty of the introgressed gene.
Collapse
Affiliation(s)
- Manzoor H Dar
- International Rice Research Institute (IRRI-India), NASC Complex, New Delhi, India.
| | - Najam W Zaidi
- International Rice Research Institute (IRRI-India), NASC Complex, New Delhi, India
| | - Showkat A Waza
- Sher-e-Kashmir University of Agricultural Sciences & Technology of Kashmir (J&K), Kashmir, India
| | | | - T Ahmed
- Assam Agricultural University, Jorhat, Assam, India
| | - P K Singh
- Banaras Hindu University, Varanasi, Uttar Pradesh, India
| | | | | | - Rambaran Yadav
- Regional Agriculture Research Station, NARC, Bara, Nepal
| | | | | | - J K Roy
- Association for Integrated Development (AID), Bhubaneswar, Odisha, India
| | | | - B N Singh
- Centre for Research and Development (CRD), Gorakhpur, UP, India
| | - Uma S Singh
- International Rice Research Institute (IRRI-India), NASC Complex, New Delhi, India
| | | |
Collapse
|
9
|
Wendler N, Mascher M, Himmelbach A, Johnston P, Pickering R, Stein N. Bulbosum to Go: A Toolbox to Utilize Hordeum vulgare/bulbosum Introgressions for Breeding and Beyond. MOLECULAR PLANT 2015; 8:1507-19. [PMID: 25983208 DOI: 10.1016/j.molp.2015.05.004] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2015] [Revised: 04/23/2015] [Accepted: 05/10/2015] [Indexed: 05/18/2023]
Abstract
Hordeum bulbosum L., a wild relative of barley (Hordeum vulgare L.), has been considered as a valuable source of genetic diversity for barley improvement. Since the 1990s, a considerable number of barley/H. bulbosum introgression lines (IL)s has been generated, with segments introgressed from H. bulbosum harboring a diverse set of desirable traits. However, the efficient utilization of these ILs has been hampered, largely due to the lack of suitable molecular tools for their genetic characterization and highly reduced interspecific recombination frequencies in the region of the introgression. In the present study, we utilized genotyping-by-sequencing for the detailed molecular characterization of 145 ILs. Genotypic information allows the genetic diversity within the set of ILs to be determined and a strategy was outlined to tackle the obstacle of reduced recombination frequencies. Furthermore, we compiled exome capture re-sequencing information of barley and H. bulbosum and designed an integrated barley/H. bulbosum sequence resource with polymorphism information on interspecific and intraspecific sequence variations of both species. The integrated sequence will be valuable for marker development in barley/H. bulbosum ILs derived from any barley and H. bulbosum donors. This study provides the tools for the widespread utilization of barley/H. bulbosum ILs in applied barley breeding and academic research.
Collapse
Affiliation(s)
- Neele Wendler
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Corrensstraße 3, 06466 Seeland (OT) Gatersleben, Germany
| | - Martin Mascher
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Corrensstraße 3, 06466 Seeland (OT) Gatersleben, Germany
| | - Axel Himmelbach
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Corrensstraße 3, 06466 Seeland (OT) Gatersleben, Germany
| | - Paul Johnston
- New Zealand Institute for Plant and Food Research Limited, Private Bag 4704, Christchurch 8140, New Zealand
| | - Richard Pickering
- New Zealand Institute for Plant and Food Research Limited, Private Bag 4704, Christchurch 8140, New Zealand
| | - Nils Stein
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Corrensstraße 3, 06466 Seeland (OT) Gatersleben, Germany.
| |
Collapse
|