1
|
Yurkov AP, Afonin AM, Kryukov AA, Gorbunova AO, Kudryashova TR, Kovalchuk AI, Gorenkova AI, Bogdanova EM, Kosulnikov YV, Laktionov YV, Kozhemyakov AP, Romanyuk DA, Zhukov VA, Puzanskiy RK, Mikhailova YV, Yemelyanov VV, Shishova MF. The Effects of Rhizophagus irregularis Inoculation on Transcriptome of Medicago lupulina Leaves at Early Vegetative and Flowering Stages of Plant Development. PLANTS (BASEL, SWITZERLAND) 2023; 12:3580. [PMID: 37896043 PMCID: PMC10610208 DOI: 10.3390/plants12203580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Revised: 10/02/2023] [Accepted: 10/13/2023] [Indexed: 10/29/2023]
Abstract
The study is aimed at revealing the effects of Rhizophagus irregularis inoculation on the transcriptome of Medicago lupulina leaves at the early (second leaf formation) and later (flowering) stages of plant development. A pot experiment was conducted under conditions of low phosphorus (P) level in the substrate. M. lupulina plants were characterized by high mycorrhizal growth response and mycorrhization parameters. Library sequencing was performed on the Illumina HiseqXTen platform. Significant changes in the expression of 4863 (padj < 0.01) genes from 34049 functionally annotated genes were shown by Massive Analysis of cDNA Ends (MACE-Seq). GO enrichment analysis using the Kolmogorov-Smirnov test was performed, and 244 functional GO groups were identified, including genes contributing to the development of effective AM symbiosis. The Mercator online tool was used to assign functional classes of differentially expressed genes (DEGs). The early stage was characterized by the presence of six functional classes that included only upregulated GO groups, such as genes of carbohydrate metabolism, cellular respiration, nutrient uptake, photosynthesis, protein biosynthesis, and solute transport. At the later stage (flowering), the number of stimulated GO groups was reduced to photosynthesis and protein biosynthesis. All DEGs of the GO:0016036 group were downregulated because AM plants had higher resistance to phosphate starvation. For the first time, the upregulation of genes encoding thioredoxin in AM plant leaves was shown. It was supposed to reduce ROS level and thus, consequently, enhance the mechanisms of antioxidant protection in M. lupulina plants under conditions of low phosphorus level. Taken together, the obtained results indicate genes that are the most important for the effective symbiosis with M. lupulina and might be engaged in other plant species.
Collapse
Affiliation(s)
- Andrey P. Yurkov
- Laboratory of Ecology of Symbiotic and Associative Rhizobacteria, All-Russia Research Institute for Agricultural Microbiology, Pushkin, St. Petersburg 196608, Russia; (A.M.A.); (A.A.K.); (A.O.G.); (T.R.K.); (A.I.K.); (A.I.G.); (E.M.B.); (Y.V.K.); (Y.V.L.); (A.P.K.)
| | - Alexey M. Afonin
- Laboratory of Ecology of Symbiotic and Associative Rhizobacteria, All-Russia Research Institute for Agricultural Microbiology, Pushkin, St. Petersburg 196608, Russia; (A.M.A.); (A.A.K.); (A.O.G.); (T.R.K.); (A.I.K.); (A.I.G.); (E.M.B.); (Y.V.K.); (Y.V.L.); (A.P.K.)
| | - Alexey A. Kryukov
- Laboratory of Ecology of Symbiotic and Associative Rhizobacteria, All-Russia Research Institute for Agricultural Microbiology, Pushkin, St. Petersburg 196608, Russia; (A.M.A.); (A.A.K.); (A.O.G.); (T.R.K.); (A.I.K.); (A.I.G.); (E.M.B.); (Y.V.K.); (Y.V.L.); (A.P.K.)
| | - Anastasia O. Gorbunova
- Laboratory of Ecology of Symbiotic and Associative Rhizobacteria, All-Russia Research Institute for Agricultural Microbiology, Pushkin, St. Petersburg 196608, Russia; (A.M.A.); (A.A.K.); (A.O.G.); (T.R.K.); (A.I.K.); (A.I.G.); (E.M.B.); (Y.V.K.); (Y.V.L.); (A.P.K.)
| | - Tatyana R. Kudryashova
- Laboratory of Ecology of Symbiotic and Associative Rhizobacteria, All-Russia Research Institute for Agricultural Microbiology, Pushkin, St. Petersburg 196608, Russia; (A.M.A.); (A.A.K.); (A.O.G.); (T.R.K.); (A.I.K.); (A.I.G.); (E.M.B.); (Y.V.K.); (Y.V.L.); (A.P.K.)
- Graduate School of Biotechnology and Food Science, Peter the Great St. Petersburg Polytechnic University, St. Petersburg 194064, Russia
| | - Anastasia I. Kovalchuk
- Laboratory of Ecology of Symbiotic and Associative Rhizobacteria, All-Russia Research Institute for Agricultural Microbiology, Pushkin, St. Petersburg 196608, Russia; (A.M.A.); (A.A.K.); (A.O.G.); (T.R.K.); (A.I.K.); (A.I.G.); (E.M.B.); (Y.V.K.); (Y.V.L.); (A.P.K.)
- Graduate School of Biotechnology and Food Science, Peter the Great St. Petersburg Polytechnic University, St. Petersburg 194064, Russia
| | - Anastasia I. Gorenkova
- Laboratory of Ecology of Symbiotic and Associative Rhizobacteria, All-Russia Research Institute for Agricultural Microbiology, Pushkin, St. Petersburg 196608, Russia; (A.M.A.); (A.A.K.); (A.O.G.); (T.R.K.); (A.I.K.); (A.I.G.); (E.M.B.); (Y.V.K.); (Y.V.L.); (A.P.K.)
- Faculty of Biology, St. Petersburg State University, St. Petersburg 199034, Russia; (R.K.P.); (V.V.Y.); (M.F.S.)
| | - Ekaterina M. Bogdanova
- Laboratory of Ecology of Symbiotic and Associative Rhizobacteria, All-Russia Research Institute for Agricultural Microbiology, Pushkin, St. Petersburg 196608, Russia; (A.M.A.); (A.A.K.); (A.O.G.); (T.R.K.); (A.I.K.); (A.I.G.); (E.M.B.); (Y.V.K.); (Y.V.L.); (A.P.K.)
- Faculty of Biology, St. Petersburg State University, St. Petersburg 199034, Russia; (R.K.P.); (V.V.Y.); (M.F.S.)
| | - Yuri V. Kosulnikov
- Laboratory of Ecology of Symbiotic and Associative Rhizobacteria, All-Russia Research Institute for Agricultural Microbiology, Pushkin, St. Petersburg 196608, Russia; (A.M.A.); (A.A.K.); (A.O.G.); (T.R.K.); (A.I.K.); (A.I.G.); (E.M.B.); (Y.V.K.); (Y.V.L.); (A.P.K.)
| | - Yuri V. Laktionov
- Laboratory of Ecology of Symbiotic and Associative Rhizobacteria, All-Russia Research Institute for Agricultural Microbiology, Pushkin, St. Petersburg 196608, Russia; (A.M.A.); (A.A.K.); (A.O.G.); (T.R.K.); (A.I.K.); (A.I.G.); (E.M.B.); (Y.V.K.); (Y.V.L.); (A.P.K.)
| | - Andrey P. Kozhemyakov
- Laboratory of Ecology of Symbiotic and Associative Rhizobacteria, All-Russia Research Institute for Agricultural Microbiology, Pushkin, St. Petersburg 196608, Russia; (A.M.A.); (A.A.K.); (A.O.G.); (T.R.K.); (A.I.K.); (A.I.G.); (E.M.B.); (Y.V.K.); (Y.V.L.); (A.P.K.)
| | - Daria A. Romanyuk
- Laboratory of Genetics of Plant-Microbe Interactions, All-Russia Research Institute for Agricultural Microbiology, Pushkin, St. Petersburg 196608, Russia; (D.A.R.); (V.A.Z.)
| | - Vladimir A. Zhukov
- Laboratory of Genetics of Plant-Microbe Interactions, All-Russia Research Institute for Agricultural Microbiology, Pushkin, St. Petersburg 196608, Russia; (D.A.R.); (V.A.Z.)
| | - Roman K. Puzanskiy
- Faculty of Biology, St. Petersburg State University, St. Petersburg 199034, Russia; (R.K.P.); (V.V.Y.); (M.F.S.)
- Laboratory of Analytical Phytochemistry, Komarov Botanical Institute of the Russian Academy of Sciences, St. Petersburg 197022, Russia
| | - Yulia V. Mikhailova
- Laboratory of Biosystematics and Cytology, Komarov Botanical Institute of the Russian Academy of Sciences, St. Petersburg 197022, Russia;
| | - Vladislav V. Yemelyanov
- Faculty of Biology, St. Petersburg State University, St. Petersburg 199034, Russia; (R.K.P.); (V.V.Y.); (M.F.S.)
| | - Maria F. Shishova
- Faculty of Biology, St. Petersburg State University, St. Petersburg 199034, Russia; (R.K.P.); (V.V.Y.); (M.F.S.)
| |
Collapse
|
2
|
Wieghaus A, Roelfs KU, Twyman RM, Prüfer D, Schulze Gronover C. Comparative Transcriptome Analysis in Taraxacum koksaghyz to Identify Genes that Determine Root Volume and Root Length. Front Genet 2022; 12:784883. [PMID: 35140739 PMCID: PMC8819189 DOI: 10.3389/fgene.2021.784883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Accepted: 12/16/2021] [Indexed: 11/24/2022] Open
Abstract
The Russian dandelion (Taraxacum koksaghyz, family Asteraceae) produces large amounts of natural rubber in the laticifers of its roots. This species has been proposed as an alternative source of natural rubber to augment or partly replace the rubber tree (Hevea brasiliensis) but domestication would require genetic improvement to increase rubber yields and agronomic optimization to facilitate harvesting and processing. Optimization has focused thus far on the size and shape of the roots, the primary storage organ for natural rubber and inulin. However, the corresponding genetic factors are poorly understood. Here we describe the comparative transcriptomic analysis of root tissues from T. koksaghyz plant sets featuring different root sizes and shapes, aiming to identify differentially expressed genes correlating with root length or root diameter in the upper root and root tip. The resulting datasets revealed multiple candidate genes for each trait and root part, including a glucan endo-1,3-β-d-glucosidase, an allene oxide synthase 3, and a TIFY10A/JAZ1 homolog. These three genes were tested by qRT-PCR in outdoor-grown plants with diverse root morphology, and the expression of two genes correlated with the appropriate root morphotype, confirming the effectiveness of our method. We evaluated the candidate genes to gain insight into their potential functions in root development. Such candidate genes could be suitable for marker-assisted breeding programs in the future.
Collapse
Affiliation(s)
- Annika Wieghaus
- Institute of Plant Biology and Biotechnology, University of Münster, Münster, Germany
| | - Kai-Uwe Roelfs
- Fraunhofer Institute for Molecular Biology and Applied Ecology (IME), Münster, Germany
| | | | - Dirk Prüfer
- Institute of Plant Biology and Biotechnology, University of Münster, Münster, Germany
- Fraunhofer Institute for Molecular Biology and Applied Ecology (IME), Münster, Germany
| | - Christian Schulze Gronover
- Fraunhofer Institute for Molecular Biology and Applied Ecology (IME), Münster, Germany
- *Correspondence: Christian Schulze Gronover,
| |
Collapse
|
3
|
Plewiński P, Ćwiek-Kupczyńska H, Rudy E, Bielski W, Rychel-Bielska S, Stawiński S, Barzyk P, Krajewski P, Naganowska B, Wolko B, Książkiewicz M. Innovative transcriptome-based genotyping highlights environmentally responsive genes for phenology, growth and yield in a non-model grain legume. PLANT, CELL & ENVIRONMENT 2020; 43:2680-2698. [PMID: 32885839 DOI: 10.1111/pce.13880] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Revised: 08/21/2020] [Accepted: 08/22/2020] [Indexed: 06/11/2023]
Abstract
The narrow-leafed lupin, Lupinus angustifolius L., is a grain legume crop, cultivated both as a green manure and as a source of protein for animal feed and human food production. During its domestication process, numerous agronomic traits were improved, however, only two trait-related genes were identified hitherto, both by linkage mapping. Genome-wide association studies (GWAS), exploiting genomic sequencing, did not select any novel candidate gene. In the present study, an innovative method of 3'-end reduced representation transcriptomic profiling, a massive analysis of cDNA ends, has been used for genotyping of 126 L. angustifolius lines surveyed by field phenotyping. Significant genotype × environment interactions were identified for all phenology and yield traits analysed. Principal component analysis of population structure evidenced European domestication bottlenecks, visualized by clustering of breeding materials and cultivars. GWAS provided contribution towards deciphering vernalization pathway in legumes, and, apart from highlighting known domestication loci (Ku/Julius and mol), designated novel candidate genes for L. angustifolius traits. Early phenology was associated with genes from vernalization, cold-responsiveness and phosphatidylinositol signalling pathways whereas high yield with genes controlling photosynthesis performance and abiotic stress (drought or heat) tolerance. PCR-based toolbox was developed and validated to enable tracking desired alleles in marker-assisted selection. Narrow-leafed lupin was genotyped with an innovative method of transcriptome profiling and phenotyped for phenology, growth and yield traits in field. Early phenology was found associated with genes from cold-response, vernalization and phosphatidylinositol signalling pathways, whereas high yield with genes running photosystem II and drought or heat stress response. Key loci were supplied with PCR-based toolbox for marker-assisted selection.
Collapse
Affiliation(s)
- Piotr Plewiński
- Department of Genomics, Institute of Plant Genetics, Polish Academy of Sciences, Poznań, Poland
| | - Hanna Ćwiek-Kupczyńska
- Department of Biometry and Bioinformatics, Institute of Plant Genetics, Polish Academy of Sciences, Poznań, Poland
| | - Elżbieta Rudy
- Department of Genomics, Institute of Plant Genetics, Polish Academy of Sciences, Poznań, Poland
| | - Wojciech Bielski
- Department of Genomics, Institute of Plant Genetics, Polish Academy of Sciences, Poznań, Poland
| | - Sandra Rychel-Bielska
- Department of Genomics, Institute of Plant Genetics, Polish Academy of Sciences, Poznań, Poland
- Department of Genetics, Plant Breeding and Seed Production, Wroclaw University of Environmental and Life Sciences, Wrocław, Poland
| | - Stanisław Stawiński
- Department in Przebędowo, Plant Breeding Smolice Ltd., Murowana Goślina, Poland
| | - Paweł Barzyk
- Department in Wiatrowo, Poznań Plant Breeding Ltd., Wiatrowo, Poland
| | - Paweł Krajewski
- Department of Biometry and Bioinformatics, Institute of Plant Genetics, Polish Academy of Sciences, Poznań, Poland
| | - Barbara Naganowska
- Department of Genomics, Institute of Plant Genetics, Polish Academy of Sciences, Poznań, Poland
| | - Bogdan Wolko
- Department of Genomics, Institute of Plant Genetics, Polish Academy of Sciences, Poznań, Poland
| | - Michał Książkiewicz
- Department of Genomics, Institute of Plant Genetics, Polish Academy of Sciences, Poznań, Poland
| |
Collapse
|
4
|
Plewiński P, Książkiewicz M, Rychel-Bielska S, Rudy E, Wolko B. Candidate Domestication-Related Genes Revealed by Expression Quantitative Trait Loci Mapping of Narrow-Leafed Lupin ( Lupinus angustifolius L.). Int J Mol Sci 2019; 20:ijms20225670. [PMID: 31726789 PMCID: PMC6888189 DOI: 10.3390/ijms20225670] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Revised: 11/08/2019] [Accepted: 11/09/2019] [Indexed: 12/12/2022] Open
Abstract
The last century has witnessed rapid domestication of the narrow-leafed lupin (Lupinus angustifolius L.) as a grain legume crop, exploiting discovered alleles conferring low-alkaloid content (iucundus), vernalization independence (Ku and Julius), and reduced pod shattering (lentus and tardus). In this study, a L. angustifolius mapping population was subjected to massive analysis of cDNA ends (MACE). The MACE yielded 4185 single nucleotide polymorphism (SNP) markers for linkage map improvement and 30,595 transcriptomic profiles for expression quantitative trait loci (eQTL) mapping. The eQTL highlighted a high number of cis- and trans-regulated alkaloid biosynthesis genes with gene expression orchestrated by a regulatory agent localized at iucundus locus, supporting the concept that ETHYLENE RESPONSIVE TRANSCRIPTION FACTOR RAP2-7 may control low-alkaloid phenotype. The analysis of Ku shed light on the vernalization response via FLOWERING LOCUS T and FD regulon in L. angustifolius, providing transcriptomic evidence for the contribution of several genes acting in C-repeat binding factor (CBF) cold responsiveness and in UDP-glycosyltransferases pathways. Research on lentus selected a DUF1218 domain protein as a candidate gene controlling the orientation of the sclerified endocarp and a homolog of DETOXIFICATION14 for purplish hue of young pods. An ABCG transporter was identified as a hypothetical contributor to sclerenchyma fortification underlying tardus phenotype.
Collapse
|
5
|
Validation of Diaporthe toxica resistance markers in European Lupinus angustifolius germplasm and identification of novel resistance donors for marker-assisted selection. J Appl Genet 2019; 61:1-12. [PMID: 31641945 PMCID: PMC6968985 DOI: 10.1007/s13353-019-00521-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Revised: 08/22/2019] [Accepted: 09/03/2019] [Indexed: 10/26/2022]
Abstract
The fungus, Diaporthe toxica, anamorph Phomopsis sp., previously classified as P. leptostromiformis, is a plant endophyte and occasional pathogen, causing Phomopsis stem blight. This disease is damaging not only to lupins but also to the animals grazing on infected plants, due to the toxic secondary metabolites called phomopsins. The aim of this work was to validate markers for resistance to Phomopsis stem blight in narrow-leafed lupins and identify novel germplasm with increased levels of resistance to the disease. Plant inoculations were performed using ten isolates of D. toxica, originating from Australia and Poland. The European core collection of L. angustifolius was evaluated both in a controlled environment and with field experiments to classify the accessions based on their resistance to the disease. Simultaneously, the accessions were assayed with disease resistance markers to identify donors of hypothetical resistance alleles. We have found that the European lupin germplasm collection preserves wild and domesticated donors of at least two resistance genes to Phomopsis stem blight, including Phr1 and PhtjR. Molecular markers PhtjM7, InDel2, and InDel10, tagging PhtjR gene, were applicable for marker-assisted selection targeting the European gene pool with an expected accuracy of 95%. None of diagnostic markers for the Phr1 locus was found useful for European breeding programs; two existing markers Ph258M1 and Ph258M2 were unreliable, due to a high percentage of false-positive results (up to 58%) and a high recombination rate between markers (~ 30%).
Collapse
|
6
|
Zhernakov AI, Shtark OY, Kulaeva OA, Fedorina JV, Afonin AM, Kitaeva AB, Tsyganov VE, Afonso-Grunz F, Hoffmeier K, Rotter B, Winter P, Tikhonovich IA, Zhukov VA. Mapping-by-sequencing using NGS-based 3'-MACE-Seq reveals a new mutant allele of the essential nodulation gene Sym33 ( IPD3) in pea ( Pisum sativum L.). PeerJ 2019; 7:e6662. [PMID: 30972251 PMCID: PMC6450374 DOI: 10.7717/peerj.6662] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2018] [Accepted: 02/20/2019] [Indexed: 11/29/2022] Open
Abstract
Large collections of pea symbiotic mutants were accumulated in the 1990s, but the causal genes for a large portion of the mutations are still not identified due to the complexity of the task. We applied a Mapping-by-Sequencing approach including Bulk Segregant Analysis and Massive Analysis of cDNA Ends (MACE-Seq) sequencing technology for genetic mapping the Sym11 gene of pea which controls the formation of symbioses with both nodule bacteria and arbuscular-mycorrhizal fungi. For mapping we developed an F 2-population from the cross between pea line N24 carrying the mutant allele of sym11 and the wild type NGB1238 (=JI0073) line. Sequencing libraries were prepared from bulks of 20 plants with mutant and 12 with wild-type phenotype. MACE-Seq differential gene expression analysis between mutant-phenotype and wild-type-phenotype bulks revealed 2,235 genes, of which 514 (23%) were up-regulated and 1,721 (77%) were down-regulated in plant roots inoculated with rhizobia as a consequence of sym11 mutation. MACE-Seq also detected single nucleotide variants between bulks in 217 pea genes. Using a novel mathematical model we calculated the recombination frequency (RF) between the Sym11 gene and these 217 polymorphic genes. Six genes with the lowest RF were converted into CAPS or dCAPS markers and genetically mapped on the complete mapping population of 108 F 2-plants which confirmed their tight linkage to Sym11 and to each other. The Medicago truncatula Gaertn. (Mt) homologs of these genes are located in a distinct region of Mt chromosome 5, which corresponds to linkage group I of pea. Among 94 candidate genes from this region only one was down-regulated-the pea Sym33 homolog of the Mt IPD3 gene which is essential for nodulation. Sequencing of the Sym33 allele of the N24 (sym11) mutant revealed a single nucleotide deletion (c.C319del) in its third exon resulting in a codon shift in the open reading frame and premature translation termination. Thus, we identified a novel mutant allele sym33-4 most probably responsible for the mutant phenotype of the N24 (sym11) line, thereby demonstrating that mapping by MACE-Seq can be successfully used for genetic mapping of mutations and identification of candidate genes in pea.
Collapse
Affiliation(s)
| | - Oksana Y. Shtark
- All-Russia Research Institute for Agricultural Microbiology, St.Petersburg, Russia
| | - Olga A. Kulaeva
- All-Russia Research Institute for Agricultural Microbiology, St.Petersburg, Russia
| | | | - Alexey M. Afonin
- All-Russia Research Institute for Agricultural Microbiology, St.Petersburg, Russia
| | - Anna B. Kitaeva
- All-Russia Research Institute for Agricultural Microbiology, St.Petersburg, Russia
| | - Viktor E. Tsyganov
- All-Russia Research Institute for Agricultural Microbiology, St.Petersburg, Russia
| | | | | | | | | | - Igor A. Tikhonovich
- All-Russia Research Institute for Agricultural Microbiology, St.Petersburg, Russia
- St.Petersburg State University, St.Petersburg, Russia
| | - Vladimir A. Zhukov
- All-Russia Research Institute for Agricultural Microbiology, St.Petersburg, Russia
| |
Collapse
|
7
|
Knorst V, Byrne S, Yates S, Asp T, Widmer F, Studer B, Kölliker R. Pooled DNA sequencing to identify SNPs associated with a major QTL for bacterial wilt resistance in Italian ryegrass (Lolium multiflorum Lam.). TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2019; 132:947-958. [PMID: 30506318 PMCID: PMC6449324 DOI: 10.1007/s00122-018-3250-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Accepted: 11/23/2018] [Indexed: 05/27/2023]
Abstract
SNPs and candidate genes associated with bacterial wilt resistance in Italian ryegrass were identified by sequencing the parental plants and pooled F1 progeny of a segregating population. Italian ryegrass (Lolium multiflorum Lam.) is one of the most important forage grass species in temperate regions. Its yield, quality and persistency can significantly be reduced by bacterial wilt, a serious disease caused by Xanthomonas translucens pv. graminis. Although a major QTL for bacterial wilt resistance has previously been reported, detailed knowledge on underlying genes and DNA markers to allow for efficient resistance breeding strategies is currently not available. We used pooled DNA sequencing to characterize a major QTL for bacterial wilt resistance of Italian ryegrass and to develop inexpensive sequence-based markers to efficiently target resistance alleles for marker-assisted recurrent selection. From the mapping population segregating for the QTL, DNA of 44 of the most resistant and 44 of the most susceptible F1 individuals was pooled and sequenced using the Illumina HiSeq 2000 platform. Allele frequencies of 18 × 106 single nucleotide polymorphisms (SNP) were determined in the resistant and susceptible pool. A total of 271 SNPs on 140 scaffold sequences of the reference parental genome showed significantly different allele frequencies in both pools. We converted 44 selected SNPs to KASP™ markers, genetically mapped these proximal to the major QTL and thus validated their association with bacterial wilt resistance. This study highlights the power of pooled DNA sequencing to efficiently target binary traits in biparental mapping populations. It delivers genome sequence data, SNP markers and potential candidate genes which will allow to implement marker-assisted strategies to fix bacterial wilt resistance in outcrossing breeding populations of Italian ryegrass.
Collapse
Affiliation(s)
- Verena Knorst
- Molecular Plant Breeding, Institute of Agricultural Sciences, ETH Zürich, Universitätsstrasse 2, 8092, Zurich, Switzerland
- Molecular Ecology, Agroscope, Reckenholzstrasse 191, 8046, Zurich, Switzerland
| | - Stephen Byrne
- Crops Science Department, Teagasc, Oak Park, Carlow, R93 XE12, Ireland
| | - Steven Yates
- Molecular Plant Breeding, Institute of Agricultural Sciences, ETH Zürich, Universitätsstrasse 2, 8092, Zurich, Switzerland
| | - Torben Asp
- Department of Molecular Biology and Genetics, Section for Crop Genetics and Biotechnology, Forsøgsvej 1, 4200, Slagelse, Denmark
| | - Franco Widmer
- Molecular Ecology, Agroscope, Reckenholzstrasse 191, 8046, Zurich, Switzerland
| | - Bruno Studer
- Molecular Plant Breeding, Institute of Agricultural Sciences, ETH Zürich, Universitätsstrasse 2, 8092, Zurich, Switzerland
| | - Roland Kölliker
- Molecular Plant Breeding, Institute of Agricultural Sciences, ETH Zürich, Universitätsstrasse 2, 8092, Zurich, Switzerland.
- Molecular Ecology, Agroscope, Reckenholzstrasse 191, 8046, Zurich, Switzerland.
| |
Collapse
|
8
|
Hradilová I, Trněný O, Válková M, Cechová M, Janská A, Prokešová L, Aamir K, Krezdorn N, Rotter B, Winter P, Varshney RK, Soukup A, Bednář P, Hanáček P, Smýkal P. A Combined Comparative Transcriptomic, Metabolomic, and Anatomical Analyses of Two Key Domestication Traits: Pod Dehiscence and Seed Dormancy in Pea ( Pisum sp.). FRONTIERS IN PLANT SCIENCE 2017; 8:542. [PMID: 28487704 PMCID: PMC5404241 DOI: 10.3389/fpls.2017.00542] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2016] [Accepted: 03/27/2017] [Indexed: 05/19/2023]
Abstract
The origin of the agriculture was one of the turning points in human history, and a central part of this was the evolution of new plant forms, domesticated crops. Seed dispersal and germination are two key traits which have been selected to facilitate cultivation and harvesting of crops. The objective of this study was to analyze anatomical structure of seed coat and pod, identify metabolic compounds associated with water-impermeable seed coat and differentially expressed genes involved in pea seed dormancy and pod dehiscence. Comparative anatomical, metabolomics, and transcriptomic analyses were carried out on wild dormant, dehiscent Pisum elatius (JI64, VIR320) and cultivated, indehiscent Pisum sativum non-dormant (JI92, Cameor) and recombinant inbred lines (RILs). Considerable differences were found in texture of testa surface, length of macrosclereids, and seed coat thickness. Histochemical and biochemical analyses indicated genotype related variation in composition and heterogeneity of seed coat cell walls within macrosclereids. Liquid chromatography-electrospray ionization/mass spectrometry and Laser desorption/ionization-mass spectrometry of separated seed coats revealed significantly higher contents of proanthocyanidins (dimer and trimer of gallocatechin), quercetin, and myricetin rhamnosides and hydroxylated fatty acids in dormant compared to non-dormant genotypes. Bulk Segregant Analysis coupled to high throughput RNA sequencing resulted in identification of 770 and 148 differentially expressed genes between dormant and non-dormant seeds or dehiscent and indehiscent pods, respectively. The expression of 14 selected dormancy-related genes was studied by qRT-PCR. Of these, expression pattern of four genes: porin (MACE-S082), peroxisomal membrane PEX14-like protein (MACE-S108), 4-coumarate CoA ligase (MACE-S131), and UDP-glucosyl transferase (MACE-S139) was in agreement in all four genotypes with Massive analysis of cDNA Ends (MACE) data. In case of pod dehiscence, the analysis of two candidate genes (SHATTERING and SHATTERPROOF) and three out of 20 MACE identified genes (MACE-P004, MACE-P013, MACE-P015) showed down-expression in dorsal and ventral pod suture of indehiscent genotypes. Moreover, MACE-P015, the homolog of peptidoglycan-binding domain or proline-rich extensin-like protein mapped correctly to predicted Dpo1 locus on PsLGIII. This integrated analysis of the seed coat in wild and cultivated pea provides new insight as well as raises new questions associated with domestication and seed dormancy and pod dehiscence.
Collapse
Affiliation(s)
- Iveta Hradilová
- Department of Botany, Palacký University in OlomoucOlomouc, Czechia
| | - Oldřich Trněný
- Department of Plant Biology, Mendel University in BrnoBrno, Czechia
- Agricultural Research, Ltd.Troubsko, Czechia
| | - Markéta Válková
- Department of Analytical Chemistry, Regional Centre of Advanced Technologies and Materials, Palacký University in OlomoucOlomouc, Czechia
- Faculty of Science, Palacký University in OlomoucOlomouc, Czechia
| | - Monika Cechová
- Department of Analytical Chemistry, Regional Centre of Advanced Technologies and Materials, Palacký University in OlomoucOlomouc, Czechia
- Faculty of Science, Palacký University in OlomoucOlomouc, Czechia
| | - Anna Janská
- Department of Experimental Plant Biology, Charles UniversityPrague, Czechia
| | - Lenka Prokešová
- Department of Crop Science, Breeding and Plant Medicine, Mendel University in BrnoBrno, Czechia
| | - Khan Aamir
- Research Program-Genetic Gains, ICRISATHyderabad, India
| | | | | | | | | | - Aleš Soukup
- Department of Experimental Plant Biology, Charles UniversityPrague, Czechia
| | - Petr Bednář
- Department of Analytical Chemistry, Regional Centre of Advanced Technologies and Materials, Palacký University in OlomoucOlomouc, Czechia
- Faculty of Science, Palacký University in OlomoucOlomouc, Czechia
| | - Pavel Hanáček
- Department of Plant Biology, Mendel University in BrnoBrno, Czechia
| | - Petr Smýkal
- Department of Botany, Palacký University in OlomoucOlomouc, Czechia
- *Correspondence: Petr Smýkal
| |
Collapse
|