1
|
Qing X, Li J, Lin Z, Wang W, Yi F, Chen J, Liu Q, Song W, Lai J, Chen B, Zhao H, Yang Z. Maize transcription factor ZmEREB167 negatively regulates starch accumulation and kernel size. J Genet Genomics 2025; 52:411-421. [PMID: 39870138 DOI: 10.1016/j.jgg.2025.01.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2024] [Revised: 01/17/2025] [Accepted: 01/18/2025] [Indexed: 01/29/2025]
Abstract
Transcription factors play critical roles in the regulation of gene expression during maize kernel development. The maize endosperm, a large storage organ, accounting for nearly 90% of the dry weight of mature kernels, serves as the primary site for starch storage. In this study, we identify an endosperm-specific EREB gene, ZmEREB167, which encodes a nucleus-localized EREB protein. Knockout of ZmEREB167 significantly increases kernel size and weight, as well as starch and protein content, compared with the wild type. In situ hybridization experiments show that ZmEREB167 is highly expressed in the BETL as well as PED regions of maize kernels. Dual-luciferase assays show that ZmEREB167 exhibits transcriptionally repressor activity in maize protoplasts. Transcriptome analysis reveals that a large number of genes are up-regulated in the Zmereb167-C1 mutant compared with the wild type, including key genetic factors such as ZmMRP-1 and ZmMN1, as well as multiple transporters involved in maize endosperm development. Integration of RNA-seq and ChIP-seq results identify 68 target genes modulated by ZmEREB167. We find that ZmEREB167 directly targets OPAQUE2, ZmNRT1.1, ZmIAA12, ZmIAA19, and ZmbZIP20, repressing their expressions. Our study demonstrates that ZmEREB167 functions as a negative regulator in maize endosperm development and affects starch accumulation and kernel size.
Collapse
Affiliation(s)
- Xiangyu Qing
- State Key Laboratory of Maize Bio-breeding, Key Laboratory of Genome Editing Research and Application, Ministry of Agriculture and Rural Affairs, Department of Plant Genetics and Breeding, National Maize Improvement Center, College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, China
| | - Jianrui Li
- State Key Laboratory of Crop Gene Resources and Breeding/Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Zhen Lin
- State Key Laboratory of Maize Bio-breeding, Key Laboratory of Genome Editing Research and Application, Ministry of Agriculture and Rural Affairs, Department of Plant Genetics and Breeding, National Maize Improvement Center, College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, China
| | - Wei Wang
- Engineering Research Center of Plant Growth Regulator, College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, China
| | - Fei Yi
- Engineering Research Center of Plant Growth Regulator, College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, China
| | - Jian Chen
- State Key Laboratory of Maize Bio-breeding, Key Laboratory of Genome Editing Research and Application, Ministry of Agriculture and Rural Affairs, Department of Plant Genetics and Breeding, National Maize Improvement Center, College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, China
| | - Qiujie Liu
- State Key Laboratory of Maize Bio-breeding, Key Laboratory of Genome Editing Research and Application, Ministry of Agriculture and Rural Affairs, Department of Plant Genetics and Breeding, National Maize Improvement Center, College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, China; Frontiers Science Center for Molecular Design Breeding, Beijing 100193, China
| | - Weibin Song
- State Key Laboratory of Maize Bio-breeding, Key Laboratory of Genome Editing Research and Application, Ministry of Agriculture and Rural Affairs, Department of Plant Genetics and Breeding, National Maize Improvement Center, College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, China; Sanya Institute of China Agricultural University, Sanya, Hainan 572024, China
| | - Jinsheng Lai
- State Key Laboratory of Maize Bio-breeding, Key Laboratory of Genome Editing Research and Application, Ministry of Agriculture and Rural Affairs, Department of Plant Genetics and Breeding, National Maize Improvement Center, College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, China; Sanya Institute of China Agricultural University, Sanya, Hainan 572024, China
| | - Baojian Chen
- State Key Laboratory of Maize Bio-breeding, Key Laboratory of Genome Editing Research and Application, Ministry of Agriculture and Rural Affairs, Department of Plant Genetics and Breeding, National Maize Improvement Center, College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, China; Sanya Institute of China Agricultural University, Sanya, Hainan 572024, China.
| | - Haiming Zhao
- State Key Laboratory of Maize Bio-breeding, Key Laboratory of Genome Editing Research and Application, Ministry of Agriculture and Rural Affairs, Department of Plant Genetics and Breeding, National Maize Improvement Center, College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, China; Sanya Institute of China Agricultural University, Sanya, Hainan 572024, China.
| | - Zhijia Yang
- State Key Laboratory of Maize Bio-breeding, Key Laboratory of Genome Editing Research and Application, Ministry of Agriculture and Rural Affairs, Department of Plant Genetics and Breeding, National Maize Improvement Center, College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, China; Frontiers Science Center for Molecular Design Breeding, Beijing 100193, China.
| |
Collapse
|
2
|
Yin Z, Wei X, Cao Y, Dong Z, Long Y, Wan X. Regulatory balance between ear rot resistance and grain yield and their breeding applications in maize and other crops. J Adv Res 2024:S2090-1232(24)00479-X. [PMID: 39447642 DOI: 10.1016/j.jare.2024.10.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 10/19/2024] [Accepted: 10/20/2024] [Indexed: 10/26/2024] Open
Abstract
BACKGROUND Fungi are prevalent pathogens that cause substantial yield losses of major crops. Ear rot (ER), which is primarily induced by Fusarium or Aspergillus species, poses a significant challenge to maize production worldwide. ER resistance is regulated by several small effect quantitative trait loci (QTLs). To date, only a few ER-related genes have been identified that impede molecular breeding efforts to breed ER-resistant maize varieties. AIM OF REVIEW Our aim here is to explore the research progress and mine genic resources related to ER resistance, and to propose a regulatory model elucidating the ER-resistant mechanism in maize as well as a trade-off model illustrating how crops balance fungal resistance and grain yield. Key Scientific Concepts of Review: This review presents a comprehensive bibliometric analysis of the research history and current trends in the genetic and molecular regulation underlying ER resistance in maize. Moreover, we analyzed and discovered the genic resources by identifying 162 environmentally stable loci (ESLs) from various independent forward genetics studies as well as 1391 conservatively differentially expressed genes (DEGs) that respond to Fusarium or Aspergillus infection through multi-omics data analysis. Additionally, this review discusses the syntenies found among maize ER, wheat Fusariumhead blight (FHB), and rice Bakanaedisease (RBD) resistance-related loci, along with the significant overlap between fungal resistance loci and reported yield-related loci, thus providing valuable insights into the regulatory mechanisms underlying the trade-offs between yield and defense in crops.
Collapse
Affiliation(s)
- Zechao Yin
- Research Institute of Biology and Agriculture, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Xun Wei
- Research Institute of Biology and Agriculture, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China; Beijing Engineering Laboratory of Main Crop Bio-Tech Breeding, Beijing International Science and Technology Cooperation Base of Bio-Tech Breeding, Zhongzhi International Institute of Agricultural Biosciences, Beijing 100192, China
| | - Yanyong Cao
- Institute of Cereal Crops, Henan Academy of Agricultural Sciences, Zhengzhou 450002, China
| | - Zhenying Dong
- Research Institute of Biology and Agriculture, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China; Beijing Engineering Laboratory of Main Crop Bio-Tech Breeding, Beijing International Science and Technology Cooperation Base of Bio-Tech Breeding, Zhongzhi International Institute of Agricultural Biosciences, Beijing 100192, China.
| | - Yan Long
- Research Institute of Biology and Agriculture, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China; Beijing Engineering Laboratory of Main Crop Bio-Tech Breeding, Beijing International Science and Technology Cooperation Base of Bio-Tech Breeding, Zhongzhi International Institute of Agricultural Biosciences, Beijing 100192, China.
| | - Xiangyuan Wan
- Research Institute of Biology and Agriculture, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China; Beijing Engineering Laboratory of Main Crop Bio-Tech Breeding, Beijing International Science and Technology Cooperation Base of Bio-Tech Breeding, Zhongzhi International Institute of Agricultural Biosciences, Beijing 100192, China.
| |
Collapse
|
3
|
Xie S, Tian R, Liu H, Li Y, Hu Y, Huang Y, Zhang J, Liu Y. DEK219 and HSF17 Collaboratively Regulate the Kernel Length in Maize. PLANTS (BASEL, SWITZERLAND) 2024; 13:1592. [PMID: 38931024 PMCID: PMC11207566 DOI: 10.3390/plants13121592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Revised: 06/04/2024] [Accepted: 06/05/2024] [Indexed: 06/28/2024]
Abstract
The kernel length is a crucial determinant of maize (Zea mays L.) yield; however, only a limited number of genes regulating kernel length have been validated, thus leaving our understanding of the mechanisms governing kernel length incomplete. We previously identified a maize kernel mutant, defective kernel219 (dek219), which encodes the DICER-LIKE1 protein that is essential for miRNA biogenesis. The present study revealed that dek219 consistently exhibits a stable phenotype characterized by a reduced kernel length. Further analysis indicated that dek219 may reduce the kernel length by inhibiting the expression of genes involved in regulating kernel length. By employing miRNA-target gene prediction, expression analysis, and correlation analysis, we successfully identified nine transcription factors that potentially participate in the regulation of kernel length under the control of DEK219. Among them, the upregulation fold change of HEAT SHOCK TRANSCRIPTION FACTOR17 (HSF17) expression was the highest, and the difference was most significant. The results of transient expression analysis and electrophoretic mobility shift assay (EMSA) indicated that HSF17 can inhibit the expression of DEFECTIVE ENDOSPERM18 (DE18), a gene involved in regulating kernel length. Furthermore, the hsf17 mutant exhibited a significant increase in kernel length, suggesting that HSF17 functions as a negative regulator of kernel length. The results of this study provide crucial evidence for further elucidating the molecular regulatory mechanism underlying maize kernel length and also offer valuable genetic resources for breeding high-yielding maize varieties.
Collapse
Affiliation(s)
- Sidi Xie
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu 611130, China; (S.X.); (R.T.); (Y.L.); (Y.H.); (Y.H.)
| | - Ran Tian
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu 611130, China; (S.X.); (R.T.); (Y.L.); (Y.H.); (Y.H.)
| | - Hanmei Liu
- College of Life Science, Sichuan Agricultural University, Ya’an 625014, China;
| | - Yangping Li
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu 611130, China; (S.X.); (R.T.); (Y.L.); (Y.H.); (Y.H.)
| | - Yufeng Hu
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu 611130, China; (S.X.); (R.T.); (Y.L.); (Y.H.); (Y.H.)
| | - Yubi Huang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu 611130, China; (S.X.); (R.T.); (Y.L.); (Y.H.); (Y.H.)
| | - Junjie Zhang
- College of Life Science, Sichuan Agricultural University, Ya’an 625014, China;
| | - Yinghong Liu
- Maize Research Institute, Sichuan Agricultural University, Chengdu 611130, China
| |
Collapse
|
4
|
Zhang X, Sun J, Zhang Y, Li J, Liu M, Li L, Li S, Wang T, Shaw RK, Jiang F, Fan X. Hotspot Regions of Quantitative Trait Loci and Candidate Genes for Ear-Related Traits in Maize: A Literature Review. Genes (Basel) 2023; 15:15. [PMID: 38275597 PMCID: PMC10815758 DOI: 10.3390/genes15010015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 12/12/2023] [Accepted: 12/16/2023] [Indexed: 01/27/2024] Open
Abstract
In this study, hotspot regions, QTL clusters, and candidate genes for eight ear-related traits of maize (ear length, ear diameter, kernel row number, kernel number per row, kernel length, kernel width, kernel thickness, and 100-kernel weight) were summarized and analyzed over the past three decades. This review aims to (1) comprehensively summarize and analyze previous studies on QTLs associated with these eight ear-related traits and identify hotspot bin regions located on maize chromosomes and key candidate genes associated with the ear-related traits and (2) compile major and stable QTLs and QTL clusters from various mapping populations and mapping methods and techniques providing valuable insights for fine mapping, gene cloning, and breeding for high-yield and high-quality maize. Previous research has demonstrated that QTLs for ear-related traits are distributed across all ten chromosomes in maize, and the phenotypic variation explained by a single QTL ranged from 0.40% to 36.76%. In total, 23 QTL hotspot bins for ear-related traits were identified across all ten chromosomes. The most prominent hotspot region is bin 4.08 on chromosome 4 with 15 QTLs related to eight ear-related traits. Additionally, this study identified 48 candidate genes associated with ear-related traits. Out of these, five have been cloned and validated, while twenty-eight candidate genes located in the QTL hotspots were defined by this study. This review offers a deeper understanding of the advancements in QTL mapping and the identification of key candidates associated with eight ear-related traits. These insights will undoubtedly assist maize breeders in formulating strategies to develop higher-yield maize varieties, contributing to global food security.
Collapse
Affiliation(s)
- Xingjie Zhang
- School of Agriculture, Yunnan University, Kunming 650500, China; (X.Z.); (J.L.); (M.L.); (L.L.); (S.L.)
| | - Jiachen Sun
- College of Agronomy and Biotechnology, Yunnan Agricultural University, Kunming 650201, China; (J.S.); (T.W.)
| | - Yudong Zhang
- Institute of Food Crops, Yunnan Academy of Agricultural Sciences, Kunming 650205, China; (Y.Z.); (R.K.S.); (F.J.)
| | - Jinfeng Li
- School of Agriculture, Yunnan University, Kunming 650500, China; (X.Z.); (J.L.); (M.L.); (L.L.); (S.L.)
| | - Meichen Liu
- School of Agriculture, Yunnan University, Kunming 650500, China; (X.Z.); (J.L.); (M.L.); (L.L.); (S.L.)
| | - Linzhuo Li
- School of Agriculture, Yunnan University, Kunming 650500, China; (X.Z.); (J.L.); (M.L.); (L.L.); (S.L.)
| | - Shaoxiong Li
- School of Agriculture, Yunnan University, Kunming 650500, China; (X.Z.); (J.L.); (M.L.); (L.L.); (S.L.)
| | - Tingzhao Wang
- College of Agronomy and Biotechnology, Yunnan Agricultural University, Kunming 650201, China; (J.S.); (T.W.)
| | - Ranjan Kumar Shaw
- Institute of Food Crops, Yunnan Academy of Agricultural Sciences, Kunming 650205, China; (Y.Z.); (R.K.S.); (F.J.)
| | - Fuyan Jiang
- Institute of Food Crops, Yunnan Academy of Agricultural Sciences, Kunming 650205, China; (Y.Z.); (R.K.S.); (F.J.)
| | - Xingming Fan
- Institute of Food Crops, Yunnan Academy of Agricultural Sciences, Kunming 650205, China; (Y.Z.); (R.K.S.); (F.J.)
| |
Collapse
|
5
|
Chawla R, Poonia A, Samantara K, Mohapatra SR, Naik SB, Ashwath MN, Djalovic IG, Prasad PVV. Green revolution to genome revolution: driving better resilient crops against environmental instability. Front Genet 2023; 14:1204585. [PMID: 37719711 PMCID: PMC10500607 DOI: 10.3389/fgene.2023.1204585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Accepted: 08/11/2023] [Indexed: 09/19/2023] Open
Abstract
Crop improvement programmes began with traditional breeding practices since the inception of agriculture. Farmers and plant breeders continue to use these strategies for crop improvement due to their broad application in modifying crop genetic compositions. Nonetheless, conventional breeding has significant downsides in regard to effort and time. Crop productivity seems to be hitting a plateau as a consequence of environmental issues and the scarcity of agricultural land. Therefore, continuous pursuit of advancement in crop improvement is essential. Recent technical innovations have resulted in a revolutionary shift in the pattern of breeding methods, leaning further towards molecular approaches. Among the promising approaches, marker-assisted selection, QTL mapping, omics-assisted breeding, genome-wide association studies and genome editing have lately gained prominence. Several governments have progressively relaxed their restrictions relating to genome editing. The present review highlights the evolutionary and revolutionary approaches that have been utilized for crop improvement in a bid to produce climate-resilient crops observing the consequence of climate change. Additionally, it will contribute to the comprehension of plant breeding succession so far. Investing in advanced sequencing technologies and bioinformatics will deepen our understanding of genetic variations and their functional implications, contributing to breakthroughs in crop improvement and biodiversity conservation.
Collapse
Affiliation(s)
- Rukoo Chawla
- Department of Genetics and Plant Breeding, Maharana Pratap University of Agriculture and Technology, Udaipur, Rajasthan, India
| | - Atman Poonia
- Department of Genetics and Plant Breeding, Chaudhary Charan Singh Haryana Agricultural University, Bawal, Haryana, India
| | - Kajal Samantara
- Institute of Technology, University of Tartu, Tartu, Estonia
| | - Sourav Ranjan Mohapatra
- Department of Forest Biology and Tree Improvement, Odisha University of Agriculture and Technology, Bhubaneswar, Odisha, India
| | - S. Balaji Naik
- Institute of Integrative Biology and Systems, University of Laval, Quebec City, QC, Canada
| | - M. N. Ashwath
- Department of Forest Biology and Tree Improvement, Kerala Agricultural University, Thrissur, Kerala, India
| | - Ivica G. Djalovic
- Institute of Field and Vegetable Crops, National Institute of the Republic of Serbia, Novi Sad, Serbia
| | - P. V. Vara Prasad
- Department of Agronomy, Kansas State University, Manhattan, KS, United States
| |
Collapse
|
6
|
Liu Z, Li P, Ren W, Chen Z, Olukayode T, Mi G, Yuan L, Chen F, Pan Q. Hybrid performance evaluation and genome-wide association analysis of root system architecture in a maize association population. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2023; 136:194. [PMID: 37606710 DOI: 10.1007/s00122-023-04442-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Accepted: 08/04/2023] [Indexed: 08/23/2023]
Abstract
KEY MESSAGE The genetic architecture of RSA traits was dissected by GWAS and coexpression networks analysis in a maize association population. Root system architecture (RSA) is a crucial determinant of water and nutrient uptake efficiency in crops. However, the maize genetic architecture of RSA is still poorly understood due to the challenges in quantifying root traits and the lack of dense molecular markers. Here, an association mapping panel including 356 inbred lines were crossed with a common tester, Zheng58, and the test crosses were phenotyped for 12 RSA traits in three locations. We observed a 1.3 ~ sixfold phenotypic variation for measured RSA in the association panel. The association panel consisted of four subpopulations, non-stiff stalk (NSS) lines, stiff stalk (SS), tropical/subtropical (TST), and mixed. Zheng58 × TST has a 2.1% higher crown root number (CRN) and 8.6% less brace root number (BRN) than Zheng58 × NSS and Zheng58 × SS, respectively. Using a genome-wide association study (GWAS) with 1.25 million SNPs and correction for population structure, 191 significant SNPs were identified for root traits. Ninety (47%) of the significant SNPs showed positive allelic effects, and 101 (53%) showed negative effects. Each locus could explain 0.39% to 11.8% of phenotypic variation. By integrating GWAS results and comparing coexpression networks, 26 high-priority candidate genes were identified. Gene GRMZM2G377215, which belongs to the COBRA-like gene family, affected root growth and development. Gene GRMZM2G468657 encodes the aspartic proteinase nepenthesin-1, related to root development and N-deficient response. Collectively, our research provides progress in the genetic dissection of root system architecture. These findings present the further possibility for the genetic improvement of root traits in maize.
Collapse
Affiliation(s)
- Zhigang Liu
- College of Resources and Environmental Sciences, National Academy of Agriculture Green Development, Key Laboratory of Plant-Soil Interactions of MOE, China Agricultural University, Beijing, China
- Global Institute for Food Security, University of Saskatchewan, Saskatoon, Canada
| | - Pengcheng Li
- Key Laboratory of Plant Functional Genomics of the Ministry of Education, Yangzhou University, Yangzhou, China
| | - Wei Ren
- College of Resources and Environmental Sciences, National Academy of Agriculture Green Development, Key Laboratory of Plant-Soil Interactions of MOE, China Agricultural University, Beijing, China
| | - Zhe Chen
- College of Resources and Environment, Jilin Agricultural University, Changchun, China
| | - Toluwase Olukayode
- Global Institute for Food Security, University of Saskatchewan, Saskatoon, Canada
| | - Guohua Mi
- College of Resources and Environmental Sciences, National Academy of Agriculture Green Development, Key Laboratory of Plant-Soil Interactions of MOE, China Agricultural University, Beijing, China
| | - Lixing Yuan
- College of Resources and Environmental Sciences, National Academy of Agriculture Green Development, Key Laboratory of Plant-Soil Interactions of MOE, China Agricultural University, Beijing, China
| | - Fanjun Chen
- College of Resources and Environmental Sciences, National Academy of Agriculture Green Development, Key Laboratory of Plant-Soil Interactions of MOE, China Agricultural University, Beijing, China
- Sanya Institute of China Agricultural University, Sanya, China
| | - Qingchun Pan
- College of Resources and Environmental Sciences, National Academy of Agriculture Green Development, Key Laboratory of Plant-Soil Interactions of MOE, China Agricultural University, Beijing, China.
- Sanya Institute of China Agricultural University, Sanya, China.
| |
Collapse
|
7
|
Katral A, Hossain F, Gopinath I, Chand G, Mehta BK, Kamboj MC, Zunjare RU, Yadava DK, Muthusamy V. Genetic dissection of embryo size and weight related traits for enhancement of kernel oil in maize. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2023; 197:107668. [PMID: 37003215 DOI: 10.1016/j.plaphy.2023.107668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Revised: 03/01/2023] [Accepted: 03/24/2023] [Indexed: 06/19/2023]
Abstract
Embryo is a key determinant of kernel-oil in maize. Higher calorific value of maize kernel is attributed to increment in kernel-oil and it stores in specialised structure called embryo. Understanding the genetic behaviour of embryo size and weight related-traits is inevitable task for genetic improvement of kernel-oil. Here, the six-basic generations (P1, P2, F1, F2, BC1P1 and BC1P2) of three crosses (CRPBIO-962 × EC932601, CRPBIO-973 × CRPBIO-966 and CRPBIO-966 × CRPBIO-979) between contrasting embryo-sized maize inbreds were field evaluated at three locations to decipher the genetics of twenty embryo, kernel and embryo-to-kernel related-traits through generation-mean-analysis (GMA). Combined ANOVA revealed the significance of all the traits among generations; however, location and generation × location were found to be non-significant (P > 0.05) for most of the traits. Significance (P < 0.05) of scaling and joint-scaling tests revealed the presence of non-allelic interactions. Elucidation of six-parameters disclosed the predominance of dominance main-effect (h) and dominance × dominance interaction-effect (l) for most of traits. The signs of (h) and (l) indicated the prevalence of duplicate-epistasis type across crosses and locations. Thus, the population improvement approaches along with heterosis breeding method could be effective for improvement of these traits. Quantitative inheritance pattern was observed for all the traits with high broad-sense heritability and better-stability across locations. The study also predicted one to three major-gene blocks/QTLs for embryo-traits and up to 11 major-gene blocks/QTLs for embryo-to-kernel traits. These findings could provide deep insights to strategize extensive breeding methods to improve embryo traits for enhancing kernel-oil in sustainable manner.
Collapse
Affiliation(s)
| | - Firoz Hossain
- ICAR-Indian Agricultural Research Institute, New Delhi, India
| | | | - Gulab Chand
- ICAR-Indian Agricultural Research Institute, New Delhi, India
| | - Brijesh K Mehta
- ICAR-Indian Grassland and Fodder Research Institute, Jhansi, India
| | - Mehar C Kamboj
- Chaudhary Charan Singh Haryana Agricultural University, Hisar, India
| | | | | | | |
Collapse
|
8
|
Jiang T, Zhang C, Zhang Z, Wen M, Qiu H. QTL mapping of maize ( Zea mays L.) kernel traits under low-phosphorus stress. PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2023; 29:435-445. [PMID: 37033769 PMCID: PMC10073376 DOI: 10.1007/s12298-023-01300-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Revised: 03/17/2023] [Accepted: 03/17/2023] [Indexed: 06/19/2023]
Abstract
Low-phosphorus stress significantly impacts the development of maize kernels. In this study, the phosphor efficient maize genotype 082 and phosphor deficient maize genotype Ye107, were used to construct an F2:3 population. QTL mapping was then employed to determine the genetic basis of differences in the maize kernel traits of the two parents in a low-phosphorus environment. This analysis revealed several major QTL that control environmental impacts on kernel length, width, thickness, and weight. These QTL were detected in all three environments and were distributed on five genome segments of chromosomes 3, 5, 6, and 9, and some new kernel-trait QTL were also detected (eg: Qkwid6, Qkthi3, Qkwei9, and Qklen3-1). These environmentally insensitive QTL can be stably expressed in low phosphorus environments, indicating that they can lay a foundation for the breeding of high phosphorus utilization efficiency germplasm. Supplementary Information The online version contains supplementary material available at 10.1007/s12298-023-01300-0.
Collapse
Affiliation(s)
- Tao Jiang
- College of Agriculture, Guizhou University, Guiyang, 550025 China
| | - Chenghua Zhang
- Shandong Academy of Agricultural Sciences, Jinan, 250100 China
| | - Zhi Zhang
- College of Agriculture, Guizhou University, Guiyang, 550025 China
| | - Min Wen
- Jilin Agricultural University, Changchun, 130118 China
| | - Hongbo Qiu
- College of Agriculture, Guizhou University, Guiyang, 550025 China
| |
Collapse
|
9
|
Wang T, Xu F, Wang Z, Wu Q, Cheng W, Que Y, Xu L. Mapping of QTLs and Screening Candidate Genes Associated with the Ability of Sugarcane Tillering and Ratooning. Int J Mol Sci 2023; 24:2793. [PMID: 36769121 PMCID: PMC9917849 DOI: 10.3390/ijms24032793] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 01/20/2023] [Accepted: 01/29/2023] [Indexed: 02/05/2023] Open
Abstract
The processes of sugarcane tillering and ratooning, which directly affect the yield of plant cane and ratoon, are of vital importance to the population establishment and the effective stalk number per unit area. In the present study, the phenotypic data of 285 F1 progenies from a cross of sugarcane varieties YT93-159 × ROC22 were collected in eight environments, which consisted of plant cane and ratoon cultivated in three different ecological sites. The broad sense heritability (H2) of the tillering and the ratoon sprouting was 0.64 and 0.63, respectively, indicating that they were middle to middle-high heritable traits, and there is a significantly positive correlation between the two traits. Furthermore, a total of 26 quantitative trait loci (QTLs) related to the tillering ability and 11 QTLs associated with the ratooning ability were mapped on two high-quality genetic maps derived from a 100K SNP chip, and their phenotypic variance explained (PVE) ranged from 4.27-25.70% and 6.20-13.54%, respectively. Among them, four consistent QTLs of qPCTR-R9, qPCTR-Y28, qPCTR-Y60/qRSR-Y60 and PCTR-Y8-1/qRSR-Y8 were mapped in two environments, of which, qPCTR-Y8-1/qRSR-Y8 had the PVEs of 11.90% in the plant cane and 7.88% in the ratoon. Furthermore, a total of 25 candidate genes were identified in the interval of the above four consistent QTLs and four major QTLs of qPCTR-Y8-1, qPCTR-Y8-2, qRSR-R51 and qRSR-Y43-2, with the PVEs from 11.73-25.70%. All these genes were associated with tillering, including eight transcription factors (TFs), while 15 of them were associated with ratooning, of which there were five TFs. These QTLs and genes can provide a scientific reference for genetic improvement of tillering and ratooning traits in sugarcane.
Collapse
Affiliation(s)
| | | | | | | | | | - Youxiong Que
- National Engineering Research Center for Sugarcane, Key Laboratory of Sugarcane Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Liping Xu
- National Engineering Research Center for Sugarcane, Key Laboratory of Sugarcane Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| |
Collapse
|
10
|
Hou F, Zhang N, Ma L, An L, Zhou X, Zou C, Yang C, Pan G, Lübberstedt T, Shen Y. ZmbZIP54 and ZmFDX5 cooperatively regulate maize seedling tolerance to lead by mediating ZmPRP1 transcription. Int J Biol Macromol 2023; 224:621-633. [PMID: 36273546 DOI: 10.1016/j.ijbiomac.2022.10.151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 09/14/2022] [Accepted: 10/17/2022] [Indexed: 11/05/2022]
Abstract
Extensive lead (Pb) accumulation in plants exerts toxic effects on plant growth and development and enters the human food chain. Combining linkage mapping, transcriptome analysis, and association studies, we cloned the ZmbZIP54 transcription factor, which confers maize tolerance to Pb. Combined overexpression and knockdown confirmed that ZmbZIP54 mitigates Pb toxicity in maize by alleviating Pb absorption into the roots. Yeast one-hybrid and dual-luciferase assays revealed that ZmbZIP54 binds to the ZmPRP1 promoter and promotes its transcription. Yeast two-hybrid and bimolecular fluorescence complementation assays indicated that ZmFdx5 interacts with ZmbZIP54 in the nucleus. ZmFdx5 acts as a switch that controls the regulation of ZmPRP1 expression by ZmbZIP54 when maize encounters Pb stress. Furthermore, we revealed that variation in the 5'-UTR of ZmbZIP54 affects its expression level under Pb stress and contributes to the difference in Pb tolerance among maize lines. Finally, we proposed a model to summarize the role of ZmbZIP54 in Pb tolerance, which involves the cooperative effect of ZmbZIP54 and ZmFdx5 on the ZmPRP1 transcription in maize response to Pb. This study provides novel insights into the development of Pb-tolerant maize varieties and bioremediation of Pb-contaminated soils.
Collapse
Affiliation(s)
- Fengxia Hou
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Maize Research Institute, Sichuan Agricultural University, Chengdu 611130, China
| | - Na Zhang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Maize Research Institute, Sichuan Agricultural University, Chengdu 611130, China
| | - Langlang Ma
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Maize Research Institute, Sichuan Agricultural University, Chengdu 611130, China
| | - Lijun An
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Maize Research Institute, Sichuan Agricultural University, Chengdu 611130, China
| | - Xun Zhou
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Maize Research Institute, Sichuan Agricultural University, Chengdu 611130, China
| | - Chaoying Zou
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Maize Research Institute, Sichuan Agricultural University, Chengdu 611130, China
| | - Cong Yang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Maize Research Institute, Sichuan Agricultural University, Chengdu 611130, China
| | - Guangtang Pan
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Maize Research Institute, Sichuan Agricultural University, Chengdu 611130, China
| | | | - Yaou Shen
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Maize Research Institute, Sichuan Agricultural University, Chengdu 611130, China.
| |
Collapse
|
11
|
Lu X, Zhou Z, Wang Y, Wang R, Hao Z, Li M, Zhang D, Yong H, Han J, Wang Z, Weng J, Zhou Y, Li X. Genetic basis of maize kernel protein content revealed by high-density bin mapping using recombinant inbred lines. FRONTIERS IN PLANT SCIENCE 2022; 13:1045854. [PMID: 36589123 PMCID: PMC9798238 DOI: 10.3389/fpls.2022.1045854] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Accepted: 11/29/2022] [Indexed: 06/17/2023]
Abstract
Maize with a high kernel protein content (PC) is desirable for human food and livestock fodder. However, improvements in its PC have been hampered by a lack of desirable molecular markers. To identify quantitative trait loci (QTL) and candidate genes for kernel PC, we employed a genotyping-by-sequencing strategy to construct a high-resolution linkage map with 6,433 bin markers for 275 recombinant inbred lines (RILs) derived from a high-PC female Ji846 and low-PC male Ye3189. The total genetic distance covered by the linkage map was 2180.93 cM, and the average distance between adjacent markers was 0.32 cM, with a physical distance of approximately 0.37 Mb. Using this linkage map, 11 QTLs affecting kernel PC were identified, including qPC7 and qPC2-2, which were identified in at least two environments. For the qPC2-2 locus, a marker named IndelPC2-2 was developed with closely linked polymorphisms in both parents, and when tested in 30 high and 30 low PC inbred lines, it showed significant differences (P = 1.9E-03). To identify the candidate genes for this locus, transcriptome sequencing data and PC best linear unbiased estimates (BLUE) for 348 inbred lines were combined, and the expression levels of the four genes were correlated with PC. Among the four genes, Zm00001d002625, which encodes an S-adenosyl-L-methionine-dependent methyltransferase superfamily protein, showed significantly different expression levels between two RIL parents in the endosperm and is speculated to be a potential candidate gene for qPC2-2. This study will contribute to further research on the mechanisms underlying the regulation of maize PC, while also providing a genetic basis for marker-assisted selection in the future.
Collapse
Affiliation(s)
- Xin Lu
- Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Zhiqiang Zhou
- Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yunhe Wang
- Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, China
- College of Agriculture, Northeast Agricultural University, Harbin, Heilongjiang, China
| | - Ruiqi Wang
- College of Agriculture, Northeast Agricultural University, Harbin, Heilongjiang, China
| | - Zhuanfang Hao
- Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Mingshun Li
- Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Degui Zhang
- Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Hongjun Yong
- Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Jienan Han
- Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Zhenhua Wang
- College of Agriculture, Northeast Agricultural University, Harbin, Heilongjiang, China
| | - Jianfeng Weng
- Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yu Zhou
- College of Agriculture, Northeast Agricultural University, Harbin, Heilongjiang, China
| | - Xinhai Li
- Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
12
|
Rahman MM, Dana LP, Moral IH, Anjum N, Rahaman MS. Challenges of rural women entrepreneurs in Bangladesh to survive their family entrepreneurship: a narrative inquiry through storytelling. JOURNAL OF FAMILY BUSINESS MANAGEMENT 2022. [DOI: 10.1108/jfbm-04-2022-0054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
PurposeFamily entrepreneurship benefits women because of their economic, family, and social needs. But, as rural women, it is not much easy for them to maintain their family entrepreneurship successfully. Thus, this paper aims to explore the main challenges faced by rural women entrepreneurs in Bangladesh to survive their family entrepreneurship.Design/methodology/approachThis study is qualitative in nature, based on narrative inquiry. The purposive sampling technique was used as a part of a non-probability sampling method to collect the data from rural women entrepreneurs from three districts (Khulna, Shatkhira, and Sylhet) in Bangladesh engaged in family entrepreneurship. No new information was found after collecting the data from seven (07) respondents; thus, they were chosen as the final sample size.FindingsThe findings show that rural women entrepreneurs faced primarily social and cultural, financial, and skill-related challenges, though they face other challenges to survive their family entrepreneurship. The attitude and perception of society toward women and their roles are at the root of social and cultural barriers. Researchers also found that financial challenges have a colossal impact on rural women and the other problem.Practical implicationsAlthough entrepreneurial activities are essential for socio-economic development in these developing countries, this research adds to the existing information by highlighting the main challenges that rural women face when they want to be business owners and entrepreneurs.Originality/valueResearch on rural women entrepreneurship in Bangladesh is limited and new. This study can provide an overview of the challenges faced by the rural women entrepreneurs and provide them with a blueprint for the development of women entrepreneurs in developing countries.
Collapse
|
13
|
Three types of genes underlying the Gametophyte factor1 locus cause unilateral cross incompatibility in maize. Nat Commun 2022; 13:4498. [PMID: 35922428 PMCID: PMC9349285 DOI: 10.1038/s41467-022-32180-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Accepted: 07/20/2022] [Indexed: 11/19/2022] Open
Abstract
Unilateral cross incompatibility (UCI) occurs between popcorn and dent corn, and represents a critical step towards speciation. It has been reported that ZmGa1P, encoding a pectin methylesterase (PME), is a male determinant of the Ga1 locus. However, the female determinant and the genetic relationship between male and female determinants at this locus are unclear. Here, we report three different types, a total of seven linked genes underlying the Ga1 locus, which control UCI phenotype by independently affecting pollen tube growth in both antagonistic and synergistic manners. These include five pollen-expressed PME genes (ZmGa1Ps-m), a silk-expressed PME gene (ZmPME3), and another silk-expressed gene (ZmPRP3), encoding a pathogenesis-related (PR) proteins. ZmGa1Ps-m confer pollen compatibility. Presence of ZmPME3 causes silk to reject incompatible pollen. ZmPRP3 promotes incompatibility pollen tube growth and thereby breaks the blocking effect of ZmPME3. In addition, evolutionary genomics analyses suggest that the divergence of the Ga1 locus existed before maize domestication and continued during breeding improvement. The knowledge gained here deepen our understanding of the complex regulation of cross incompatibility. Unilateral cross incompatibility (UCI) is a type of prezygotic reproductive isolation, which is associated with multiple loci in maize. Here, the authors use genetic analysis to separate the Ga1 locus into two functional components and identify seven linked genes encoding three types of proteins.
Collapse
|
14
|
Qu Z, Wu Y, Hu D, Li T, Liang H, Ye F, Xue J, Xu S. Genome-Wide Association Analysis for Candidate Genes Contributing to Kernel-Related Traits in Maize. FRONTIERS IN PLANT SCIENCE 2022; 13:872292. [PMID: 35685022 PMCID: PMC9171146 DOI: 10.3389/fpls.2022.872292] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Accepted: 04/06/2022] [Indexed: 06/01/2023]
Abstract
Maize grain size is the main factor determining grain yield. Dissecting the genetic basis of maize grain size may help reveal the regulatory mechanism of maize seed development and yield formation. In this study, two associated populations were used for genome-wide association analysis of kernel length, kernel width, kernel thickness, and hundred-kernel weight from multiple locations in AM122 and AM180, respectively. Then, genome-wide association mapping was performed based on the maize 6H90K SNP chip. A total of 139 loci were identified as associated with the four traits with p < 1 × 10-4 using two models (FarmCPU and MLM). The transcriptome data showed that 15 of them were expressed differentially in two maize-inbred lines KB182 (small kernel) and KB020 (big kernel) during kernel development. These candidate genes were enriched in regulating peroxidase activity, oxidoreductase, and leaf senescence. The molecular function was major in binding and catalytic activity. This study provided important reference information for exploring maize kernel development mechanisms and applying molecular markers in high-yield breeding.
Collapse
Affiliation(s)
- Zhibo Qu
- Key Laboratory of Biology and Genetic Improvement of Maize in Arid Area of Northwest Region, Ministry of Agriculture and Rural Affairs, College of Agronomy, Northwest A&F University, Yangling, China
- Maize Engineering Technology Research Centre, Yangling, China
| | - Ying Wu
- Key Laboratory of Biology and Genetic Improvement of Maize in Arid Area of Northwest Region, Ministry of Agriculture and Rural Affairs, College of Agronomy, Northwest A&F University, Yangling, China
- Maize Engineering Technology Research Centre, Yangling, China
| | - Die Hu
- Key Laboratory of Biology and Genetic Improvement of Maize in Arid Area of Northwest Region, Ministry of Agriculture and Rural Affairs, College of Agronomy, Northwest A&F University, Yangling, China
- Maize Engineering Technology Research Centre, Yangling, China
| | - Ting Li
- Key Laboratory of Biology and Genetic Improvement of Maize in Arid Area of Northwest Region, Ministry of Agriculture and Rural Affairs, College of Agronomy, Northwest A&F University, Yangling, China
- Maize Engineering Technology Research Centre, Yangling, China
| | - Hangyu Liang
- Key Laboratory of Biology and Genetic Improvement of Maize in Arid Area of Northwest Region, Ministry of Agriculture and Rural Affairs, College of Agronomy, Northwest A&F University, Yangling, China
- Maize Engineering Technology Research Centre, Yangling, China
| | - Fan Ye
- Key Laboratory of Biology and Genetic Improvement of Maize in Arid Area of Northwest Region, Ministry of Agriculture and Rural Affairs, College of Agronomy, Northwest A&F University, Yangling, China
- Maize Engineering Technology Research Centre, Yangling, China
| | - Jiquan Xue
- Key Laboratory of Biology and Genetic Improvement of Maize in Arid Area of Northwest Region, Ministry of Agriculture and Rural Affairs, College of Agronomy, Northwest A&F University, Yangling, China
- Maize Engineering Technology Research Centre, Yangling, China
| | - Shutu Xu
- Key Laboratory of Biology and Genetic Improvement of Maize in Arid Area of Northwest Region, Ministry of Agriculture and Rural Affairs, College of Agronomy, Northwest A&F University, Yangling, China
- Maize Engineering Technology Research Centre, Yangling, China
| |
Collapse
|
15
|
Ma L, An R, Jiang L, Zhang C, Li Z, Zou C, Yang C, Pan G, Lübberstedt T, Shen Y. Effects of ZmHIPP on lead tolerance in maize seedlings: Novel ideas for soil bioremediation. JOURNAL OF HAZARDOUS MATERIALS 2022; 430:128457. [PMID: 35180524 DOI: 10.1016/j.jhazmat.2022.128457] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 01/28/2022] [Accepted: 02/07/2022] [Indexed: 05/19/2023]
Abstract
Extensive lead (Pb) absorption by plants affects their growth and development and causes damage to the human body by entering the food chain. In this study, we cloned ZmHIPP, a gene associated with Pb tolerance and accumulation in maize, using combined linkage mapping and weighted gene co-expression network analysis. We show that ZmHIPP, which encodes a heavy metal-associated isoprenylated plant protein, positively modulated Pb tolerance and accumulation in maize seedlings, Arabidopsis, and yeast. The genetic variation locus (A/G) in the promoter of ZmHIPP contributed to the phenotypic disparity in Pb tolerance among different maize inbred lines by altering the expression abundance of ZmHIPP. Knockdown of ZmHIPP significantly inhibited growth and decreased Pb accumulation in maize seedlings under Pb stress. ZmHIPP facilitated Pb deposition in the cell wall and prevented it from entering the intracellular organelles, thereby alleviating Pb toxicity in maize seedlings. Compared to that in the mutant zmhipp, the accumulated Pb in the wild-type line mainly consisted of the low-toxicity forms of Pb. Our study increases the understanding of the mechanism underlying Pb tolerance in maize and provides new insights into the bioremediation of Pb-polluted soil.
Collapse
Affiliation(s)
- Langlang Ma
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Maize Research Institute, Sichuan Agricultural University, Chengdu 611130, China
| | - Rong An
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Maize Research Institute, Sichuan Agricultural University, Chengdu 611130, China
| | - Li Jiang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Maize Research Institute, Sichuan Agricultural University, Chengdu 611130, China
| | - Chen Zhang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Maize Research Institute, Sichuan Agricultural University, Chengdu 611130, China
| | - Zhaoling Li
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Maize Research Institute, Sichuan Agricultural University, Chengdu 611130, China
| | - Chaoying Zou
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Maize Research Institute, Sichuan Agricultural University, Chengdu 611130, China
| | - Cong Yang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Maize Research Institute, Sichuan Agricultural University, Chengdu 611130, China
| | - Guangtang Pan
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Maize Research Institute, Sichuan Agricultural University, Chengdu 611130, China
| | | | - Yaou Shen
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Maize Research Institute, Sichuan Agricultural University, Chengdu 611130, China.
| |
Collapse
|
16
|
Sun Q, Hu A, Mu L, Zhao H, Qin Y, Gong D, Qiu F. Identification of a candidate gene underlying qHKW3, a QTL for hundred-kernel weight in maize. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2022; 135:1579-1589. [PMID: 35179613 DOI: 10.1007/s00122-022-04055-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Accepted: 02/01/2022] [Indexed: 06/14/2023]
Abstract
qHKW3, a quantitative trait locus for hundred-kernel weight, harbors the proposed causal gene Zm00001d044081, encoding a homeobox-leucine zipper protein (ATHB-4) that might affect kernel size and weight. Kernel size and weight are key traits that contribute greatly to grain yield per year in maize (Zea mays). Here, we developed the chromosome segment substitution line (CSSL), H15-6-2, with smaller kernel size and lower kernel weight across environments compared to the background line Ye478. Histological analysis suggested that a slower kernel filling rate of H15-6-2 contributes to its small-kernel size and reduced hundred-kernel weight. We identified a quantitative trait locus (QTL) explaining 23% of the phenotypic variation in hundred-kernel weight. This QTL, qHKW3, was fine mapped to an interval of approximately 40.66-kb harboring the gene Zm00001d044081. The upstream sequence and its expression level of Zm00001d044081 in kernels at 6 days after pollination (DAP) showed obvious differences between the near-isogenic lines HKW3Ye478 and HKW3H15-6-2. We further confirmed the effects of the Zm00001d044081 promoter on maize kernel size and weight in an independent association mapping panel with 513 lines by candidate regional association analysis. We propose that Zm00001d044081, which encodes the homeobox-leucine zipper protein ATHB-4, is the causal gene of qHKW3, representing an attractive target for the genetic improvement of maize yield.
Collapse
Affiliation(s)
- Qin Sun
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, No. 1, Shizishan Street, Hongshan District, Wuhan, 430070, People's Republic of China
| | - Aoqing Hu
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, No. 1, Shizishan Street, Hongshan District, Wuhan, 430070, People's Republic of China
| | - Luyao Mu
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, No. 1, Shizishan Street, Hongshan District, Wuhan, 430070, People's Republic of China
| | - Hailiang Zhao
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, No. 1, Shizishan Street, Hongshan District, Wuhan, 430070, People's Republic of China
| | - Yao Qin
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, No. 1, Shizishan Street, Hongshan District, Wuhan, 430070, People's Republic of China
| | - Dianming Gong
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, No. 1, Shizishan Street, Hongshan District, Wuhan, 430070, People's Republic of China
| | - Fazhan Qiu
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, No. 1, Shizishan Street, Hongshan District, Wuhan, 430070, People's Republic of China.
| |
Collapse
|
17
|
Identifying QTLs for Grain Size in a Colossal Grain Rice ( Oryza sativa L.) Line, and Analysis of Additive Effects of QTLs. Int J Mol Sci 2022; 23:ijms23073526. [PMID: 35408887 PMCID: PMC8998697 DOI: 10.3390/ijms23073526] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 03/21/2022] [Accepted: 03/21/2022] [Indexed: 02/01/2023] Open
Abstract
Grain size is an important component of quality and harvest traits in the field of rice breeding. Although numerous quantitative trait loci (QTLs) of grain size in rice have been reported, the molecular mechanisms of these QTLs remain poorly understood, and further research on QTL observation and candidate gene identification is warranted. In our research, we developed a suite of F2 intercross populations from a cross of 9311 and CG. These primary populations were used to map QTLs conferring grain size, evaluated across three environments, and then subjected to bulked-segregant analysis-seq (BSA-seq). In total, 4, 11, 12 and 14 QTLs for grain length (GL), grain width (GW), 1000-grain weight (TGW), and length/width ratio (LWR), respectively, were detected on the basis of a single-environment analysis. In particular, over 200 splicing-related sites were identified by whole-genome sequencing, including one splicing-site mutation with G>A at the beginning of intron 4 on Os03g0841800 (qGL3.3), producing a smaller open reading frame, without the third and fourth exons. A previous study revealed that the loss-of-function allele caused by this splicing site can negatively regulate rice grain length. Furthermore, qTGW2.1 and qGW2.3 were new QTLs for grain width. We used the near-isogenic lines (NILs) of these GW QTLs to study their genetic effects on individuals and pyramiding, and found that they have additive effects on GW. In summary, these discoveries provide a valuable genetic resource, which will facilitate further study of the genetic polymorphism of new rice varieties in rice breeding.
Collapse
|
18
|
Genetic Architecture of Grain Yield-Related Traits in Sorghum and Maize. Int J Mol Sci 2022; 23:ijms23052405. [PMID: 35269548 PMCID: PMC8909957 DOI: 10.3390/ijms23052405] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 02/06/2022] [Accepted: 02/18/2022] [Indexed: 02/08/2023] Open
Abstract
Grain size, grain number per panicle, and grain weight are crucial determinants of yield-related traits in cereals. Understanding the genetic basis of grain yield-related traits has been the main research object and nodal in crop science. Sorghum and maize, as very close C4 crops with high photosynthetic rates, stress tolerance and large biomass characteristics, are extensively used to produce food, feed, and biofuels worldwide. In this review, we comprehensively summarize a large number of quantitative trait loci (QTLs) associated with grain yield in sorghum and maize. We placed great emphasis on discussing 22 fine-mapped QTLs and 30 functionally characterized genes, which greatly hinders our deep understanding at the molecular mechanism level. This review provides a general overview of the comprehensive findings on grain yield QTLs and discusses the emerging trend in molecular marker-assisted breeding with these QTLs.
Collapse
|
19
|
Zhu X, Weng Q, Bush D, Zhou C, Zhao H, Wang P, Li F. High-density genetic linkage mapping reveals low stability of QTLs across environments for economic traits in Eucalyptus. FRONTIERS IN PLANT SCIENCE 2022; 13:1099705. [PMID: 37082511 PMCID: PMC10112524 DOI: 10.3389/fpls.2022.1099705] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Accepted: 12/28/2022] [Indexed: 05/03/2023]
Abstract
Introduction Eucalyptus urophylla, E. tereticornis and their hybrids are the most important commercial forest tree species in South China where they are grown for pulpwood and solid wood production. Construction of a fine-scale genetic linkage map and detecting quantitative trait loci (QTL) for economically important traits linked to these end-uses will facilitate identification of the main candidate genes and elucidate the regulatory mechanisms. Method A high-density consensus map (a total of 2754 SNPs with 1359.18 cM) was constructed using genotyping by sequencing (GBS) on clonal progenies of E. urophylla × tereticornis hybrids. QTL mapping of growth and wood property traits were conducted in three common garden experiments, resulting in a total of 108 QTLs. A total of 1052 candidate genes were screened by the efficient combination of QTL mapping and transcriptome analysis. Results Only ten QTLs were found to be stable across two environments, and only one (qSG10Stable mapped on chromosome 10, and associated with lignin syringyl-to-guaiacyl ratio) was stable across all three environments. Compared to other QTLs, qSG10Stable explained a very high level of phenotypic variation (18.4-23.6%), perhaps suggesting that QTLs with strong effects may be more stably inherited across multiple environments. Screened candidate genes were associated with some transcription factor families, such as TALE, which play an important role in the secondary growth of plant cell walls and the regulation of wood formation. Discussion While QTLs such as qSG10Stable, found to be stable across three sites, appear to be comparatively uncommon, their identification is likely to be a key to practical QTL-based breeding. Further research involving clonally-replicated populations, deployed across multiple target planting sites, will be required to further elucidate QTL-by-environment interactions.
Collapse
Affiliation(s)
- Xianliang Zhu
- Key Laboratory of National Forestry and Grassland Administration on Tropical Forestry Research, Research Institute of Tropical Forestry, Chinese Academy of Forestry, Guangzhou, China
| | - Qijie Weng
- Key Laboratory of National Forestry and Grassland Administration on Tropical Forestry Research, Research Institute of Tropical Forestry, Chinese Academy of Forestry, Guangzhou, China
| | - David Bush
- Commonwealth Scientific and Industrial Research Organisation (CRISO) Australian Tree Seed Centre, Canberra, ACT, Australia
| | - Changpin Zhou
- Key Laboratory of National Forestry and Grassland Administration on Tropical Forestry Research, Research Institute of Tropical Forestry, Chinese Academy of Forestry, Guangzhou, China
| | - Haiwen Zhao
- Key Laboratory of National Forestry and Grassland Administration on Tropical Forestry Research, Research Institute of Tropical Forestry, Chinese Academy of Forestry, Guangzhou, China
| | - Ping Wang
- Key Laboratory of National Forestry and Grassland Administration on Tropical Forestry Research, Research Institute of Tropical Forestry, Chinese Academy of Forestry, Guangzhou, China
| | - Fagen Li
- Key Laboratory of National Forestry and Grassland Administration on Tropical Forestry Research, Research Institute of Tropical Forestry, Chinese Academy of Forestry, Guangzhou, China
- *Correspondence: Fagen Li,
| |
Collapse
|
20
|
Zuo Z, Lu Y, Zhu M, Chen R, Zhang E, Hao D, Huang Q, Wang H, Su Y, Wang Z, Xu Y, Li P, Xu C, Yang Z. Nucleotide Diversity of the Maize ZmCNR13 Gene and Association With Ear Traits. Front Genet 2021; 12:773597. [PMID: 34764988 PMCID: PMC8576287 DOI: 10.3389/fgene.2021.773597] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Accepted: 10/14/2021] [Indexed: 11/16/2022] Open
Abstract
The maize (Zea mays L.) ZmCNR13 gene, encoding a protein of fw2.2-like (FWL) family, has been demonstrated to be involved in cell division, expansion, and differentiation. In the present study, the genomic sequences of the ZmCNR13 locus were re-sequenced in 224 inbred lines, 56 landraces and 30 teosintes, and the nucleotide polymorphism and selection signature were estimated. A total of 501 variants, including 415 SNPs and 86 Indels, were detected. Among them, 51 SNPs and 4 Indels were located in the coding regions. Although neutrality tests revealed that this locus had escaped from artificial selection during the process of maize domestication, the population of inbred lines possesses lower nucleotide diversity and decay of linkage disequilibrium. To estimate the association between sequence variants of ZmCNR13 and maize ear characteristics, a total of ten ear-related traits were obtained from the selected inbred lines. Four variants were found to be significantly associated with six ear-related traits. Among them, SNP2305, a non-synonymous mutation in exon 2, was found to be associated with ear weight, ear grain weight, ear diameter and ear row number, and explained 4.59, 4.61, 4.31, and 8.42% of the phenotypic variations, respectively. These results revealed that natural variations of ZmCNR13 might be involved in ear development and can be used in genetic improvement of maize ear-related traits.
Collapse
Affiliation(s)
- Zhihao Zuo
- Jiangsu Key Laboratory of Crop Genetics and Physiology Key Laboratory of Plant Functional Genomics of the Ministry of Education Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, Agricultural College of Yangzhou University, Yangzhou, China.,Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou, China.,Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou, China
| | - Yue Lu
- Jiangsu Key Laboratory of Crop Genetics and Physiology Key Laboratory of Plant Functional Genomics of the Ministry of Education Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, Agricultural College of Yangzhou University, Yangzhou, China.,Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou, China.,Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou, China
| | - Minyan Zhu
- Jiangsu Key Laboratory of Crop Genetics and Physiology Key Laboratory of Plant Functional Genomics of the Ministry of Education Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, Agricultural College of Yangzhou University, Yangzhou, China.,Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou, China.,Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou, China
| | - Rujia Chen
- Jiangsu Key Laboratory of Crop Genetics and Physiology Key Laboratory of Plant Functional Genomics of the Ministry of Education Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, Agricultural College of Yangzhou University, Yangzhou, China.,Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou, China.,Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou, China
| | - Enying Zhang
- College of Agronomy, Qingdao Agricultural University, Qingdao, China
| | - Derong Hao
- Jiangsu Yanjiang Institute of Agricultural Sciences, Nantong, China
| | - Qianfeng Huang
- Jiangsu Key Laboratory of Crop Genetics and Physiology Key Laboratory of Plant Functional Genomics of the Ministry of Education Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, Agricultural College of Yangzhou University, Yangzhou, China.,Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou, China
| | - Hanyao Wang
- Jiangsu Key Laboratory of Crop Genetics and Physiology Key Laboratory of Plant Functional Genomics of the Ministry of Education Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, Agricultural College of Yangzhou University, Yangzhou, China
| | - Yanze Su
- Jiangsu Key Laboratory of Crop Genetics and Physiology Key Laboratory of Plant Functional Genomics of the Ministry of Education Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, Agricultural College of Yangzhou University, Yangzhou, China
| | - Zhichao Wang
- Jiangsu Key Laboratory of Crop Genetics and Physiology Key Laboratory of Plant Functional Genomics of the Ministry of Education Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, Agricultural College of Yangzhou University, Yangzhou, China
| | - Yang Xu
- Jiangsu Key Laboratory of Crop Genetics and Physiology Key Laboratory of Plant Functional Genomics of the Ministry of Education Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, Agricultural College of Yangzhou University, Yangzhou, China.,Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou, China.,Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou, China
| | - Pengcheng Li
- Jiangsu Key Laboratory of Crop Genetics and Physiology Key Laboratory of Plant Functional Genomics of the Ministry of Education Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, Agricultural College of Yangzhou University, Yangzhou, China.,Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou, China.,Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou, China
| | - Chenwu Xu
- Jiangsu Key Laboratory of Crop Genetics and Physiology Key Laboratory of Plant Functional Genomics of the Ministry of Education Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, Agricultural College of Yangzhou University, Yangzhou, China.,Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou, China.,Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou, China
| | - Zefeng Yang
- Jiangsu Key Laboratory of Crop Genetics and Physiology Key Laboratory of Plant Functional Genomics of the Ministry of Education Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, Agricultural College of Yangzhou University, Yangzhou, China.,Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou, China.,Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou, China
| |
Collapse
|
21
|
Genetic diversity and selection signatures in maize landraces compared across 50 years of in situ and ex situ conservation. Heredity (Edinb) 2021; 126:913-928. [PMID: 33785893 PMCID: PMC8178342 DOI: 10.1038/s41437-021-00423-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Revised: 02/28/2021] [Accepted: 02/28/2021] [Indexed: 02/01/2023] Open
Abstract
Genomics-based, longitudinal comparisons between ex situ and in situ agrobiodiversity conservation strategies can contribute to a better understanding of their underlying effects. However, landrace designations, ambiguous common names, and gaps in sampling information complicate the identification of matching ex situ and in situ seed lots. Here we report a 50-year longitudinal comparison of the genetic diversity of a set of 13 accessions from the state of Morelos, Mexico, conserved ex situ since 1967 and retrieved in situ from the same donor families in 2017. We interviewed farmer families who donated in situ landraces to understand their germplasm selection criteria. Samples were genotyped by sequencing, producing 74,739 SNPs. Comparing the two sample groups, we show that ex situ and in situ genome-wide diversity was similar. In situ samples had 3.1% fewer SNPs and lower pairwise genetic distances (Fst 0.008-0.113) than ex situ samples (Fst 0.031-0.128), but displayed the same heterozygosity. Despite genome-wide similarities across samples, we could identify several loci under selection when comparing in situ and ex situ seed lots, suggesting ongoing evolution in farmer fields. Eight loci in chromosomes 3, 5, 6, and 10 showed evidence of selection in situ that could be related with farmers' selection criteria surveyed with focus groups and interviews at the sampling site in 2017, including wider kernels and larger ear size. Our results have implications for ex situ collection resampling strategies and the in situ conservation of threatened landraces.
Collapse
|
22
|
Gong D, Tan Z, Zhao H, Pan Z, Sun Q, Qiu F. Fine mapping of a kernel length-related gene with potential value for maize breeding. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2021; 134:1033-1045. [PMID: 33459823 DOI: 10.1007/s00122-020-03749-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Accepted: 12/09/2020] [Indexed: 06/12/2023]
Abstract
A key candidate gene for maize kernel length was fine mapped to an interval of 942 kb; the locus significantly increases kernel length (KL) and hundred-kernel weight (HKW). Kernel size is a major determinant of yield in cereals. Kernel length, one of the determining factors of kernel size, is a target trait for both domestication and artificial breeding. However, there are few reports of fine mapping and quantitative trait loci (QTLs)/cloned genes for kernel length in maize. In this project, a novel major QTL, named qKL9, controlling maize kernel length was identified. We verified the authenticity and stability of qKL9 via BC2F2 and BC3F1 populations, respectively, and ultimately mapped qKL9 to an ~ 942-kb genomic interval by testing the progenies of recombination events derived from BC3F2 and BC4F2 populations in multiple environments. Additionally, one new line (McqKL9-A) containing the ~ 942-kb segment was screened from the BC4F2 population. Combining transcriptome analysis between McqKL9-A and Mc at 6, 9 and 14 days after pollination and candidate regional association mapping, Zm00001d046723 was preliminarily identified as the key candidate gene for qKL9. Importantly, the replacement in the Mc line of the Mc's alleles by the V671's alleles in the qKL9 region improved the performances of single-cross hybrids obtained with elite lines, illustrating the potential value of this QTL for the genetic improvement in maize kernel-related traits. These findings facilitate molecular breeding for kernel size and cloning of the gene underlying qKL9, shedding light on the genetic basis of kernel size in maize.
Collapse
Affiliation(s)
- Dianming Gong
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, No.1, Shizishan Street, Hongshan District, Wuhan, 430070, People's Republic of China
| | - Zengdong Tan
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, No.1, Shizishan Street, Hongshan District, Wuhan, 430070, People's Republic of China
| | - Hailiang Zhao
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, No.1, Shizishan Street, Hongshan District, Wuhan, 430070, People's Republic of China
| | - Zhenyuan Pan
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, No.1, Shizishan Street, Hongshan District, Wuhan, 430070, People's Republic of China
| | - Qin Sun
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, No.1, Shizishan Street, Hongshan District, Wuhan, 430070, People's Republic of China
| | - Fazhan Qiu
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, No.1, Shizishan Street, Hongshan District, Wuhan, 430070, People's Republic of China.
| |
Collapse
|
23
|
Sun F, Ding L, Feng W, Cao Y, Lu F, Yang Q, Li W, Lu Y, Shabek N, Fu F, Yu H. Maize transcription factor ZmBES1/BZR1-5 positively regulates kernel size. JOURNAL OF EXPERIMENTAL BOTANY 2021; 72:1714-1726. [PMID: 33206180 DOI: 10.1093/jxb/eraa544] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Accepted: 11/11/2020] [Indexed: 05/25/2023]
Abstract
The BES1/BZR1 transcription factors regulate the expression of genes responsive to brassinosteroids and play pivotal roles in plant development, but their role in regulating kernel development in maize remains unclear. In this study, we found that ZmBES1/BZR1-5 positively regulates kernel size. Association analysis of candidate genes in 513 diverse maize inbred lines indicated that three SNPs related to ZmBES1/BZR1-5 were significantly associated with kernel width and whilst four SNPs were related to 100-kernel weight. Overexpression of ZmBES1/BZR1-5 in Arabidopsis and rice both significantly increased seed size and weight, and smaller kernels were produced in maize Mu transposon insertion and EMS mutants. The ZmBES1/BZR1-5 protein locates in the nucleus, contains bHLH and BAM domains, and shows no transcriptional activity as a monomer but forms a homodimer through the BAM domain. ChIP-sequencing analysis, and yeast one-hybrid and dual-luciferase assays demonstrated that the protein binds to the promoters of AP2/EREBP genes (Zm00001d010676 and Zm00001d032077) and inhibits their transcription. cDNA library screening showed that ZmBES1/BZR1-5 interacts with casein kinase II subunit β4 (ZmCKIIβ4) and ferredoxin 2 (ZmFdx2) in vitro and in vivo, respectively. Taken together, our study suggests that ZmBES1/BZR1-5 positively regulates kernel size, and provides new insights into understanding the mechanisms of kernel development in maize.
Collapse
Affiliation(s)
- Fuai Sun
- Key Laboratory of Biology and Genetic Improvement of Maize in Southwest Region, Ministry of Agriculture; Maize Research Institute, Sichuan Agricultural University, Chengdu, China
- Department of Plant Biology, University of California, Davis, CA, USA
| | - Lei Ding
- Key Laboratory of Biology and Genetic Improvement of Maize in Southwest Region, Ministry of Agriculture; Maize Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Wenqi Feng
- Key Laboratory of Biology and Genetic Improvement of Maize in Southwest Region, Ministry of Agriculture; Maize Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Yang Cao
- Key Laboratory of Biology and Genetic Improvement of Maize in Southwest Region, Ministry of Agriculture; Maize Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Fengzhong Lu
- Key Laboratory of Biology and Genetic Improvement of Maize in Southwest Region, Ministry of Agriculture; Maize Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Qingqing Yang
- Key Laboratory of Biology and Genetic Improvement of Maize in Southwest Region, Ministry of Agriculture; Maize Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Wanchen Li
- Key Laboratory of Biology and Genetic Improvement of Maize in Southwest Region, Ministry of Agriculture; Maize Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Yanli Lu
- Key Laboratory of Biology and Genetic Improvement of Maize in Southwest Region, Ministry of Agriculture; Maize Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Nitzan Shabek
- Department of Plant Biology, University of California, Davis, CA, USA
| | - Fengling Fu
- Key Laboratory of Biology and Genetic Improvement of Maize in Southwest Region, Ministry of Agriculture; Maize Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Haoqiang Yu
- Key Laboratory of Biology and Genetic Improvement of Maize in Southwest Region, Ministry of Agriculture; Maize Research Institute, Sichuan Agricultural University, Chengdu, China
| |
Collapse
|
24
|
Ruan Y, Yu B, Knox RE, Zhang W, Singh AK, Cuthbert R, Fobert P, DePauw R, Berraies S, Sharpe A, Fu BX, Sangha J. Conditional Mapping Identified Quantitative Trait Loci for Grain Protein Concentration Expressing Independently of Grain Yield in Canadian Durum Wheat. FRONTIERS IN PLANT SCIENCE 2021; 12:642955. [PMID: 33841470 PMCID: PMC8024689 DOI: 10.3389/fpls.2021.642955] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Accepted: 02/26/2021] [Indexed: 05/22/2023]
Abstract
Grain protein concentration (GPC) is an important trait in durum cultivar development as a major determinant of the nutritional value of grain and end-use product quality. However, it is challenging to simultaneously select both GPC and grain yield (GY) due to the negative correlation between them. To characterize quantitative trait loci (QTL) for GPC and understand the genetic relationship between GPC and GY in Canadian durum wheat, we performed both traditional and conditional QTL mapping using a doubled haploid (DH) population of 162 lines derived from Pelissier × Strongfield. The population was grown in the field over 5 years and GPC was measured. QTL contributing to GPC were detected on chromosome 1B, 2B, 3A, 5B, 7A, and 7B using traditional mapping. One major QTL on 3A (QGpc.spa-3A.3) was consistently detected over 3 years accounting for 9.4-18.1% of the phenotypic variance, with the favorable allele derived from Pelissier. Another major QTL on 7A (QGpc.spa-7A) detected in 3 years explained 6.9-14.8% of the phenotypic variance, with the beneficial allele derived from Strongfield. Comparison of the QTL described here with the results previously reported led to the identification of one novel major QTL on 3A (QGpc.spa-3A.3) and five novel minor QTL on 1B, 2B and 3A. Four QTL were common between traditional and conditional mapping, with QGpc.spa-3A.3 and QGpc.spa-7A detected in multiple environments. The QTL identified by conditional mapping were independent or partially independent of GY, making them of great importance for development of high GPC and high yielding durum.
Collapse
Affiliation(s)
- Yuefeng Ruan
- Swift Current Research and Development Centre, Agriculture and Agri-Food Canada, Swift Current, SK, Canada
- Yuefeng Ruan
| | - Bianyun Yu
- Aquatic and Crop Resource Development, National Research Council Canada, Saskatoon, SK, Canada
- *Correspondence: Bianyun Yu
| | - Ron E. Knox
- Swift Current Research and Development Centre, Agriculture and Agri-Food Canada, Swift Current, SK, Canada
| | - Wentao Zhang
- Aquatic and Crop Resource Development, National Research Council Canada, Saskatoon, SK, Canada
| | - Asheesh K. Singh
- Swift Current Research and Development Centre, Agriculture and Agri-Food Canada, Swift Current, SK, Canada
| | - Richard Cuthbert
- Swift Current Research and Development Centre, Agriculture and Agri-Food Canada, Swift Current, SK, Canada
| | - Pierre Fobert
- Aquatic and Crop Resource Development, National Research Council Canada, Ottawa, ON, Canada
| | - Ron DePauw
- Swift Current Research and Development Centre, Agriculture and Agri-Food Canada, Swift Current, SK, Canada
| | - Samia Berraies
- Swift Current Research and Development Centre, Agriculture and Agri-Food Canada, Swift Current, SK, Canada
| | - Andrew Sharpe
- Aquatic and Crop Resource Development, National Research Council Canada, Saskatoon, SK, Canada
| | - Bin Xiao Fu
- Grain Research Laboratory, Canadian Grain Commission, Winnipeg, MB, Canada
| | - Jatinder Sangha
- Swift Current Research and Development Centre, Agriculture and Agri-Food Canada, Swift Current, SK, Canada
| |
Collapse
|
25
|
Dai D, Ma Z, Song R. Maize kernel development. MOLECULAR BREEDING : NEW STRATEGIES IN PLANT IMPROVEMENT 2021; 41:2. [PMID: 37309525 PMCID: PMC10231577 DOI: 10.1007/s11032-020-01195-9] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Accepted: 12/03/2020] [Indexed: 06/14/2023]
Abstract
Maize (Zea mays) is a leading cereal crop in the world. The maize kernel is the storage organ and the harvest portion of this crop and is closely related to its yield and quality. The development of maize kernel is initiated by the double fertilization event, leading to the formation of a diploid embryo and a triploid endosperm. The embryo and endosperm are then undergone independent developmental programs, resulting in a mature maize kernel which is comprised of a persistent endosperm, a large embryo, and a maternal pericarp. Due to the well-characterized morphogenesis and powerful genetics, maize kernel has long been an excellent model for the study of cereal kernel development. In recent years, with the release of the maize reference genome and the development of new genomic technologies, there has been an explosive expansion of new knowledge for maize kernel development. In this review, we overviewed recent progress in the study of maize kernel development, with an emphasis on genetic mapping of kernel traits, transcriptome analysis during kernel development, functional gene cloning of kernel mutants, and genetic engineering of kernel traits.
Collapse
Affiliation(s)
- Dawei Dai
- State Key Laboratory of Plant Physiology and Biochemistry, National Maize Improvement Center, Beijing Key Laboratory of Crop Genetic Improvement, Joint International Research Laboratory of Crop Molecular Breeding, College of Agronomy and Biotechnology, China Agricultural University, Beijing, 100193 China
- Shanghai Key Laboratory of Bio-Energy Crops, Plant Science Center, School of Life Sciences, Shanghai University, Shanghai, 200444 China
| | - Zeyang Ma
- State Key Laboratory of Plant Physiology and Biochemistry, National Maize Improvement Center, Beijing Key Laboratory of Crop Genetic Improvement, Joint International Research Laboratory of Crop Molecular Breeding, College of Agronomy and Biotechnology, China Agricultural University, Beijing, 100193 China
| | - Rentao Song
- State Key Laboratory of Plant Physiology and Biochemistry, National Maize Improvement Center, Beijing Key Laboratory of Crop Genetic Improvement, Joint International Research Laboratory of Crop Molecular Breeding, College of Agronomy and Biotechnology, China Agricultural University, Beijing, 100193 China
| |
Collapse
|
26
|
Ma J, Wang L, Cao Y, Wang H, Li H. Association Mapping and Transcriptome Analysis Reveal the Genetic Architecture of Maize Kernel Size. FRONTIERS IN PLANT SCIENCE 2021; 12:632788. [PMID: 33815440 PMCID: PMC8013726 DOI: 10.3389/fpls.2021.632788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Accepted: 02/04/2021] [Indexed: 05/05/2023]
Abstract
Kernel length, kernel width, and kernel thickness are important traits affecting grain yield and product quality. Here, the genetic architecture of the three kernel size traits was dissected in an association panel of 309 maize inbred lines using four statistical methods. Forty-two significant single nucleotide polymorphisms (SNPs; p < 1.72E-05) and 70 genes for the three traits were identified under five environments. One and eight SNPs were co-detected in two environments and by at least two methods, respectively, and they explained 5.87-9.59% of the phenotypic variation. Comparing the transcriptomes of two inbred lines with contrasting seed size, three and eight genes identified in the association panel showed significantly differential expression between the two genotypes at 15 and 39 days after pollination, respectively. Ten and 17 genes identified by a genome-wide association study were significantly differentially expressed between the two development stages in the two genotypes. Combining environment-/method-stable SNPs and differential expression analysis, ribosomal protein L7, jasmonate-regulated gene 21, serine/threonine-protein kinase RUNKEL, AP2-EREBP-transcription factor 16, and Zm00001d035222 (cell wall protein IFF6-like) were important candidate genes for maize kernel size and development.
Collapse
|
27
|
Lu X, Zhou Z, Yuan Z, Zhang C, Hao Z, Wang Z, Li M, Zhang D, Yong H, Han J, Li X, Weng J. Genetic Dissection of the General Combining Ability of Yield-Related Traits in Maize. FRONTIERS IN PLANT SCIENCE 2020; 11:788. [PMID: 32793248 PMCID: PMC7387702 DOI: 10.3389/fpls.2020.00788] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Accepted: 05/18/2020] [Indexed: 05/27/2023]
Abstract
Maize yield components including row number, kernel number per row, kernel thickness, kernel width, kernel length, 100-kernel weight, and volume weight affect grain yield directly. Previous studies mainly focused on dissecting the genetic basis of per se performances for yield-related traits, but the genetic basis of general combining ability (GCA) for these traits is still unclear. In the present study, 328 RILs were crossed as males to two testers according to the NCII mating design, resulting in a hybrid panel composed of 656 hybrids. Both the hybrids and parental lines were evaluated in four environments in 2015 and 2016. Correlation analysis showed the performances of GCA effects were significantly correlated to the per se performances of RILs for all yield-related traits (0.17 ≤ r ≤ 0.64, P > 0.01). Only 17 of 95 QTL could be detected for both per se performances of RILs and GCA effects for eight yield-related traits. The QTL qKN7-1 and qHKW1-3, which could explain more than 10% of the variation in the GCA effects of KN and HKW, were also detected for per se performances for the traits. The pleiotropic loci qRN3-1 and qRN6, which together explained 14.92% of the observed variation in GCA effects for RN, were associated with the GCA effects of KW and HKW, but not with per se performances for these traits. In contrast, Incw1, which was related to seed weight in maize, was mapped to the region surrounding MK2567 at the qHKW5-2 locus, but no GCA effect was detected. The QTL identified in present study for per se performances and corresponding GCA effects for yield-related traits might be useful for maize hybrid breeding.
Collapse
Affiliation(s)
- Xin Lu
- College of Agriculture, Northeast Agricultural University, Harbin, China
- Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Zhiqiang Zhou
- Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Zhaohui Yuan
- College of Agriculture, Northeast Agricultural University, Harbin, China
| | - Chaoshu Zhang
- College of Agriculture, Northeast Agricultural University, Harbin, China
| | - Zhuanfang Hao
- Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Zhenhua Wang
- College of Agriculture, Northeast Agricultural University, Harbin, China
| | - Mingshun Li
- Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Degui Zhang
- Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Hongjun Yong
- Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Jienan Han
- Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Xinhai Li
- College of Agriculture, Northeast Agricultural University, Harbin, China
- Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Jianfeng Weng
- Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
28
|
Liu J, Fernie AR, Yan J. The Past, Present, and Future of Maize Improvement: Domestication, Genomics, and Functional Genomic Routes toward Crop Enhancement. PLANT COMMUNICATIONS 2020; 1:100010. [PMID: 33404535 PMCID: PMC7747985 DOI: 10.1016/j.xplc.2019.100010] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Revised: 11/07/2019] [Accepted: 11/22/2019] [Indexed: 05/14/2023]
Abstract
After being domesticated from teosinte, cultivated maize (Zea mays ssp. mays) spread worldwide and now is one of the most important staple crops. Due to its tremendous phenotypic and genotypic diversity, maize also becomes to be one of the most widely used model plant species for fundamental research, with many important discoveries reported by maize researchers. Here, we provide an overview of the history of maize domestication and key genes controlling major domestication-related traits, review the currently available resources for functional genomics studies in maize, and discuss the functions of most of the maize genes that have been positionally cloned and can be used for crop improvement. Finally, we provide some perspectives on future directions regarding functional genomics research and the breeding of maize and other crops.
Collapse
Affiliation(s)
- Jie Liu
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China
- Corresponding author
| | - Alisdair R. Fernie
- Department of Molecular Physiology, Max-Planck-Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476 Potsdam-Golm, Germany
| | - Jianbing Yan
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China
- Corresponding author
| |
Collapse
|
29
|
Liu M, Tan X, Yang Y, Liu P, Zhang X, Zhang Y, Wang L, Hu Y, Ma L, Li Z, Zhang Y, Zou C, Lin H, Gao S, Lee M, Lübberstedt T, Pan G, Shen Y. Analysis of the genetic architecture of maize kernel size traits by combined linkage and association mapping. PLANT BIOTECHNOLOGY JOURNAL 2020; 18:207-221. [PMID: 31199064 PMCID: PMC6920160 DOI: 10.1111/pbi.13188] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Revised: 05/26/2019] [Accepted: 06/01/2019] [Indexed: 05/14/2023]
Abstract
Kernel size-related traits are the most direct traits correlating with grain yield. The genetic basis of three kernel traits of maize, kernel length (KL), kernel width (KW) and kernel thickness (KT), was investigated in an association panel and a biparental population. A total of 21 single nucleotide polymorphisms (SNPs) were detected to be most significantly (P < 2.25 × 10-6 ) associated with these three traits in the association panel under four environments. Furthermore, 50 quantitative trait loci (QTL) controlling these traits were detected in seven environments in the intermated B73 × Mo17 (IBM) Syn10 doubled haploid (DH) population, of which eight were repetitively identified in at least three environments. Combining the two mapping populations revealed that 56 SNPs (P < 1 × 10-3 ) fell within 18 of the QTL confidence intervals. According to the top significant SNPs, stable-effect SNPs and the co-localized SNPs by association analysis and linkage mapping, a total of 73 candidate genes were identified, regulating seed development. Additionally, seven miRNAs were found to situate within the linkage disequilibrium (LD) regions of the co-localized SNPs, of which zma-miR164e was demonstrated to cleave the mRNAs of Arabidopsis CUC1, CUC2 and NAC6 in vitro. Overexpression of zma-miR164e resulted in the down-regulation of these genes above and the failure of seed formation in Arabidopsis pods, with the increased branch number. These findings provide insights into the mechanism of seed development and the improvement of molecular marker-assisted selection (MAS) for high-yield breeding in maize.
Collapse
Affiliation(s)
- Min Liu
- Key Laboratory of Biology and Genetic Improvement of Maize in Southwest RegionMaize Research InstituteSichuan Agricultural UniversityChengduChina
| | - Xiaolong Tan
- Key Laboratory of Biology and Genetic Improvement of Maize in Southwest RegionMaize Research InstituteSichuan Agricultural UniversityChengduChina
| | - Yan Yang
- Key Laboratory of Biology and Genetic Improvement of Maize in Southwest RegionMaize Research InstituteSichuan Agricultural UniversityChengduChina
| | - Peng Liu
- Key Laboratory of Biology and Genetic Improvement of Maize in Southwest RegionMaize Research InstituteSichuan Agricultural UniversityChengduChina
| | - Xiaoxiang Zhang
- Key Laboratory of Biology and Genetic Improvement of Maize in Southwest RegionMaize Research InstituteSichuan Agricultural UniversityChengduChina
| | - Yinchao Zhang
- Key Laboratory of Biology and Genetic Improvement of Maize in Southwest RegionMaize Research InstituteSichuan Agricultural UniversityChengduChina
| | - Lei Wang
- Key Laboratory of Biology and Genetic Improvement of Maize in Southwest RegionMaize Research InstituteSichuan Agricultural UniversityChengduChina
| | - Yu Hu
- Key Laboratory of Biology and Genetic Improvement of Maize in Southwest RegionMaize Research InstituteSichuan Agricultural UniversityChengduChina
| | - Langlang Ma
- Key Laboratory of Biology and Genetic Improvement of Maize in Southwest RegionMaize Research InstituteSichuan Agricultural UniversityChengduChina
| | - Zhaoling Li
- Key Laboratory of Biology and Genetic Improvement of Maize in Southwest RegionMaize Research InstituteSichuan Agricultural UniversityChengduChina
| | - Yanling Zhang
- Key Laboratory of Biology and Genetic Improvement of Maize in Southwest RegionMaize Research InstituteSichuan Agricultural UniversityChengduChina
| | - Chaoying Zou
- Key Laboratory of Biology and Genetic Improvement of Maize in Southwest RegionMaize Research InstituteSichuan Agricultural UniversityChengduChina
| | - Haijian Lin
- Key Laboratory of Biology and Genetic Improvement of Maize in Southwest RegionMaize Research InstituteSichuan Agricultural UniversityChengduChina
| | - Shibin Gao
- Key Laboratory of Biology and Genetic Improvement of Maize in Southwest RegionMaize Research InstituteSichuan Agricultural UniversityChengduChina
| | - Michael Lee
- Department of AgronomyIowa State UniversityAmesIAUSA
| | | | - Guangtang Pan
- Key Laboratory of Biology and Genetic Improvement of Maize in Southwest RegionMaize Research InstituteSichuan Agricultural UniversityChengduChina
| | - Yaou Shen
- Key Laboratory of Biology and Genetic Improvement of Maize in Southwest RegionMaize Research InstituteSichuan Agricultural UniversityChengduChina
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China (In preparation)ChengduChina
| |
Collapse
|
30
|
Chen Z, Cheng X, Chai L, Wang Z, Bian R, Li J, Zhao A, Xin M, Guo W, Hu Z, Peng H, Yao Y, Sun Q, Ni Z. Dissection of genetic factors underlying grain size and fine mapping of QTgw.cau-7D in common wheat (Triticum aestivum L.). TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2020; 133:149-162. [PMID: 31570967 DOI: 10.1007/s00122-019-03447-5] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Accepted: 09/21/2019] [Indexed: 05/26/2023]
Abstract
Thirty environmentally stable QTL controlling grain size and/or plant height were identified, among which QTgw.cau-7D was delimited into the physical interval of approximately 4.4 Mb. Grain size and plant height (PHT) are important agronomic traits in wheat breeding. To dissect the genetic basis of these traits, we conducted a quantitative trait locus (QTL) analysis using recombinant inbred lines (RILs). In total, 30 environmentally stable QTL for thousand grain weight (TGW), grain length (GL), grain width (GW) and PHT were detected. Notably, one major pleiotropic QTL on chromosome arm 3DS explained the highest phenotypic variance for TGW, GL and PHT, and two stable QTL (QGw.cau-4B and QGw.cau-7D) on chromosome arms 4BS and 7DS contributed greater effects for GW. Furthermore, the stable QTL controlling grain size (QTgw.cau-7D and QGw.cau-7D) were delimited into the physical interval of approximately 4.4 Mb harboring 56 annotated genes. The elite NILs of QTgw.cau-7D increased TGW by 12.79-21.75% and GW by 4.10-8.47% across all three environments. Collectively, these results provide further insight into the genetic basis of TGW, GL, GW and PHT, and the fine-mapped QTgw.cau-7D will be an attractive target for positional cloning and marker-assisted selection in wheat breeding programs.
Collapse
Affiliation(s)
- Zhaoyan Chen
- State Key Laboratory for Agrobiotechnology, Key Laboratory of Crop Heterosis and Utilization (MOE), Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, 100193, China
- National Plant Gene Research Centre, Beijing, 100193, China
| | - Xuejiao Cheng
- State Key Laboratory for Agrobiotechnology, Key Laboratory of Crop Heterosis and Utilization (MOE), Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, 100193, China
- National Plant Gene Research Centre, Beijing, 100193, China
| | - Lingling Chai
- State Key Laboratory for Agrobiotechnology, Key Laboratory of Crop Heterosis and Utilization (MOE), Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, 100193, China
- National Plant Gene Research Centre, Beijing, 100193, China
| | - Zhihui Wang
- State Key Laboratory for Agrobiotechnology, Key Laboratory of Crop Heterosis and Utilization (MOE), Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, 100193, China
- National Plant Gene Research Centre, Beijing, 100193, China
| | - Ruolin Bian
- State Key Laboratory for Agrobiotechnology, Key Laboratory of Crop Heterosis and Utilization (MOE), Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, 100193, China
- National Plant Gene Research Centre, Beijing, 100193, China
| | - Jiang Li
- State Key Laboratory for Agrobiotechnology, Key Laboratory of Crop Heterosis and Utilization (MOE), Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, 100193, China
- National Plant Gene Research Centre, Beijing, 100193, China
| | - Aiju Zhao
- Hebei Crop Genetic Breeding Laboratory, Institute of Cereal and Oil Crops, Hebei Academy of Agriculture and Forestry Sciences, Shijiazhuang, 050035, China
| | - Mingming Xin
- State Key Laboratory for Agrobiotechnology, Key Laboratory of Crop Heterosis and Utilization (MOE), Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, 100193, China
- National Plant Gene Research Centre, Beijing, 100193, China
| | - Weilong Guo
- State Key Laboratory for Agrobiotechnology, Key Laboratory of Crop Heterosis and Utilization (MOE), Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, 100193, China
- National Plant Gene Research Centre, Beijing, 100193, China
| | - Zhaorong Hu
- State Key Laboratory for Agrobiotechnology, Key Laboratory of Crop Heterosis and Utilization (MOE), Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, 100193, China
- National Plant Gene Research Centre, Beijing, 100193, China
| | - Huiru Peng
- State Key Laboratory for Agrobiotechnology, Key Laboratory of Crop Heterosis and Utilization (MOE), Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, 100193, China
- National Plant Gene Research Centre, Beijing, 100193, China
| | - Yingyin Yao
- State Key Laboratory for Agrobiotechnology, Key Laboratory of Crop Heterosis and Utilization (MOE), Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, 100193, China
- National Plant Gene Research Centre, Beijing, 100193, China
| | - Qixin Sun
- State Key Laboratory for Agrobiotechnology, Key Laboratory of Crop Heterosis and Utilization (MOE), Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, 100193, China
- National Plant Gene Research Centre, Beijing, 100193, China
| | - Zhongfu Ni
- State Key Laboratory for Agrobiotechnology, Key Laboratory of Crop Heterosis and Utilization (MOE), Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, 100193, China.
- National Plant Gene Research Centre, Beijing, 100193, China.
| |
Collapse
|
31
|
Li C, Wu X, Li Y, Shi Y, Song Y, Zhang D, Li Y, Wang T. Genetic architecture of phenotypic means and plasticities of kernel size and weight in maize. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2019; 132:3309-3320. [PMID: 31555889 DOI: 10.1007/s00122-019-03426-w] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Accepted: 09/11/2019] [Indexed: 05/11/2023]
Abstract
Genetic relationships between the phenotypic means and plasticities of kernel size and weight revealed the common genetic control of these traits in maize. Kernel size and weight are crucial components of grain yield in maize, and phenotypic plasticity in these traits facilitates adaptations to changing environments. Elucidating the genetic architecture of the mean phenotypic values and plasticities of kernel size and weight may be essential for breeding climate-robust maize varieties. Here, a maize nested association mapping (CN-NAM) population and association panel were grown in different environments. A joint linkage analysis and genome-wide association mapping were performed for five kernel size and weight phenotypic traits and two phenotypic plasticity measures. The mean phenotypes and plasticities were significantly correlated. The overall results of quantitative trait locus (QTL) and candidate gene analyses indicated moderate and high levels of common genetic control for the two traits. Furthermore, the mean phenotypes or plasticities of the hundred-kernel weight and volume were commonly regulated to a high degree. One pleiotropic locus on chromosome 10 simultaneously controlled the mean phenotypic values and plasticities of kernel size and weight. Therefore, the plasticity of kernel size and weight might be indirectly selected during maize breeding; however, selecting for high or low plasticity in combination with high or low mean phenotypic values of kernel size and weight traits may be difficult.
Collapse
Affiliation(s)
- Chunhui Li
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Xun Wu
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yongxiang Li
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yunsu Shi
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yanchun Song
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Dengfeng Zhang
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yu Li
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China.
| | - Tianyu Wang
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China.
| |
Collapse
|
32
|
Hao D, Xue L, Zhang Z, Cheng Y, Chen G, Zhou G, Li P, Yang Z, Xu C. Combined linkage and association mapping reveal candidate loci for kernel size and weight in maize. BREEDING SCIENCE 2019; 69:420-428. [PMID: 31598074 PMCID: PMC6776153 DOI: 10.1270/jsbbs.18185] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Accepted: 04/10/2019] [Indexed: 05/25/2023]
Abstract
Yield improvement is a top priority for maize breeding. Kernel size and weight are important determinants of maize grain yield. In this study, a recombinant inbred line (RIL) population and an association panel were used to identify quantitative trait loci (QTLs) for four maize kernel-related traits: kernel length, width, thickness and 100-kernel weight. Twenty-seven QTLs were identified for kernel-related traits across three environments and the best linear unbiased predictions (BLUPs) of each trait by linkage analysis, and four QTLs were stably detected in more than two environments. Additionally, 29 single nucleotide polymorphisms (SNPs) were identified as significantly associated with the four kernel-related traits and BLUPs by genome-wide association study, and two loci could be stably detected in both environments. In total, four QTLs/SNPs were co-associated with various traits in both populations. Using combined-linkage analysis and association mapping, PZE-101066560 on chromosome 1, associated with kernel width and with 100-kernel weight in the association panel, was co-localized within the QTL interval of qKW1-3 for kernel width in the RILs. Two annotated genes in the candidate region were considered as potential candidate genes. The QTLs and candidate genes identified here will facilitate molecular breeding for grain yield improvement in maize.
Collapse
Affiliation(s)
- Derong Hao
- Jiangsu Key Laboratory of Crop Genetics and Physiology, Co-Innovation Center for Modern Production Technology of Grain Crops, Key Laboratory of Plant Functional Genomics of the Ministry of Education, Yangzhou University,
Yangzhou 225009,
China
- Nantong Key Laboratory for Exploitation of Crop Genetic Resources and Molecular Breeding, Jiangsu Yanjiang Institute of Agricultural Sciences,
Nantong 226541,
China
| | - Lin Xue
- Nantong Key Laboratory for Exploitation of Crop Genetic Resources and Molecular Breeding, Jiangsu Yanjiang Institute of Agricultural Sciences,
Nantong 226541,
China
- Jiangsu Collaborative Innovation Center for Modern Crop Production,
Nanjing 210095,
China
| | - Zhenliang Zhang
- Nantong Key Laboratory for Exploitation of Crop Genetic Resources and Molecular Breeding, Jiangsu Yanjiang Institute of Agricultural Sciences,
Nantong 226541,
China
| | - Yujing Cheng
- Nantong Key Laboratory for Exploitation of Crop Genetic Resources and Molecular Breeding, Jiangsu Yanjiang Institute of Agricultural Sciences,
Nantong 226541,
China
| | - Guoqing Chen
- Nantong Key Laboratory for Exploitation of Crop Genetic Resources and Molecular Breeding, Jiangsu Yanjiang Institute of Agricultural Sciences,
Nantong 226541,
China
- Jiangsu Collaborative Innovation Center for Modern Crop Production,
Nanjing 210095,
China
| | - Guangfei Zhou
- Nantong Key Laboratory for Exploitation of Crop Genetic Resources and Molecular Breeding, Jiangsu Yanjiang Institute of Agricultural Sciences,
Nantong 226541,
China
| | - Pengcheng Li
- Jiangsu Key Laboratory of Crop Genetics and Physiology, Co-Innovation Center for Modern Production Technology of Grain Crops, Key Laboratory of Plant Functional Genomics of the Ministry of Education, Yangzhou University,
Yangzhou 225009,
China
| | - Zefeng Yang
- Jiangsu Key Laboratory of Crop Genetics and Physiology, Co-Innovation Center for Modern Production Technology of Grain Crops, Key Laboratory of Plant Functional Genomics of the Ministry of Education, Yangzhou University,
Yangzhou 225009,
China
| | - Chenwu Xu
- Jiangsu Key Laboratory of Crop Genetics and Physiology, Co-Innovation Center for Modern Production Technology of Grain Crops, Key Laboratory of Plant Functional Genomics of the Ministry of Education, Yangzhou University,
Yangzhou 225009,
China
| |
Collapse
|
33
|
Guo W, Lian T, Wang B, Guan J, Yuan D, Wang H, Safiul Azam FM, Wan X, Wang W, Liang Q, Wang H, Tu J, Zhang C, Jiang L. Genetic mapping of folate QTLs using a segregated population in maize. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2019; 61:675-690. [PMID: 30938052 DOI: 10.1111/jipb.12811] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Accepted: 03/25/2019] [Indexed: 05/06/2023]
Abstract
As essential B vitamin for humans, folates accumulation in edible parts of crops, such as maize kernels, is of great importance for human health. But its breeding is always limited by the prohibitive cost of folate profiling. The molecular breeding is a more executable and efficient way for folate fortification, but is limited by the molecular knowledge of folate regulation. Here we report the genetic mapping of folate quantitative trait loci (QTLs) using a segregated population crossed by two maize lines, one high in folate (GEMS31) and the other low in folate (DAN3130). Two folate QTLs on chromosome 5 were obtained by the combination of F2 whole-exome sequencing and F3 kernel-folate profiling. These two QTLs had been confirmed by bulk segregant analysis using F6 pooled DNA and F7 kernel-folate profiling, and were overlapped with QTLs identified by another segregated population. These two QTLs contributed 41.6% of phenotypic variation of 5-formyltetrahydrofolate, the most abundant storage form among folate derivatives in dry maize grains, in the GEMS31×DAN3130 population. Their fine mapping and functional analysis will reveal details of folate metabolism, and provide a basis for marker-assisted breeding aimed at the enrichment of folates in maize kernels.
Collapse
Affiliation(s)
- Wenzhu Guo
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Tong Lian
- Plant Genetics, Gembloux Agro-Bio Tech, University of Liège, Gembloux, 5030, Belgium
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Baobao Wang
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Jiantao Guan
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Dong Yuan
- Department of Chemistry and Chemical Engineering, Qilu Normal University, Jinan, 250200, China
| | - Huan Wang
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | | | - Xing Wan
- School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Weixuan Wang
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Qiuju Liang
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Haiyang Wang
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Jinxing Tu
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Chunyi Zhang
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Ling Jiang
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| |
Collapse
|
34
|
Genome assembly of a tropical maize inbred line provides insights into structural variation and crop improvement. Nat Genet 2019; 51:1052-1059. [DOI: 10.1038/s41588-019-0427-6] [Citation(s) in RCA: 133] [Impact Index Per Article: 22.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2018] [Accepted: 04/25/2019] [Indexed: 01/15/2023]
|
35
|
Genetic dissection of stalk lodging-related traits using an IBM Syn10 DH population in maize across three environments (Zea mays L.). Mol Genet Genomics 2019; 294:1277-1288. [PMID: 31139941 DOI: 10.1007/s00438-019-01576-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Accepted: 05/03/2019] [Indexed: 10/26/2022]
Abstract
Stalk lodging severely limits the grain yield of maize (Zea mays L.). Mechanical stalk strength can be reflected by the traits of stalk diameter (SD), stalk bending strength (SBS), and lodging rind penetrometer resistance (RPR). To determine the genetic basis of maize stalk lodging, quantitative trait loci (QTLs) were mapped for these three traits using the IBM Syn10 DH population in three environments. The results indicated that there were strong genetic correlations among the three traits, and the analyses of phenotypic variations for SD, SBS, and RPR across the three environments showed high broad-sense heritability (0.6843, 0.5175, and 0.7379, respectively). In total, 44 significant QTLs were identified control the above traits across the 3 environments. A total of 14, 14, and 16 QTLs were identified for SD, SBS, and RPR across single-environment mapping, respectively. Notably, ten QTLs were stably expressed across multiple-environments, including two QTLs for SD, three for SBS, and five for RPR. Three major QTLs each accounting for over 10% of the phenotypic variation were qSD6-2 (10.03%), qSD8-2 (13.73%), and qSBS1-2 (11.89%). Comprehensive analysis of all QTLs in this study revealed that 5 QTL clusters including 12 QTLs were located on chromosomes 1, 3, 7, and 8, respectively. Among these 44 QTLs, 9 harbored 13 stalk lodging-associated SNPs that were detected by our recently published work, with 1 SNP successfully validated in the IBM Syn10 DH population. These chromosomal regions will be useful for marker-assisted selection and fine mapping of stalk lodging-related traits in maize.
Collapse
|
36
|
Che Y, Song N, Yang Y, Yang X, Duan Q, Zhang Y, Lu Y, Li X, Zhang J, Li X, Zhou S, Li L, Liu W. QTL Mapping of Six Spike and Stem Traits in Hybrid Population of Agropyron Gaertn. in Multiple Environments. FRONTIERS IN PLANT SCIENCE 2018; 9:1422. [PMID: 30425721 PMCID: PMC6218563 DOI: 10.3389/fpls.2018.01422] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2018] [Accepted: 09/06/2018] [Indexed: 05/31/2023]
Abstract
Most Agropyron Gaertn. species are excellent sources of forage. The derivative lines of wheat-Agropyron cristatum show elite agronomic traits, and some are valuable for wheat breeding. The species of Agropyron Gaertn. was mainly recognized by the spike morphology in traditional taxon. Six traits, including spike length (SL), ear stem length (ESL), the second internodes length (SIL), spikelet number per spike (SNS), floret number per spikelet (FNS), and grain number per spikelet (GNS), are vital to morphology studies and also influences the forage crop yield. To elucidate the genetic basis of spike and stem traits, a quantitative trait locus (QTL) analysis was conducted in a cross-pollinated (CP) hybrid population derived from a cross between two diverse parents, Agropyron mongolicum Keng Z2098 and A. cristatum (L.) Gaertn. Z1842, evaluated across three ecotopes (Langfang, Changli, and Guyuan of Hebei, China) over 3 years (from 2014 to 2016). Construction of a high-density linkage map was based on 1,023 single-nucleotide polymorphism (SNP) markers, covering 907.8 cM of the whole Agropyron genome. A total of 306 QTLs with single QTL in different environments explaining 0.07-33.21% of the phenotypic variation were detected for study traits. Seven major-effect QTLs were identified, including one for ESL on chromosome 3, one for SIL on chromosome 5, three for SL (two on chromosome 2 and one on chromosome 4), and two for SNS on chromosomes 3 and 7. Also, seven stable QTLs, including four for ESL, one for SL, one for GNS, and one for FNS, were mainly mapped on chromosomes 2, 3, 4, 5, and 7, respectively, elucidating 0.25-14.98% of the phenotypic variations. On the use of Agropyron CP hybrid population to identify QTL determining spike and stem traits for the first time, these QTLs for six traits would provide a theoretical reference for the molecular marker-assisted selection in the improvement of forage and cereal crop species.
Collapse
Affiliation(s)
- Yonghe Che
- College of Agronomy and Biotechnology, Hebei Normal University of Science and Technology, Qinhuangdao, China
| | - Nan Song
- College of Agronomy and Biotechnology, Hebei Normal University of Science and Technology, Qinhuangdao, China
| | - Yanping Yang
- College of Agronomy and Biotechnology, Hebei Normal University of Science and Technology, Qinhuangdao, China
| | - Xinming Yang
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Qingqing Duan
- College of Agronomy and Biotechnology, Hebei Normal University of Science and Technology, Qinhuangdao, China
| | - Yan Zhang
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yuqing Lu
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Xuqing Li
- College of Agronomy and Biotechnology, Hebei Normal University of Science and Technology, Qinhuangdao, China
| | - Jinpeng Zhang
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Xiuquan Li
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Shenghui Zhou
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Lihui Li
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Weihua Liu
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
37
|
Jiang H, Li Y, Qin H, Li Y, Qi H, Li C, Wang N, Li R, Zhao Y, Huang S, Yu J, Wang X, Zhu R, Liu C, Hu Z, Qi Z, Xin D, Wu X, Chen Q. Identification of Major QTLs Associated With First Pod Height and Candidate Gene Mining in Soybean. FRONTIERS IN PLANT SCIENCE 2018; 9:1280. [PMID: 30283463 PMCID: PMC6157441 DOI: 10.3389/fpls.2018.01280] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2018] [Accepted: 08/15/2018] [Indexed: 05/11/2023]
Abstract
First pod height (FPH) is a quantitative trait in soybean [Glycine max (L.) Merr.] that affects mechanized harvesting. A compatible combination of the FPH and the mechanized harvester is required to ensure that the soybean is efficiently harvested. In this study, 147 recombinant inbred lines, which were derived from a cross between 'Dongnong594' and 'Charleston' over 8 years, were used to identify the major quantitative trait loci (QTLs) associated with FPH. Using a composite interval mapping method with WinQTLCart (version 2.5), 11 major QTLs were identified. They were distributed on five soybean chromosomes, and 90 pairs of QTLs showed significant epistatic associates with FPH. Of these, 3 were main QTL × main QTL interactions, and 12 were main QTL × non-main QTL interactions. A KEGG gene annotation of the 11 major QTL intervals revealed 8 candidate genes related to plant growth, appearing in the pathways K14486 (auxin response factor 9), K14498 (serine/threonine-protein kinase), and K13946 (transmembrane amino acid transporter family protein), and 7 candidate genes had high expression levels in the soybean stems. These results will aid in building a foundation for the fine mapping of the QTLs related to FPH and marker-assisted selection for breeding in soybean.
Collapse
Affiliation(s)
- Hongwei Jiang
- College of Agriculture, Northeast Agricultural University, Harbin, China
- Jilin Academy of Agricultural Sciences, Soybean Research Institute, Changchun, China
| | - Yingying Li
- College of Agriculture, Northeast Agricultural University, Harbin, China
| | - Hongtao Qin
- College of Agriculture, Northeast Agricultural University, Harbin, China
| | - Yongliang Li
- College of Agriculture, Northeast Agricultural University, Harbin, China
| | - Huidong Qi
- College of Agriculture, Northeast Agricultural University, Harbin, China
| | - Candong Li
- College of Agriculture, Northeast Agricultural University, Harbin, China
- Heilongjiang Academy of Agricultural Sciences, Jiamusi Branch Institute, Jiamusi, China
| | - Nannan Wang
- Heilongjiang Academy of Agricultural Sciences, Jiamusi Branch Institute, Jiamusi, China
| | - Ruichao Li
- College of Agriculture, Northeast Agricultural University, Harbin, China
| | - Yuanyuan Zhao
- College of Agriculture, Northeast Agricultural University, Harbin, China
| | - Shiyu Huang
- College of Agriculture, Northeast Agricultural University, Harbin, China
| | - Jingyao Yu
- College of Agriculture, Northeast Agricultural University, Harbin, China
| | - Xinyu Wang
- College of Agriculture, Northeast Agricultural University, Harbin, China
| | - Rongsheng Zhu
- College of Agriculture, Northeast Agricultural University, Harbin, China
| | - Chunyan Liu
- College of Agriculture, Northeast Agricultural University, Harbin, China
| | - Zhenbang Hu
- College of Agriculture, Northeast Agricultural University, Harbin, China
| | - Zhaoming Qi
- College of Agriculture, Northeast Agricultural University, Harbin, China
| | - Dawei Xin
- College of Agriculture, Northeast Agricultural University, Harbin, China
| | - Xiaoxia Wu
- College of Agriculture, Northeast Agricultural University, Harbin, China
| | - Qingshan Chen
- College of Agriculture, Northeast Agricultural University, Harbin, China
| |
Collapse
|
38
|
Jiménez-Galindo JC, Malvar RA, Butrón A, Caicedo M, Ordás B. Fine analysis of a genomic region involved in resistance to Mediterranean corn borer. BMC PLANT BIOLOGY 2018; 18:169. [PMID: 30111285 PMCID: PMC6094900 DOI: 10.1186/s12870-018-1385-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/15/2017] [Accepted: 08/01/2018] [Indexed: 06/08/2023]
Abstract
BACKGROUND Sesamia nonagrioides Lefebvere (Mediterranean corn borer, MCB) is the main pest of maize in the Mediterranean area. QTL for MCB stalk tunneling and grain yield under high MCB infestation had been located at bin 8.03-8.05 (4-21 cM and 10-30 cM respectively) in a previous analysis of the EP42 x EP39 RILs mapping population. The objective of the present work was to study with higher resolution those QTL, and validating and estimating with higher precision their locations and effects. To achieve this objective, we developed a set of 38 heterogeneous inbred families (HIFs) which were near-homozygous in the genome, except in the region under study. The HIFs were evaluated in multiple environments under artificial infestation with MCB and genotyped with SNPs. RESULTS The QTL for grain yield under high infestation was confirmed with higher precision and improved reliability at 112.6-116.9 Mb. On the contrary, the location of the QTL for stalk tunneling was not validated probably due to the fixation of some genomic regions during the development of the HIFs. Our study confirmed that the co-localization of the QTL for stalk tunneling and grain yield in the previous study was due to linked genes, not to pleiotropic effects. So, the QTL for grain yield can be used for improving grain yield without undesirable effect on stalk tunneling. CONCLUSIONS The HIF analysis is useful for validating QTL and for conducting deeper studies in traits related to corn borer resistance.
Collapse
Affiliation(s)
- José Cruz Jiménez-Galindo
- Misión Biológica de Galicia, Spanish National Research Council (CSIC), Apartado 28, 36080 Pontevedra, Spain
- National Institute of Forestry, Agriculture and Livestock Research (INIFAP), Ave. Hidalgo 1213, Cd., 31500 Cuauhtémoc, Chihuahua, Mexico
| | - Rosa Ana Malvar
- Misión Biológica de Galicia, Spanish National Research Council (CSIC), Apartado 28, 36080 Pontevedra, Spain
| | - Ana Butrón
- Misión Biológica de Galicia, Spanish National Research Council (CSIC), Apartado 28, 36080 Pontevedra, Spain
| | - Marlon Caicedo
- Misión Biológica de Galicia, Spanish National Research Council (CSIC), Apartado 28, 36080 Pontevedra, Spain
- National Institute of Agricultural Research (INIAP), 170315 Quito, Ecuador
| | - Bernardo Ordás
- Misión Biológica de Galicia, Spanish National Research Council (CSIC), Apartado 28, 36080 Pontevedra, Spain
| |
Collapse
|
39
|
Zhang W, Li Z, Fang H, Zhang M, Duan L. Analysis of the genetic basis of plant height-related traits in response to ethylene by QTL mapping in maize (Zea mays L.). PLoS One 2018; 13:e0193072. [PMID: 29466465 PMCID: PMC5821358 DOI: 10.1371/journal.pone.0193072] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2016] [Accepted: 02/04/2018] [Indexed: 02/06/2023] Open
Abstract
Ethylene (ET) is critical importance in the growth, development, and stress responses of plants. Plant hormonal stress responses have been extensively studied, however, the role of ET in plant growth, especially plant height (PH) remains unclear. Understanding the genetic control for PH in response to ET will provide insights into the regulation of maize development. To clarify the genetic basis of PH-related traits of maize in response to ET, we mapped QTLs for PH, ear height (EH), and internode length above the uppermost ear (ILAU) in two recombinant inbred line (RIL) populations of Zea mays after ET treatment and in an untreated control (CK) group. Sixty QTLs for the three traits were identified. Twenty-two QTLs were simultaneously detected under both ET treatment and untreated control, and five QTLs were detected at two geographic locations under ET treatment only. Individual QTL can be explained 3.87-17.71% of the phenotypic variance. One QTL (q2PH9-1, q1PH9, q1EH9/q1ILAU9-1, q2ILAU9, and q2EH9) for the measured traits (PH, EH, ILAU) was consistent across both populations. Two QTLs (q2PH2-5, q2ILAU2-2, q1PH2-2, and q1ILAU2-2; q1PH8-1, q1EH8-1, q2PH8-1) were identified for up to two traits in both locations and populations under both ET treatment and untreated control. These consistent and stable regions are important QTLs of potential hot spots for PH, ear height (EH), and internode length above the uppermost ear (ILAU) response to ET in maize; therefore, QTL fine-mapping and putative candidate genes validation should enable the cloning of PH, EH, and ILAU related genes to ET response. These results will be valuable for further fine-mapping and quantitative trait nucleotides (QTNs) determination, and elucidate the underlying molecular mechanisms of ET responses in maize.
Collapse
Affiliation(s)
- Weiqiang Zhang
- State Key Laboratory of Plant Physiology and Biochemistry, Engineering Research Center of Plant Growth Regulator, Ministry of Education, College of Agronomy and Biotechnology, China Agricultural University, Haidian District, Beijing, China
| | - Zhi Li
- National Maize Improvement Center of China, College of Agronomy and Biotechnology, China Agricultural University, Haidian District, Beijing, China
| | - Hui Fang
- National Maize Improvement Center of China, College of Agronomy and Biotechnology, China Agricultural University, Haidian District, Beijing, China
| | - Mingcai Zhang
- State Key Laboratory of Plant Physiology and Biochemistry, Engineering Research Center of Plant Growth Regulator, Ministry of Education, College of Agronomy and Biotechnology, China Agricultural University, Haidian District, Beijing, China
| | - Liusheng Duan
- State Key Laboratory of Plant Physiology and Biochemistry, Engineering Research Center of Plant Growth Regulator, Ministry of Education, College of Agronomy and Biotechnology, China Agricultural University, Haidian District, Beijing, China
| |
Collapse
|
40
|
Zhu XM, Shao XY, Pei YH, Guo XM, Li J, Song XY, Zhao MA. Genetic Diversity and Genome-Wide Association Study of Major Ear Quantitative Traits Using High-Density SNPs in Maize. FRONTIERS IN PLANT SCIENCE 2018; 9:966. [PMID: 30038634 PMCID: PMC6046616 DOI: 10.3389/fpls.2018.00966] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2018] [Accepted: 06/15/2018] [Indexed: 05/21/2023]
Abstract
Kernel and ear traits are key components of grain yield in maize (Zea mays L.). Investigation of these traits would help to develop high-yield varieties in maize. Genome-wide association study (GWAS) uses the linkage disequilibrium (LD) in the whole genome to determine the genes affecting certain phenotype. In this study, five ear traits (kernel length and width, ear length and diameter, cob diameter) were investigated across multi-environments for 2 years. Combining with the genotype obtained from Maize SNP50 chip, genetic diversity and association mapping in a set of 292 inbred lines were performed. Results showed that maize lines were clustered into seven subgroups and a total of 20 SNPs were found to be associated with ear traits significantly (P < 3.95E-05). The candidate genes identified by GWAS mainly encoded ubiquitin-activation enzymes (GRMZM2G015287), carotenoid cleavage dioxygenase (GRMZM2G446858), MYB-CC type transfactor, and phosphate starvation response protein 3, and they were associated with kernel length (KL) and ear diameter (ED), respectively. Moreover, two novel genes corresponding to RNA processing and fructose metabolism were found. Further, the SNPs detected by GWAS were confirmed by meta-QTL analysis. These genes and SNPs identified in the study would offer essential information for yield-related genes clone and breeding program in maize.
Collapse
Affiliation(s)
- Xiao-Mei Zhu
- Key Lab of Plant Biotechnology in Universities of Shandong Province, College of Life Sciences, Qingdao Agricultural University, Qingdao, China
| | - Xiao-Yu Shao
- Key Lab of Plant Biotechnology in Universities of Shandong Province, College of Life Sciences, Qingdao Agricultural University, Qingdao, China
| | - Yu-He Pei
- College of Agronomy, Qingdao Agricultural University, Qingdao, China
- Key Laboratory of Qingdao Major Crop Germplasm Resource Innovation and Application, Qingdao, China
| | - Xin-Mei Guo
- College of Agronomy, Qingdao Agricultural University, Qingdao, China
- Key Laboratory of Qingdao Major Crop Germplasm Resource Innovation and Application, Qingdao, China
| | - Jun Li
- College of Agronomy, Qingdao Agricultural University, Qingdao, China
- Key Laboratory of Qingdao Major Crop Germplasm Resource Innovation and Application, Qingdao, China
| | - Xi-Yun Song
- College of Agronomy, Qingdao Agricultural University, Qingdao, China
- Key Laboratory of Qingdao Major Crop Germplasm Resource Innovation and Application, Qingdao, China
- *Correspondence: Mei-Ai Zhao Xi-Yun Song,
| | - Mei-Ai Zhao
- Key Lab of Plant Biotechnology in Universities of Shandong Province, College of Life Sciences, Qingdao Agricultural University, Qingdao, China
- Key Laboratory of Qingdao Major Crop Germplasm Resource Innovation and Application, Qingdao, China
- *Correspondence: Mei-Ai Zhao Xi-Yun Song,
| |
Collapse
|
41
|
Zhang C, Zhou Z, Yong H, Zhang X, Hao Z, Zhang F, Li M, Zhang D, Li X, Wang Z, Weng J. Analysis of the genetic architecture of maize ear and grain morphological traits by combined linkage and association mapping. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2017; 130:1011-1029. [PMID: 28215025 DOI: 10.1007/s00122-017-2867-7] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2016] [Accepted: 01/24/2017] [Indexed: 05/05/2023]
Abstract
Using combined linkage and association mapping, 26 stable QTL and six stable SNPs were detected across multiple environments for eight ear and grain morphological traits in maize. One QTL, PKS2, might play an important role in maize yield improvement. In the present study, one bi-parental population and an association panel were used to identify quantitative trait loci (QTL) for eight ear and grain morphological traits. A total of 108 QTL related to these traits were detected across four environments using an ultra-high density bin map constructed using recombinant inbred lines (RILs) derived from a cross between Ye478 and Qi319, and 26 QTL were identified in more than two environments. Furthermore, 64 single nucleotide polymorphisms (SNPs) were found to be significantly associated with the eight ear and grain morphological traits (-log10(P) > 4) in an association panel of 240 maize inbred lines. Combining the two mapping populations, a total of 17 pleiotropic QTL/SNPs (pQTL/SNPs) were associated with various traits across multiple environments. PKS2, a stable locus influencing kernel shape identified on chromosome 2 in a genome-wide association study (GWAS), was within the QTL confidence interval defined by the RILs. The candidate region harbored a short 13-Kb LD block encompassing four SNPs (SYN11386, PHM14783.16, SYN11392, and SYN11378). In the association panel, 13 lines derived from the hybrid PI78599 possessed the same allele as Qi319 at the PHM14783.16 (GG) locus, with an average value of 0.21 for KS, significantly lower than that of the 34 lines derived from Ye478 that carried a different allele (0.25, P < 0.05). Therefore, further fine mapping of PKS2 will provide valuable information for understanding the genetic components of grain yield and improving molecular marker-assisted selection (MAS) in maize.
Collapse
Affiliation(s)
- Chaoshu Zhang
- College of Agronomy, Northeast Agricultural University, Mucai Street, XiangFang District, Harbin, 150030, Heilongjiang, China
- Institute of Crop Science, Chinese Academy of Agricultural Sciences, Zhongguancun South Street, Haidian District, Beijing, 100081, China
| | - Zhiqiang Zhou
- Institute of Crop Science, Chinese Academy of Agricultural Sciences, Zhongguancun South Street, Haidian District, Beijing, 100081, China
| | - Hongjun Yong
- Institute of Crop Science, Chinese Academy of Agricultural Sciences, Zhongguancun South Street, Haidian District, Beijing, 100081, China
| | - Xiaochong Zhang
- College of Agronomy, Northeast Agricultural University, Mucai Street, XiangFang District, Harbin, 150030, Heilongjiang, China
- Institute of Crop Science, Chinese Academy of Agricultural Sciences, Zhongguancun South Street, Haidian District, Beijing, 100081, China
| | - Zhuanfang Hao
- Institute of Crop Science, Chinese Academy of Agricultural Sciences, Zhongguancun South Street, Haidian District, Beijing, 100081, China
| | - Fangjun Zhang
- College of Agronomy, Northeast Agricultural University, Mucai Street, XiangFang District, Harbin, 150030, Heilongjiang, China
- Institute of Crop Science, Chinese Academy of Agricultural Sciences, Zhongguancun South Street, Haidian District, Beijing, 100081, China
| | - Mingshun Li
- Institute of Crop Science, Chinese Academy of Agricultural Sciences, Zhongguancun South Street, Haidian District, Beijing, 100081, China
| | - Degui Zhang
- Institute of Crop Science, Chinese Academy of Agricultural Sciences, Zhongguancun South Street, Haidian District, Beijing, 100081, China
| | - Xinhai Li
- Institute of Crop Science, Chinese Academy of Agricultural Sciences, Zhongguancun South Street, Haidian District, Beijing, 100081, China
| | - Zhenhua Wang
- College of Agronomy, Northeast Agricultural University, Mucai Street, XiangFang District, Harbin, 150030, Heilongjiang, China.
| | - Jianfeng Weng
- Institute of Crop Science, Chinese Academy of Agricultural Sciences, Zhongguancun South Street, Haidian District, Beijing, 100081, China.
| |
Collapse
|
42
|
Liu H, Zhang L, Wang J, Li C, Zeng X, Xie S, Zhang Y, Liu S, Hu S, Wang J, Lee M, Lübberstedt T, Zhao G. Quantitative Trait Locus Analysis for Deep-Sowing Germination Ability in the Maize IBM Syn10 DH Population. FRONTIERS IN PLANT SCIENCE 2017; 8:813. [PMID: 28588594 PMCID: PMC5439002 DOI: 10.3389/fpls.2017.00813] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2016] [Accepted: 05/01/2017] [Indexed: 05/09/2023]
Abstract
Deep-sowing is an effective measure to ensure seeds absorbing water from deep soil layer and emerging normally in arid and semiarid regions. However, existing varieties demonstrate poor germination ability in deep soil layer and some key quantitative trait loci (QTL) or genes related to deep-sowing germination ability remain to be identified and analyzed. In this study, a high-resolution genetic map based on 280 lines of the intermated B73 × Mo17 (IBM) Syn10 doubled haploid (DH) population which comprised 6618 bin markers was used for the QTL analysis of deep-sowing germination related traits. The results showed significant differences in germination related traits under deep-sowing condition (12.5 cm) and standard-germination condition (2 cm) between two parental lines. In total, 8, 11, 13, 15, and 18 QTL for germination rate, seedling length, mesocotyl length, plumule length, and coleoptile length were detected for the two sowing conditions, respectively. These QTL explained 2.51-7.8% of the phenotypic variance with LOD scores ranging from 2.52 to 7.13. Additionally, 32 overlapping QTL formed 11 QTL clusters on all chromosomes except for chromosome 8, indicating the minor effect genes have a pleiotropic role in regulating various traits. Furthermore, we identified six candidate genes related to deep-sowing germination ability, which were co-located in the cluster regions. The results provide a basis for molecular marker assisted breeding and functional study in deep-sowing germination ability of maize.
Collapse
Affiliation(s)
- Hongjun Liu
- State Key Laboratory of Crop Biology, Shandong Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural UniversityTai'an, China
| | - Lin Zhang
- Department of Agronomy, Northeast Agricultural UniversityHarbin, China
| | - Jiechen Wang
- National Key Laboratory of Plant Molecular Genetics, Institute of Plant Physiology & Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of SciencesShanghai, China
| | - Changsheng Li
- Department of Agronomy, Shenyang Agricultural UniversityShenyang, China
| | - Xing Zeng
- Department of Agronomy, Northeast Agricultural UniversityHarbin, China
| | - Shupeng Xie
- Suihua Sub-academy, Heilongjiang Academy of Agricultural SciencesSuihua, China
| | - Yongzhong Zhang
- Department of Plant Genetics and Breeding, College of Agronomy Sciences, Shandong Agricultural UniversityTai'an, China
| | - Sisi Liu
- Key Laboratory of Biology and Genetic Improvement of Maize in Southwest Region, Maize Research Institute, Sichuan Agricultural UniversityChengdu, China
| | - Songlin Hu
- Department of Agronomy, Iowa State UniversityAmes, IA, United States
| | - Jianhua Wang
- Department of Plant Genetics, Breeding and Seed Science, China Agricultural UniversityBeijing, China
| | - Michael Lee
- Department of Agronomy, Iowa State UniversityAmes, IA, United States
| | | | - Guangwu Zhao
- The Key Laboratory for Quality Improvement of Agricultural Products of Zhejiang Province, College of Agriculture and Food Science, Zhejiang Agriculture and Forestry UniversityLin'an, China
- *Correspondence: Guangwu Zhao
| |
Collapse
|